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Abstract
The behavior of a molecule within its environment is governed by chemical fields present in 3D space. However, beyond 
local descriptors in 3D, the conformations a molecule assumes, and the resulting clusters also play a role in influencing 
structure–activity models. This study focuses on the clustering of atoms according to the vector space of four atoms aligned 
in the Z-Matrix Reference system for molecular similarity. Using 3D-QSAR analysis, it was aimed to determine the 
pharmacophore groups as interaction points in the binding region of the β2-adrenoceptor target of fenoterol stereoisomers. 
Different types of local reactive descriptors of ligands have been used to elucidate points of interaction with the target. 
Activity values for ligand-receptor interaction energy were determined using the Levenberg–Marquardt algorithm. Using the 
Molecular Comparative Electron Topology method, the 3D pharmacophore model (3D-PhaM) was obtained after aligning 
and superimposing the molecules and was further validated by the molecular docking method. Best guesses were calculated 
with a non-output validation (LOO-CV) method. Finally, the data were calculated using the ‘graphic fingerprint’ technique. 
Based on the eLKlopman (Electrostatic LUMO Klopman) descriptor, the  Q2 value of this derivative set was calculated as 
0.981 and the R2

ext value is calculated as 0.998.
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Introduction

The functional selectivity of β2-adrenoceptor (β2AR) 
was investigated using Fenoterol stereoisomers, which are 
believed to have therapeutic potential for asthma and con-
gestive heart failure [1]. Fenoterol is a selective agonist for 
β2AR and has four stereoisomers due to the presence of 
two chirality centers. The stereochemistry of fenoterol also 
influences the binding of the receptor to different G pro-
teins. Recent studies in the structural and biochemical fields 
have revealed that β2AR exists in multiple conformations 
and the number of conformations influences both its binding 
to cholesterol and signaling pathways. The MCET method 

was employed to investigate the local interactions between 
fenoterol stereoisomers and the β2AR receptor using clusters 
of atoms in 3D space. Datasets based on molecular simi-
larities were organized and generated based on the 4-atom 
referenced vector space of the ZMR system. Clusters rep-
resent collections of atoms in the same region according 
to a given distance measure, forming the grouping process 
for 3D QSAR [2]. Clustering facilitates decision making 
when it comes to drug design because clusters are formed 
by visually aligning molecules to approximate the ligand 
binding geometry. 3D-QSAR models projected from clus-
ters can explain the pharmacophore structure and show the 
quantitative relationship between 3D structural information 
(independent variables) and biological activity (response 
variable), representing an electronic map of the interface 
in the L-R interaction [3–5]. Accurate analysis of molecu-
lar activities depends on the perfection of pharmacophore 
revealed by the 3-dimensional similarities of molecules 
[6–8]. Therefore, molecular alignment methods, matching 
procedures of atomic stacks, and different-based overlapping 
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molecule methods have been investigated to find a realistic 
pharmacophore in drug design [9, 10].

Over the last two decades, several overlapping methods 
have been developed and utilized for superposition, 
including Gaussian Volume Overlap [11], Volume Overlap 
Optimization [12], Field-Based [13], Distance-Based [14], 
Graph-Based [15], and Shape-Based [16]. These methods 
utilize different algorithms to form clusters for feature 
selection. The aim of feature selection is to reduce negative 
effects caused by high dimensionality, speed up the learning 
process, and improve generalization by reducing irrelevant 
and/or redundant features as much as possible. One such 
method is the clustering of atoms corresponding to the 
lattice points. Several methods, such as Molecular Shape 
Analysis, Receptor Surface Analysis, Weighted Holistic 
Invariant Molecular, Hypothetical Active Site Lattice, 
Comparative Field Molecular Analysis and Comparative 
Molecular Similarity Indices Analysis, arrange interaction 
regions in a vertical internal transformation with x, y, z 
coordinates [17–21]. In these methods, a molecule can be 
placed in a lattice structure with x, y, z Cartesian coordinates 
at regular intervals. The resulting lattice remains the same, 
and all molecules retain their original structure. This can 
lead to the formation of many clumps of atoms near certain 
points. The advantages of 3D modeling have been utilized 
in the structural method where clustering occurs, such as 
Non-Adjacent Atom Matching Structural Similarity, which 
can calculate the similarity score of atoms for different 
types of molecules [22]. Treating the atoms in a cluster as 
a single point helps to reduce data diversity by facilitating 
the processing of independent variables represented at a 
common point [23–25].

Our software, MCET, differs from other methods in that 
it clusters atoms based on their positions in the template 
structure rather than interacting network points [24, 26–29]. 
In this study, the results of the MCET program written by us 
on 26 compounds are presented.

