Skip to main content
Log in

Rhodanine-benzamides as potential hits for α-amylase enzyme inhibitors and radical (DPPH and ABTS) scavengers

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A series of 3-substituted and 3,5-disubstituted rhodanine-based derivatives were synthesized from 3-aminorhodanine and examined for α-amylase inhibitory, DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activities in vitro. These derivatives displayed significant α-amylase inhibitory potential with IC50 values of 11.01–56.04 µM in comparison to standard acarbose (IC50 = 9.08 ± 0.07 µM). Especially, compounds 7 (IC50 = 11.01 ± 0.07 µM) and 8 (IC50 = 12.01 ± 0.07 µM) showed highest α-amylase inhibitory activities among the whole series. In addition to α-amylase inhibitory activity, all compounds also demonstrated significant scavenging activities against DPPH and ABTS radicals, with IC50 values ranging from 12.24 to 57.33 and 13.29–59.09 µM, respectively, as compared to the standard ascorbic acid (IC50 = 15.08 ± 0.03 µM for DPPH; IC50 = 16.09 ± 0.17 µM for ABTS). These findings reveal that the nature and position of the substituents on the phenyl ring(s) are crucial for variation in the activities. The structure-activity relationship (SAR) revealed that the compounds bearing an electron-withdrawing group (EWG) at para substitution possessed the highest activity. In kinetic studies, only the km value was changed, with no observed changes in Vmax, indicating a competitive inhibition. Molecular docking studies revealed important interactions between compounds and the α-amylase active pocket. Further advanced research needs to perform on the identified compounds in order to obtain potential antidiabetic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Egu SA, Ibezim A, Onoabedje EA, Okoro UC (2017) Biological and in silico evaluation of quinolinedione and naphthoquinone derivatives as potent antibacterial agents. ChemistrySelect 2(28):9222–9226

    Article  CAS  Google Scholar 

  2. Egu SA, Okoro UC, Onoabedje EA (2017) New aryl derivatives of quinolinedione and related heterocyclic compounds. J Heterocycl Chem 54(2):1572–1577

    Article  CAS  Google Scholar 

  3. Egu SA, Okoro U, Wirth T (2015) Synthesis of quinoline quinone derivatives and related carbocyclic compounds. Sci Open Res. https://doi.org/10.14293/S2199-1006.1.SOR-CHEM.AALL9P.v1

    Article  Google Scholar 

  4. Kaur M, Singh P (2019) Targeting tyrosine kinase: development of acridone-pyrrole-oxindole hybrids against human breast cancer. Bioorg Med Chem Lett 29(1):32–35

    Article  CAS  PubMed  Google Scholar 

  5. Singh P, Mothilal S, Kerru N, Singh-Pillay A, Gummidi L, Erukainure OL, Islam M (2019) Comparative α-glucosidase and α-amylase inhibition studies of rhodanine-pyrazole conjugates and their simple rhodanine analogues. Med Chem Res 28(2):143–159

    Article  CAS  Google Scholar 

  6. Kaminskyy D, Kryshchyshyn A, Lesyk R (2017) Recent developments with rhodanine as a scaffold for drug discovery. Expert Opin Drug Discov 12(12):1233–1252

    Article  CAS  PubMed  Google Scholar 

  7. Tomašić T, Peterlin Mašič L (2012) Rhodanine as a scaffold in drug discovery: a critical review of its biological activities and mechanisms of target modulation. Expert Opin Drug Discov 7(7):549–560

    Article  PubMed  Google Scholar 

  8. Aiello D, Barnes MH, Biswas EE, Biswas SB, Gu S, Williams JD, Bowlin TL, Moir DT (2009) Discovery, characterization and comparison of inhibitors of Bacillus anthracis and Staphylococcus aureus replicative DNA helicases. Bioorg Med Chem 17(13):4466–4476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. He XY, Zou P, Qiu J, Hou L, Jiang S, Liu S, Xie L (2011) Design, synthesis and biological evaluation of 3-substituted 2, 5-dimethyl-N-(3-(1H-tetrazol-5-yl) phenyl) pyrroles as novel potential HIV-1 gp41 inhibitors. Bioorg Med Chem 19(22):6726–6734

    Article  CAS  PubMed  Google Scholar 

  10. Johnson SL, Chen LH, Harbach R, Sabet M, Savinov A, Cotton NJ, Strongin A, Guiney D, Pellecchia M (2008) Rhodanine derivatives as selective protease inhibitors against bacterial toxins. Chem Biology Drug Des 71(2):131–139