Material and methods

Electron topological matrix (ETM)

One of the methods for identifying the pharmacophore 
is the electron topological matrix (ETM) approach. In 
this approach, the geometric and electronic properties of 
a molecule are defined within a matrix called ETM. Each 
conformer of each molecule is represented by an ETM. The 
diagonal elements of the ETM are an electronic value of the 
atom, and the non-diagonal elements are the geometrical 
distance or length value between atoms. It is information 
about the bond (bond order, Wieberg index, bond energy, 
etc.) for two chemically bonded atoms, or distance 

information for those that have not bonded. These common 
properties are represented by pharmacophore, determined 
from the electron topological submatrix of the activity. The 
results of pharmacophore affect the results of the calculated 
activity. The examination of the compound series, whose 
conformation analysis has been made, whose electronic 
structure has been calculated and whose experimental 
biological activity has been determined, by the Electron-
Topological method, is as follows. First, the ETM or three-
dimensional Electron Topological Matrix (3D-ETM) of 
each ligand is prepared. Since each ETM is symmetrical 
with respect to its diagonal elements (a^a^*), only the upper 
half of the matrix is shown in the figure. If the number of 
atoms in the molecule is n, the total number of independent 
elements is n(n + 1)/2. In 3D-ETM, the number of ETMs (m) 
depends on the selection of electronic parameters. Atomic 
parameters such as atomic charges, valence activities, 
polarizability and HOMO–LUMO energies that define the 
electronic properties of the molecule are selected as diagonal 
elements a^ (i = l, 2, 3…n, and k = l, 2, 3…m). Off-diagonal 
elements (a^) are of two types, a. If i and j represent two 
neighboring atoms bonded to each other by chemical bond, 
a^ can be one of the electronic parameters of the i–j bond 
such as polarizability, bond order and bond energy (total 
covalentionic). b. If i and j denote atoms that are not bonded 
to each other, then aj/^Rji^ denotes the distance between 
atoms. Thus, each matrix contains both the electronic (aij) 
and geometric parameter (Rij).

Although the geometric parameters are fixed for a 
given conformation of a molecule, electronic parameters 
are treated as different combinations of atomic and bond 
parameters. For example, different combinations such 
as bond lengths (bond parameters), atomic charges 
(atomic parameters) or atomic polarization-bond energy 
are examined as electronic parameters. Each of these 
combinations is effective in creating an ETM. If the number 
of combinations created for the electronic parameter is m 
and the number of molecules of the series examined is n, 
m ETMs are obtained for each molecule and n ETMs are 
obtained for each combination. After the ETM is created, the 
ETM elements of active compounds are compared one by 
one with the ETM elements of inactive ones to find a group 
of matrix elements that are present in active compounds but 
not in inactive compounds with a given degree of accuracy.

APS and AG in MCET

To decide on APS and other AG, we need to examine 
the superposed structures of the active compounds. 
Pharmacophore contains a group of atoms necessary for 
activity. In addition to the atoms present in pharmacophore, 
the presence of atoms or groups of atoms in the existing 
molecular structure may have a decreasing or increasing 
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effect on the activity. Some of the groups of atoms in the 
pharmacophore can increase hydrophobicity or form H 
bonds with the bioreceptor. These properties of these atoms 
are activity-enhancing properties, and this group of atoms 
is called AG atoms. Other group atoms, on the other hand, 
have a reducing effect on activity because they can create 
steric hindrance or protection during the interaction with the 
bioreceptor, and therefore such group atoms are called APS 
atoms. By adding the percent occurrence of each conformer, 
its energy, and temperature as a function, a formula for 
quantitative prediction of bioactivity is derived. MCET 
considers pharmacophore together with the parameters of 
the APS and AG groups. Thus, it transforms the idea of 
pharmacophore from a qualitative tool to a quantitative tool 
for bioactivity prediction.

MCET method

To determine the structure–activity relationships of the 
compounds in the compound series; the created ETM 
matrices are read with the MCET program [30] and the 
group pharmacophore responsible for the activity is 
determined. The geometry of the template structure and 
the different positions of atoms in the five most active and 
least active molecules constitute sources of cluster points. 
With both geometric and electronic tolerance values for all 
molecules, similar atoms form clusters with a common core 
structure and serve to align with the template. The remaining 
oriented atoms form clusters in different regions on the scale 
of the maximum number of overlaps with the template 
according to geometric tolerance values.

The following should be considered when selecting the 
template structure:

• A compound with the most active and simplest structure 
that can represent those under investigation.

• A compound that is leading or commercial.
• A compound with the least number of functional groups.
• A rigid structure with a single conformer or a structure 

with the lowest energy in multiple conformers. [31–33].

The tolerance value may need to be adjusted to allow 
similar atoms of structurally similar molecules to cluster 
based on a common pattern. A tolerance value that is too 
large may result in unnecessary atoms being found in 
clusters, while a tolerance value that is too small may result 
in the absence of important atoms. In addition, the positions 
of core atoms in molecules can also pose challenges for 
clustering. These difficulties can result in a data set that 
does not adequately reflect spatial clustering characteristics 
[8]. To overcome these obstacles, it may be necessary to 
create alternative datasets with different numbers of atoms 
and clusters in different positions by adjusting the core 

structures and tolerance values. Considering the details 
of all locations in space, depending on the diversity of 
the molecular skeleton under consideration, can also help 
complete the dataset.

The three best-known structural arrangement systems for 
clustering in 3D space are:

 (i) Internal molecular coordinates (bond lengths, bond 
angles and dihedral angles) [34],

 (ii) A distance geometry descriptor (from a distance 
matrix and a four-atom reference point) [35].

 (iii) Natural Cartesian coordinates [8, 36].

Each of these has different disadvantages:

• According to the atomic number in the internal 
coordinates, the bond length between two atoms is 
given by the bond angle formed by three atoms and the 
dihedral angle formed by four atoms (or two bonds) [37, 
38]. It is necessary to avoid poor definitions of angles 
and dihedrals due to the linear arrangement of atoms in 
molecular coordinates [36].

• While it is powerful to distinguish a distance geometry 
with a four-point reference, the arrangement of these four 
points for all molecules requires a separate algorithm.

• Both Cartesian coordinates and z-matrix coordinates 
can give the distance between atoms in metric space. 
Accordingly, the structure of the molecule, the 
relative positions of the atoms, and the chirality of the 
asymmetric atoms in the molecule cannot be well defined 
in these arrangements. A structural alignment with a 
higher discriminating power is required, especially in 
structural or graphic and electronic matching approaches 
of stereo molecules whose biological activities are to be 
calculated [39, 40].

In this study, we utilized a structural arrangement 
called “z-matrix-reference” (ZMR) to distinguish stereo 
structures of molecules by combining both common and 
different features of the three structure arrangements. In the 
ZMR arrangement of the four atoms of the core structure 
according to Cartesian coordinates, the first atom is placed at 
the origin, the second atom on the z-axis (hence the name z 
matrix) and the third atom on the yz-plane. The fourth atoms 
are located in a region where the x, y, z coordinate signs are 
the same and form the starting positions of the molecules. 
The remaining atoms are oriented in vector space with 
respect to four-point references of similar location. Using 
ZMR, similarly arranged molecules can be analyzed for 
their local reactive effects, thereby developing quantitative 
conformation-activity relationships. To relate the similarities 
between structure and activity in stereo molecules, whose 
properties and biological effects are often significantly 
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different, the interaction points of these molecules in 3D 
space must be located with the necessary differences [41, 
42].

To accurately determine the similarity between stereo 
molecules, it is crucial to consider the important properties 
of atom positions and bonds. This requires consideration of 
atoms in vector space, a structural arrangement that allows 
easy and strong separation between stereoisomer structures 
[35]. In vector space, the position of each atom relative to 
the four atoms is defined by the x, y, and z coordinates. 
By providing these principles, it becomes possible to 
accurately compare the 3D structure of stereo molecules 
and determine their similarity, which is necessary to predict 
their properties and biological effects. After aligning 
the molecular structures in 3D using said new structural 
alignment, the resulting atomic stacks in similar regions 
can form clusters without the need for external knowledge. 
Atoms in the same cluster can interact similarly with the 
shared chemical domains of the virtual receptor, which is 
important in predicting the molecule's activity.

To reduce the complexity and dimensionality of molecular 
space, various dimensionality reduction (DR) approaches 
have been developed, which use linear and nonlinear vector 
spaces to transform high-dimensional data in QSAR studies 
[3, 43]. In these approaches, clusters can form vector spaces 
which are also referred to as “chemical property spaces” [44, 
45]. The most common DR method used in these approaches 
is principal component analysis (PCA) [46], which treats 
the atomic stack as a single point in a cluster and converts it 
into data matrices as small-scale input. Other DR methods 
that are frequently used include principal coordinates 
analysis (PCooA) [47], Sammon mapping (SM) [48], Kernel 
PCA [49], Isomap [49], Autoencoders [50], t-Distributed 
Stochastic Neighbour Embedding (t-SNE) [51] and 
stochastic proximity embedding (SPE) [52]. The key feature 
in all these methods is the optimization of the DR guiding 
criterion, which is based on the geometric representation 
of data. The main objective of analyzing such geometric 
spaces is to discover relationships between the points in the 
complex data structure formed by the clusters [53].

A three-step reduction process is applied to transform 
the molecular structures into a graphical representation 
without losing data. First, the atoms arranged in the ZMR 
coordinate system were clustered according to their close 
neighborhoods, and the atoms in a common chemical 
area in each cluster are reduced to a single point. Second, 
vector space distances between atoms are calculated using 
such as x, y, z coordinates in the ZMR coordinate system 
and these distances are used to construct an electron 
topological matrix (ETM) representing different stereo 
structures. In one layer of the ETM, the distances between 
atoms in non-diagonal elements are given in Å, while the 
LRDs of atoms in diagonal elements exist electronically. 

The 3D ETM with the same distances and a different LRD 
in each layer is reduced to a 2D ETM where the distances 
and LRDs are represented in a single layer. Third, the 
interaction points in 3D space are reduced to a vector with 
consecutive number indices along an axis.