    Article  CAS  Google Scholar 

  11. Maga G, Falchi F, Radi M, Botta L, Casaluce G, Bernardini M, Irannejad H, Manetti F, Garbelli A, Samuele A, Zanoli S (2011) Toward the discovery of novel anti-HIV drugs. Second‐generation inhibitors of the cellular ATPase DDX3 with improved anti‐HIV activity: synthesis, structure-activity-relationship analysis, cytotoxicity studies, and target validation. ChemMedChem 6(8):1371–1389

    Article  CAS  PubMed  Google Scholar 

  12. Havrylyuk D, Mosula L, Zimenkovsky B, Vasylenko O, Gzella A, Lesyk R (2010) Synthesis and anticancer activity evaluation of 4-thiazolidinones containing benzothiazole moiety. Eur J Med Chem 45(11):5012–5021

    Article  CAS  PubMed  Google Scholar 

  13. Freundlich JS, Wang F, Tsai HC, Luo M, Shieh HM, Anderson JW, Nkrumah LJ, Valderramos JC, Yu M, Kumar TR, Valderramos SG (2007) X-ray structural analysis of Plasmodium falciparum enoyl acyl carrier protein reductase as a pathway toward the optimization of triclosan antimalarial efficacy. J Biol Chem 282(35):25436–25444

    Article  CAS  PubMed  Google Scholar 

  14. Soltero-Higgin M, Carison EE, Philips JH, Kiessling LL (2004) Identification of inhibitors for UDP-Galactopyranose mutase. J Am Chem Soc 126(34):10532–10533

    Article  CAS  PubMed  Google Scholar 

  15. Powers JP, Piper DE, Li Y, Mayorga V, Anzola J, Chen JM, Jean JC, Lee G, Liu J, Peterson MG, Tonn GR (2006) SAR and mode of action of novel non-nucleoside inhibitors of hepatitis C NS5b RNA polymerase. J Med Chem 49(3):1034–1046

    Article  CAS  PubMed  Google Scholar 

  16. Rajamaki S, Innitzer A, Falciani C, Tintori C, Christ F, Witvrouw M, Debyser Z, Massa S, Botta M (2009) Exploration of novel thiobarbituric acid, rhodanine-and thiohydantoin-based HIV-1 integrase inhibitors. Bioorg Med Chem Lett 19(13):3615–3618

    Article  CAS  PubMed  Google Scholar 

  17. Dayam R, Sanchez T, Neamati N (2005) Diketo acid pharmacophore. 2. Discovery of structurally diverse inhibitors of HIV-1 integrase. J Med Chem 48(25):8009–8015

    Article  CAS  PubMed  Google Scholar 

  18. Kodimuthali A, Jabaris SSL, Pal M (2008) Recent advances on phosphodiesterase 4 inhibitors for the treatment of asthma and chronic obstructive pulmonary disease. J Med Chem 51(18):5471–5489

    Article  CAS  PubMed  Google Scholar 

  19. Yamali C, Gul HI, Ece A, Taslimi P, Gulcin I (2018) Synthesis, molecular modeling, and biological evaluation of 4-[5‐aryl‐3‐(thiophen‐2‐yl)‐4,5‐dihydro‐1H‐pyrazol‐1‐yl] benzenesulfonamides toward acetylcholinesterase, carbonic anhydrase I and II enzymes. Chem Biology Drug Des 91(4):854–866

    Article  CAS  Google Scholar 

  20. Köksal Z, Alım Z, Bayrak S, Gülçin İ, Özdemir H (2019) Investigation of the effects of some sulfonamides on acetylcholinesterase and carbonic anhydrase enzymes. J Biochem Mol Toxicol 33(5):e22300

    Article  PubMed  Google Scholar 

  21. Bayindir S, Ayna A, Temel Y, Ciftci M (2018) The synthesis of new oxindoles as analogs of natural product 3, 3-bis (indolyl) oxindole and in vitro evaluation of the enzyme activity of G6PD and 6PGD. Turk J Chem 42(2):332–345

    Article  CAS  Google Scholar 

  22. Güzel E, Koçyiğit ÜM, Arslan BS, Ataş M, Taslimi P, Gökalp F, Nebioğlu M, Şişman İ, Gulçin İ (2019) Aminopyrazole-substituted metallophthalocyanines: preparation, aggregation behavior, and investigation of metabolic enzymes inhibition properties. Arch Pharm 352(2):1800292

    Article  Google Scholar 

  23. Evliyaoğlu O, Kebapçılar L, Uzuncan N, Kılıçaslan N, Karaca B, Kocaçelebi R, Yensel N (2004) Correlations of serum cu, zn, mg and HbA 1c in type 2 and type 2 diabetes mellitus. Turkish J Endocrinol Metabolism 2:75–79