To simplify the visualization of non-bonding 
covalent and electrostatic interactions between ligands 
and receptors, a 2D graphical representation has been 
proposed. This representation shows how the activity 
changes at each interaction point and allows for the 
visualization of the increasing or decreasing effect of 
the auxiliary group (AG) or Anti-Pharmacophore Shield 
(APS) of the respective atom in a molecule. The quality 
and amount of AG or APS interaction at each point may 
vary from molecule to molecule. This approach, a new 
DR strategy, enables local quantitative interactions of 
molecules in three-dimensional space relative to the 
receptor, depending on LRDs, to be displayed in 2D 
graphics. The stereoisomers of fenoterol and their binding 
affinities to the β2-adrenergic receptor were taken from 
the literature to demonstrate the safety of DR strategies 
applied in stereo structures [54]. The theoretical results of 
the model obtained with 3D-QSAR in the MCET method 
are quite compatible with the experimental results. The 
skeletons of the molecules in Table  1 were drawn as 
using Spartan'08, and conformers were generated with 
the MMFF force field. To perform quantum chemical 
computations, the conformers were optimized with the 
Hartree–Fock functional method using the 6–31 G* basis 
set in water [55]. The resulting quantum information was 
recorded with the names of conformer files “n_c.txt” (n: 
molecule no, c: conformer no). Atomic charges, atomic 
coefficients, and interatomic distances of conformers 
were stored in the ‘etm.txt’ file in 2D ETM format, while 
Cartesian coordinate values were stored in the ‘koor.txt’ 
file. During model creation, all conformer information was 
taken from these two files as a data set.

Models have been developed by applying the following 
methods within the scope of the MCET program with the 
fundamental quantum values of the molecules.

• To make the ligands compatible with the receptor, the 
molecules are positioned similarly to the atoms of the 
template.

• Molecules are aligned according to the core structures, 
and conformers that mediate the maximum number 
of atoms overlap have been selected to represent the 
molecular structure.

• The superposition of the molecule that allows maximum 
interaction with the receptor through each selected 
conformer is positioned.

• Various interaction fields have been established according 
to different LRDs used as electronic values of atoms.
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Table 1  Stereoisomer structures, observed and predicted activity values of fenoterol compounds [56]

Molecule shape Activity Molecule shape Activity

Obs Pred Obs Pred

1 R,R 6.460 6.461 2 S,S 4.560 4.643

3 R,S 5.430 5.512 4 S,R 4.990 4.965

5 R,R 6.320 6.262 6 S,S 4.800 4.849

7 R,S 5.710 5.566 8 S,R 5.280 5.295

9 R,R 5.530 5.528 10 S,S 4.540 4.540

11 R,S 5.100 5.193 12 S,R 4.640 4.682

13 R,R 5.730 6.108 14 S,S 4.540 4.506

15 R,S 5.220 5.155 16 S,R 4.510 4.477
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Clusters consisting of atomic stacks that are similar and 
present in different regions of 3D space can have an enriched 
dataset due to various options. First, different chemical 
domains can be formed with different LRDs. Second, inter-
action fields can arise in different regions depending on dif-
ferent core structures. Third, clusters with the most mature 
and efficient atomic stacks can be formed by finding the 
optimum value of different tolerance values. Lastly, different 
sub-cluster scenarios can be created by selecting from the 
clusters using genetic algorithms (GA). All these options 
provide rich information that reveals various alternatives.

Local reactive descriptors (LRDs) in MCET method

Given so many and different local interactions, it may be 
possible to obtain a true 3D QSAR study that will deter-
mine the best relationship between structural similarity 

and activity. For local geometric reactivity, the different 
electronic properties of atoms in clusters are due to four 
different classes of LRDs. In addition to the reference 
atoms in the template, atoms of some molecules are also 
used as references to form clusters in different regions in 
3D space. Using tolerance values of less than one bond 
length, the formation of clusters with optimal atomic 
stacks is followed with statistical results. The considered 
sub-clusters are used as independent variables within 
the model. To reveal the framework of the study in more 
detail, the following 5 questions (Qs) need to be answered.

 (Q1) What is the advantage of aligning and superimposing 
the core structure with respect to the ZMR as the start 
of clustering?

Table 1  (continued)

Molecule shape Activity Molecule shape Activity

Obs Pred Obs Pred

17 R,R 6.620 6.627 18 S,S 5.600 5.529

19 R,S 6.470 6.473 20 S,R 5.750 5.726

21 R,R 5.030 5.003 22 S,S 4.250 4.229

23 R,S 4.500 4.565 24 S,R 4.000 4.014

25 R,R 4.980 4.978 26 S,S 4.690 4.693
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 (Q2) To what extent do the clusters depend on the toler-
ance value that will result in an excellent chemical/
structural information content?

 (Q3) What are the oppor tunities for 3D ETM 
implementation using four different classes of LRDs 
within MCET?

 (Q4) What are the ways to determine the optimum 
number of independent variables in pharmacophore 
formation?

 (Q5) What does it gain to explain the pharmacophore 
structure with a GF?

In order to find answers (As) to these questions, the 
following objectives (Os) were tried to be achieved.

 (O1) Aligning and superimposing the core structure with 
respect to the ZMR as the start of clustering allows 
for a consistent and standardized starting point for the 
analysis, which can reduce variability and increase the 
accuracy of the results [57].

 (O2) The clusters depend on the tolerance value, and 
finding the optimum tolerance value is crucial to 
obtain clusters with the most mature and efficient 
atomic stacks. Tolerance values of less than one bond 
length are usually used to ensure the formation of 
clusters with optimal atomic stacks.

 (O3) The four different classes of LRDs offer opportunities 
for 3D ETM implementation within MCET by 
providing a comprehensive description of the local 
electronic properties of atoms in clusters. This 
can enhance the accuracy and specificity of the 
analysis and lead to a more detailed understanding 
of the relationships between structural similarity and 
activity.

 (O4) Determining the optimum number of independent 
variables in pharmacophore formation can be 
achieved using statistical methods such as partial least 
squares (PLS). These methods can help to identify the 
most significant independent variables and eliminate 
redundant or irrelevant variables, thereby simplifying 
the model and improving its predictive power.

 (O5) Explaining the pharmacophore structure with a GF 
(grid-based force field) can provide insights into the 
energetics and interactions of the atomic stacks in the 
clusters. This can help to identify the key features 
that contribute to the activity and provide a basis for 
designing new molecules with improved properties.

 (A1) In the ZMR coordinate system, the new coordinate 
values of the remaining atoms according to the 
arrangement of the atoms in the nucleus are applied 

systematically with similar translation, reflection, and 
rotation amounts:

 (I) While the coordinate values of the 1st functional 
atom (x, y, z) in the core structure are shifted 
to the origin  (01,  01,  01), all atoms are shifted 
similarly by the amount of the 1st atom. The 
coordinate matrix values of each atom are 
subtracted from the previous values of the 
first atom and calculated as the coordinate 
values of the new position after the translation 
(xn

p, = xn
p′ − xn

1;  yn
p =  yn

p′—yn
1;  zn

p =  zn
p′ −  zn

1; 
p′ and p = 1,2,3…Pn), where n: molecule 
number; x, y, and z: coordinate values; p′ and p: 
show the previous and next position values, and 
Pn: the total number of atoms in the n-molecule. 
1: Represents the 1st atom and taking p and 
p′ = 1 means that the new p position is pulled 
to the origin. Coordinate values of the nth 
molecule at the p-position are denoted by  (01, 
 01,  01) as xn

p, = 0, yn
p = 0, and zn

p = 0.
 (II) In order for the 2nd atom to come to the z-axis 

 (02,  02,  z2) after the first operation, all atoms 
are rotated on the x and y axes, similar to the 
2nd atom, by the φx and θy angles of the 2nd 
atom, respectively (Fig. 1). Here, the angles φx 
and θy are the angles from the projection of the 
2nd atom to the z-axis with respect to the yz-, 
xz-planes, respectively.

 (III) After the 1st atom is placed at the origin and 
the 2nd atom is placed on the z-axis, the 3rd 
atom is arranged in the yz-plane so that  x3 = 0 
 (03,  y3,  z3). To do this, all atoms are rotated 

Fig. 1  Rotation angles in x, y, z-axis is given by θ φ ω
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around the z-axis by the angle ωz to the y-axis 
with respect to the projection of the 3rd atom on 
the xy-plane. ZMR employs simple translations 
and rotations, with the same transformation 
coefficients as described above, to be applied to 
all atoms of the same scale without altering their 
internal coordinate positions relative to each 
other. In the ZMR approach, it is expected that 
the 4th atom of the core structure will be in the 
coordinate region of the same sign (x, y, z) and 
approximately the same value for all molecules. 
This ensures that bad definitions of angles and 
dihedral angles in internal coordinates can 
be avoided, thanks to the arrangement of the 
Cartesian coordinates of the atoms based on 
the four atoms. Only atoms that overlap with 
their vector space distance values relative to the 
four atoms in the core structure are included in 
the system, leading to the formation of clusters 
based on the atomic location of all molecules.

   The positions of the molecules being 
investigated may either match those of the 
template or be different. If a molecule's atom in 
a different position can serve as a new reference 
atom, it can be added to the total number of 
reference atoms. The positions of these atoms 
are called 'reference atoms' as they lead to the 
formation of new datasets in addition to those 
of the template. The number of reference atoms 
needed to detect all interactions between L-R 
depends on the diversity of molecules forming 
clusters at different positions [58]. Local 
interactions in 3D space were investigated 
according to the clustering formed at the rate 
of the molecular diversity under investigation. 
Each molecule contains at most one atom in a 
cluster. The number of molecules in the clusters 
in the core structure is the same and is equal 
to the total number of molecules (N). Not all 
molecules in any of the other clusters contain 
atoms. Molecules containing atoms from one 
cluster to another, and their numbers, are often 
different. Therefore, the maximum number of 
molecules containing atoms in some clusters is 
N′ ≤ N. If the total number of atoms in the pth 
cluster from the total P cluster is given as Ap, 
then only one atom  (An

p) of the  nth-molecule 
exists in the pth cluster, {a1

p,  a2
p,…an

p, …,aN
'p; 

n = 1, 2…N′} [59]. The position of the reference 
atom in the p-cluster is represented as p ∈ ℝ3 
with x, y, z-coordinate values. Even if an atom 
is only similar in terms of local geometric 
values without electronic similarity, it can 

be placed in the same cluster and added as a 
candidate atom ap to the atomic sequence 
within the cluster. Considering a cluster as a 
point, the number of atomic arrays N' in the 
cluster can be reduced to a single point, so that 
ℝ3N′p → ℝ3