    Google Scholar 

  24. American Diabetes Association (2009) Standards of medical care in diabetes-2009. Diabetes Care 32:S13

    Article  PubMed Central  Google Scholar 

  25. Atlas D (2021) International diabetes federation. IDF Diabetes Atlas. Int Diabetes Federation.

  26. Date K, Satoh A, Iida K, Ogawa H (2015) Pancreatic α-amylase control glucose assimilation by duodenal retrieval through N-glycan-specific binding, endocytosis, and degradation. J Biol Chem 290(28):17439–17450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Souza PMD, Magalhães PDO (2010) Application of microbial α-amylase in industry—a review. Brazilian J Microbiol 41(4):850–861

    Article  Google Scholar 

  28. Tokalı FS (2022) Novel benzoic acid derivatives bearing quinazolin-4 (3H)-one ring: synthesis, characterization, and inhibition effects on α-glucosidase and α-amylase. ChemistrySelect 7(48):e202204019

    Article  Google Scholar 

  29. Tokalı FS, Taslimi P, Sadeghian N, Taskin-Tok T, Gülçin İ (2023) Synthesis, characterization, bioactivity impacts of new anthranilic acid hydrazones containing aryl sulfonate moiety as fenamate isosteres. ChemistrySelect 8(13):e202300241

    Article  Google Scholar 

  30. Tokalı FS, Taslimi P, Sadeghi M, Şenol H (2023) Synthesis and evaluation of quinazolin-4 (3H)-one derivatives as multitarget metabolic enzyme inhibitors: a biochemistry-oriented drug design. ChemistrySelect 8(25):e202301158

    Article  Google Scholar 

  31. Tokalı FS, Taslimi P, Demircioğlu İH, Şendil K, Tuzun B, Gülçin İ (2022) Novel phenolic mannich base derivatives: synthesis, bioactivity, molecular docking, and ADME-Tox studies. J Iran Chem Soc 19(2):563–577

    Article  Google Scholar 

  32. Ceriello A, Testa R, Genovese S (2016) Clinical implications of oxidative stress and potential role of natural antioxidants in diabetic vascular complications. Nutr Metab Cardiovasc Dis 26(4):285–292

    Article  CAS  PubMed  Google Scholar 

  33. Sankhla M, Sharma TK, Mathur K, Rathor JS, Butolia V, Gadhok AK, Vardey SK, Sinha M, Kaushik GG (2012) Relationship of oxidative stress with obesity and its role in obesity-induced metabolic syndrome. Clin Lab 58(5–6):385–392

    CAS  PubMed  Google Scholar 

  34. Sasaki S, Inoguchi T (2012) The role of oxidative stress in the pathogenesis of diabetic vascular complications. Diabet Metab J 36(4):255–261

    Article  Google Scholar 

  35. Ali I, Rafique R, Khan KM, Chigurupati S, Ji X, Wadood A, Rehman AU, Salar U, Iqbal MS, Taha M, Perveen S (2020) Potent α-amylase inhibitors and radical (DPPH and ABTS) scavengers based on benzofuran-2-yl (phenyl) methanone derivatives: syntheses, in vitro, kinetics, and in silico studies. Bioorg Chem 104:104238

    Article  CAS  PubMed  Google Scholar 

  36. Egu SA, Ali I, Khan KM, Chigurupati S, Qureshi U, Salar U, Taha M, Felemban SG, Venugopal V, Ul-Haq Z (2022) Syntheses, in vitro, and in silico studies of rhodanine-based Schiff bases as potential α-amylase inhibitors and radicals (DPPH and ABTS) scavengers. Mol Diversity. https://doi.org/10.1007/s11030-022-10454-0

    Article  Google Scholar 

  37. Wu S, Zhao Q, Zhang P, Kulp J, Hu L, Hwang N, Zhang J, Block TM, Xu X, Du Y, Chang J (2017) Discovery and mechanistic study of benzamide derivatives that modulate hepatitis B virus capsid assembly. J Virol 91(16):e00519–e00517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Siddiqi KS, Kureshy RI, Khan NH, Khan LA, Tabassum S, Zaidi SAA (1985) Characterization and toxicity of organotin (IV) halide complexes of cyclohexanone spirothiazolidinone and 3-aminorhodanine. Indian J Chem 24(11):954–956

    Google Scholar 

  39. Horishny VY, Matiychuk VS (2020) Reaction of carboxylic acid hydrazides with 2, 2′-(carbonothioyldisulfanediyl) diacetic acid in water as a green synthesis of N-(4-oxo-2-sulfanylidene-1, 3-thiazolidin-3-yl) carboxamides. Russ J Org Chem 56(12):2240–2243