p. Different or identical atoms in 
each cluster can be represented by groups such 
as  A1,  A2,  AP for the total number of clusters 
P. For each p-cluster’s reference atom  aℓ

p, the 
coordinate value ℝ3 is known and represents 
the point position of the cluster. The atoms of 
different molecules within this p-cluster can 
be represented by  Ap = {a1

p(M1),  a2
p(M2),…

an
p(Mn),…aN

p(MN)}. We can determine which 
clusters contain atoms of a molecule, just as we 
can identify which molecules contain atoms in 
a cluster. Each atom in the p-cluster has two 
properties: its geometric property, represented 
by its atomic coordinates  (an

p(Mn) ∈ ℝ3), and 
its electronic property, which is one of four 
different classes of LRDs  (an

q(Mn) ∈ ℝ4). Atoms 
of a molecule can have as much influence as 
their own amount of LRD in the p-cluster to 
which they belong.

   The core structure with at least one functional 
atom, such as N, O or S, is first derived from 
combinations of atoms in the template. This 
structure is considered provided that all 
active molecules are present in at least one 
conformer. The conformation of a molecule 
is chosen by looking at the maximum number 
of atoms overlapping the template. Depending 
on the structure chosen, clusters from other 
overlapping atoms are added to the core 
structure that forms the basis of the cluster. 
Clusters are located at a distance greater than 
one bond length from each other. Considering 
that some of the clusters may correspond to 
interaction points, different sub-clusters are 
suggested. Among these sub-clusters, one of the 
most coherent is considered as pharmacophore 
in 3-dimensional space. Both the geometric 
positions and electronic values at each point 
of the core structure in the sub-cluster may 
be approximately the same in all molecules, 
resulting in the same changes in activity [22]. 
Atoms in the remaining elements of the sub-
cluster can have quite different electronic 
values, resulting in different activity values for 
each molecule. In fact, if some molecules do 
not contain atoms in these elements of the sub-
cluster, no change in the activity of the molecule 
is observed. Depending on whether there are 
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atoms in the sub-cluster and the number of 
electronic values of the atoms, changes occur 
in the activity of a molecule.

 (A2) In addition to the arrangement of atoms in the cluster, 
another important factor limiting the development 
of the pharmacophore model is tolerance values. In 
the core structure, the atoms are aligned with both 
electronic and geometric tolerance values, while the 
remaining atoms are superimposed by geometric 
tolerance only. The number of atoms in the cluster 
depends on the varying geometric and/or electronic 
tolerance scale. If atoms cannot be placed in the 
cluster or are placed unnecessarily due to small or 
large tolerance values, respectively, it can affect the 
evolution of the model. Clustering is achieved with 
an electronic similarity tolerance of 10–20% and a 
geometric similarity tolerance within a cube volume 
(dτ = dxdydz) close to the typical bond length 
(ε = dx = dy = dz =  ~ 1.0  Å). To create different 
tolerance values, 0.2% and 5% increments are used 
for both geometric and electronic properties. The 
activity of the molecule can vary depending on the 
tolerance value and the presence or absence of atoms 
in a cluster. To mature clusters, different tolerance 
values are used to provide input and output to the 
cluster according to the neighborhood of the atoms. 
The improvement or deterioration of the cluster is 
controlled by adding new atoms to the cluster after 
the tolerance value is increased, typically 0.5 to 
1.5 Å. While determining the sub-cluster, the change 
in the correlation coefficient (R2) is monitored and 
it is determined whether a new addition is needed. 
Sub-cluster elements with the highest R2 value are 
kept and it is determined whether new elements need 
to be added. When the increase in the number of 
correlations is insignificant (approximately 0.5–1% 
increase), the addition of the number of independent 
variables pharmacophore is stopped. As a result, the 
sub-cluster that gives the best statistical result and 
has the least number of elements can be selected. 
An atom in the proposed sub-cluster contributes to 
the interaction of its molecule in the cluster region. 
The activity of its molecule can vary depending on 
whether it has an atom in an element of the sub-
cluster and whether the electronic value of the 
atom has positive (or negative) and small (or large) 
contributions.

 (A3) 2D ETM is a more practical option than a 3D ETM. 
In the 2D ETM format, the interatomic distances 
arranged according to ZMR coordinate values and 
the LRD values of four different atom classes are 
organized into an important dataset. Although the 

2D ETM values of a conformer contain different 
LRDs, the interatomic distances are represented by 
a fixed geometry and remain the same. Organized 
according to ZMR coordinate values, 2D ETM 
gives a distinctive feature to stereo structures. The 
pharmacophore model changes as the LRD changes 
in a 2D ETM due to both the parameter values on the 
receiving side and the positions of the sub-clusters 
that make up the model. The chemical domain type 
and parameter size of the receptor side corresponding 
to the covalent and/or electrostatic value of the LRD 
are shown in Table 3. Both the LRD argument and 
the corresponding parameters are included in the 
pharmacophore model [60, 61].

   Atomic partial charges in a molecule only cause 
electrostatic interactions, while atomic coefficients 
in the Fukui (f(r),  f+(r) and  f−(r)) indices and in 
the boundary orbitals cause nonbonded covalent 
interactions. Typically, neither covalent nor 
electrostatic interactions alone are sufficient. Atomic 
coefficients allow for non-covalent interactions, while 
ionic (‘ ± ’) and van der Waals interactions take place 
on atomic charges. The Klopman Index (KI) is an 
important property that characterizes the diversified 
ionic and non-covalent interactions of an atom 
simultaneously with a single index. Both the Fukui 
Index and the KI have Hard-Soft Acid–Base (HSAB) 
properties [62].

   Equation  (1) provides a simplified version of 
the KI, where two terms represent the two types 
of interactions. Different LRDs of the KI can be 
obtained by combining different species in these two 
terms. The first term on the right side of the Eq. (1) 
represents hard interactions, while the second term 
represents soft interactions. Various combinations are 
possible between the atomic charges in the first term 
(natural, Mulliken and electrostatic) and the atomic 
coefficients in the HOMO (or LUMO)-Frontier orbital 
in the second term.

   In the Eq. (1), the symbol Q represents the atomic 
charge, ε represents the permeability, R represents the 
distance between two atoms in the L-R, c represents 
the atomic coefficient in the boundary orbital which 
can act as a nucleophile or electrophile, β represents 
the resonance integral, and E represents the energy 
level of the boundary orbital.

   2D ETM can handle electrostatic and non-bonding 
covalent interactions between two molecules as 
nucleophilic/electrophilic behaviors in various 

(1)ΔE =
QnucQelec

4��R
−

2
(

cnuccelec�
)2

EHOMO(nuc) − ELUMO(elec)
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ways. Different data sets with different LRD values 
are expected to have different contributions to 
the dependent variables of molecules [44, 45, 63] 
(Table 2).

   The positions of atoms in an M-molecule are cal-
culated based on their coordinate values in 3D space. 
The atoms are grouped into P clusters, and each clus-
ter is represented by a different index, p. The x, y, z 
values of each atom are then converted into distances 
in the ETM matrix, resulting in a reduction from ℝ3 to 
ℝ. The electronic values, qk, for atoms with positions 
up to P in a molecule are found in the diagonal ele-
ments of the ETM with the same index. The distance 
between atoms at positions pi and pj is calculated in 
Å as di,j =|pi − pj|, where i ≠ j. The atomic numbers 
of the nth molecule are placed in the row and column 
atomic index numbers of i and j, forming a layer 1 
matrix in 2D ETM. There are non-diagonal elements 
of the ETM in the number {P(P − 1)/2} between the 
P atoms. Since the distance values in row-column 
numbers that are symmetrical to the diagonal axis of 
the matrix are the same (for example, the distance 
between atoms 1 and 3  d1,3 =  d3,1), only the upper 
triangle matrix of the ETM is used. New additional 
layers (k > 1) form the 3D ETM as the diagonal (i = j) 
values for different LRDs change, while the non-diag-
onal values remain unchanged. For practicality and 
ease of understanding, the 3D ETM is simplified to a 
2D ETM by moving only the diagonal elements to the 
upper rows of the ETM according to the same atomic 
index, while keeping the non-diagonal elements the 

same. This results in a dimension reduction without 
any loss of data (see Fig. 2).

   The local p-position of atoms in each conformer 
was determined by recording geometric distances 
(di,j) and electronic values (qi) in files named ‘ETM.
txt’, and x, y, z coordinate values in the ZMR system 
in files named ‘Z-matrixCoord.txt’. The order of 
atoms in both files is the same, with the core atoms 
(four atoms) that make up the vector space placed 
in the first rows. Although the ETM and Cartesian 
coordinate values are rearranged for each held core 
structure, the dataset remains fixed since the position 
values of atoms in the conformer relative to the first 
four atoms are in the vector space [64].

   The ETM shown in Fig. 2 is a 2D representation 
of a 3D matrix. For each different LRD value, a one-
layer ETM is formed, which then combines to form 
a 3D ETM. The 2D ETM is created by moving only 
the diagonal elements to the upper rows of the ETM 
according to the same atomic index, while keeping the 
non-diagonal elements the same.) [59, 64–66].

   An electron topological sub-matrix (ETSM) is 
a sub-cluster of the ETM that includes a specific 
set of atoms within the molecule. The ETSM is 
obtained by selecting a group of atoms and taking the 
corresponding sub-matrix of the ETM. The ETSM 
contains information about the electronic properties 
and interatomic distances of the selected atoms and 
can be used to analyze local electronic properties of 
the molecule. The ETSM is shown in bold within the 
ETM in Fig. 2.