    Article  CAS  Google Scholar 

  40. Sato T, Ohta M (1955) Sulfur-containing heterocyclic compounds. II. Reaction of potassium 3-benzoyldithiocarbazate and mono-chloroacetic acid and its ester. J Pharm Soc Japan 75:1535

    Article  CAS  Google Scholar 

  41. Turkevich NM, Kontsevich LS, Petlichnaya LI (1963) 3-Aminorhodanine and its derivatives. Zb Nauk Prats L’vivsk Med Inst 24:22–28

    CAS  Google Scholar 

  42. Wang M, Liu Q, Zhou C, Ning M, Wu B Hui, X. Substituted thiazol-4-one compounds, preparation methods and use thereof. Publication Number: WO/2007/009353

  43. Toumi A, Boudriga S, Hamden K, Sobeh M, Cheurfa M, Askri M, Knorr M, Strohmann C, Brieger L (2021) Synthesis, antidiabetic activity and molecular docking study of rhodanine-substitued spirooxindole pyrrolidine derivatives as novel α-amylase inhibitors. Bioorg Chem 106:104507

    Article  CAS  PubMed  Google Scholar 

  44. Chigurupati S (2020) Antioxidant and antidiabetic properties of Phyllanthus acidus (L.) Skeels ethanolic seed extract. Int Food Res J 27(4):775–782

    CAS  Google Scholar 

  45. Khan M, Alam A, Khan KM, Salar U, Chigurupati S, Wadood A, Ali F, Mohammad JI, Riaz M, Perveen S (2018) Flurbiprofen derivatives as novel α-amylase inhibitors: biology-oriented drug synthesis (BIODS), in vitro, and in silico evaluation. Bioorg Chem 81:157–167

    Article  CAS  PubMed  Google Scholar 

  46. Taha M, Irshad M, Imran S, Rahim F, Selvaraj M, Almandi NB, Mosaddik A, Chigurupati S, Nawaz F, Ismail NH, Ibrahim M (2019) Thiazole based carbohydrazide derivatives as α-amylase inhibitor and their molecular docking study. Heteroat Chem. https://doi.org/10.1155/2019/7502347

    Article  Google Scholar 

  47. Yousuf S, Khan KM, Salar U, Chigurupati S, Muhammad MT, Wadood A, Aldubayan M, Vijayan V, Riaz M, Perveen S (2018) 2ʹ-Aryl and 4ʹ-arylidene substituted pyrazolones: as potential α-amylase inhibitors. Eur J Med Chem 159:47–58

    Article  CAS  PubMed  Google Scholar 

  48. Ramírez-Escudero M, Gimeno-Perez M, González B, Linde D, Merdzo Z, Fernández-Lobato M, Sanz-Aparicio J (2016) Structural analysis of β-fructofuranosidase from Xanthophyllomyces dendrorhous reveals unique features and the crucial role of N-glycosylation in oligomerization and activity. J Biol Chem 291(13):6843–6857

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ccgi M (2016) Molecular operating environment (MOE), 2013.08. Chemical Computing Group Inc, Montreal, p 354

    Google Scholar 

  50. Halgren TA (1996) Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 17(5–6):490–519

    Article  CAS  Google Scholar 

  51. Maurus R, Begum A, Kuo HH, Racaza A, Numao S, Anderson C, Tams JW, Vind J, Overall CM, Withers SG, Brayer GD (2005) Structural and mechanistic studies of chloride-induced activation of human pancreatic α-amylase. Protein Sci 14(3):743–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Koebel MR, Cooper A, Schmadeke G, Jeon S, Narayan M, Sirimulla S (2016) Sulfur bonding interactions in protein-ligand complexes: empirical considerations and scoring function. J Chem Inf Model 56(12):2298–2309

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Samuel Attah Egu is thankful to The World Academy of Sciences, Trieste, Italy, for awarding a prestigious Fellowship for the year 2019–2020 under the TWAS-ICCBS Postdoctoral Fellowship Programme. The authors also acknowledge the financial support of the Pakistan Academy of Science, 3-Constitution Avenue, G-5/2, Islamabad-44000, Pakistan, under PAS Project No. 111.

Author information

Authors and Affiliations

Authors

Contributions

All authors involve in writing and reviewing of this manuscript.

Corresponding author

Correspondence to Khalid Mohammed Khan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3443.1 kb)

Supplementary material 2 (PDF 1923.0 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egu, S.A., Ali, I., Khan, K.M. et al. Rhodanine-benzamides as potential hits for α-amylase enzyme inhibitors and radical (DPPH and ABTS) scavengers. Mol Divers (2024). https://doi.org/10.1007/s11030-024-10813-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-024-10813-z

Keywords

Navigation