Table 2  Parameter size of the receptor side chemical domain for four different LRDs on the ligand side

Units of the ligand side Parameter size of the receptor side

k = LRD class Electrostatic/covalent interaction Descriptor property Kappa (κ) Xi (ξ)

1 Partial charge Natural Qnuc(elec)
Qelec(nuc)

4��r

–
Mulliken
Elektrostatic

2 Local atomic Fukui index Electrophilic attack  (f−(r)) �HOMO(r) ≈ f −(r) = (
��−(r)

�N
)
V

– �LUMO(r) ≈ f +(r) = (
��+(r)

�N
)
V

Nucleophilic attack  (f+(r)) �LUMO(r) ≈ f +(r) = (
��+(r)

�N
)
V

– �HOMO(r) ≈ f −(r) = (
��−(r)

�N
)
V

Radical attack f ±(r) = 1∕2[�+(r) + �−(r)] – f ±(r) = 1∕2[�+(r) + �−(r)]

3 Frontier orbital HOMO c2
nuc HOMO – 2(celec�)

2

EHOMO(nuc)−ELUMO(elec)

LUMO c2
elec LUMO – 2(cnuc�)

2

EHOMO(nuc)−ELUMO(elec)

4 Klopman index HOMO&charge c2
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   The pharmacophore structure of a molecule is 
defined by the ETSM values, which play a crucial 
role in determining its activity and are extracted from 
the ETM of a selected conformer of the molecule. 
Although there may be slight variations, the ETSM 
values for a given molecule remain constant within 
a certain tolerance range. However, the number of 
atoms in the ETSM may differ between molecules. 
The ETSM of a molecule is derived from the geomet-
ric and electronic properties of the atoms that occupy 
the pharmacophore structure.

   To determine the actual interaction between two 
molecules (L-R), it is important to identify the 
LRD that gave rise to the chemical field. Therefore, 
choosing the appropriate LRD from the 2D ETM is 
crucial, as well as constructing the clusters. From each 
of the four different classes of LRD given in Table 2, 
a final model can be proposed as the pharmacophore 
construct. During the processing of each LRD, the 
molecules are realigned in the ZMR system according 
to the new core structures derived from the template. 
For each LRD, the process of organizing clusters, 
creating sub-clusters, estimating parameters, and 
calculating activities is repeated, and statistical results 
are stored for comparison with others.

 (A4) To identify the optimal data set and independent 
variables, a genetic algorithm (GA) was employed. 
GA has been demonstrated to produce reliable and 
precise predictions in QSAR modeling in recent 
studies [67]. The GA generates a population of 
‘chromosomes’ through random crossover and 
mutation operations, and the fitness function is used to 
evaluate them. Within the GA, independent variable 
selection and size reduction, model optimization, 
conformational search, insertion, and variation 
analysis were all conducted.

   The Levenberg–Marquardt algorithm was used to 
calculate the parameters of the corresponding spots 
on the receptor side for a selected sub-cluster. The 
relationship between the energy values resulting 
from the interaction of these corresponding points 
on the L-R sides and the activity is described by the 
nonlinear Eq. (2). The results were evaluated using 
the PLS, which considers the differences between 
the theoretical and experimental activities calculated 
using Eq. (2). The PLS involves expressing the sum of 
the squares of a set of activity errors with the model 
function of the sub-cluster. In this way, a mathematical 
model parameterized according to sub-clusters was 
obtained through the training and external test sets, 

Fig. 2  a 3D ETM; LRDs of diagonal elements (qi) and distances between non-diagonal elements (di,j) are shown. b Different LRDs are given in 
rows in ETM. c Electron topological sub-matrix (ETSM) in pharmacophore’s ETM is marked in bold
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with the goal of minimizing errors in theoretical and 
experimental activities. The model was validated 
using the Leave One Out-Cross Validation (LOO-CV) 
approach on the training set and then tested on the 
external test set.

where A: activity value, n and ℓ: number of studied 
and reference molecules, respectively, ΔE: binding 
energy in Joules arising from interaction points 
between L-R, R: Ideal gas constant in 8.314 J/mol-K, 
T: Body temperature is 310 K.

   To optimize the nonlinear system of equations, 
the Levenberg–Marquardt algorithm is employed, 
which employs a non-monotonic technique to 
achieve convergence [68]. The Levenberg–Marquardt 
algorithm involves two numerical minimization 
procedures, namely the gradient descent method and 
the Gauss–Newton method. In the gradient descent 
method, the parameters are updated in the direction of 
steepest descent to minimize the sum of the squared 
errors. On the other hand, the Gauss–Newton method 
assumes that the least square’s function is locally 
quadratic in the parameters, and it finds the minimum 
of this quadratic function to minimize the sum of 
squared errors.

   The four processes considered above are repeated 
for each new core structure, arranging the molecules 
in the z-matrix coordinate, forming clusters, sub-
clusters, and calculating pharmacophore structures 
with different LRD classes.

 (A5) The clusters in the 3D coordinate system cannot 
represent the activity as the 4th dimension on the 
graph. Instead, it is more practical to display the 
change in the dependent variable (activity) on the 
y-axis versus the change in the x-axis, where the 
index numbers of the independent variables are given. 
This allows for easy visualization of the interaction 
amount of pharmacophore with a GF. It is noteworthy 
that this simple and understandable application is, to 
the best of our knowledge, the first to demonstrate 
the interaction between L-R. By reducing the vector 
values of the independent variables in 3D to a 1D 
index and GF, we can show the activity change at each 
point without any loss of information, which adds 
value to the analysis.

(2)An = Ale
−(ΔEn−ΔEl)∕RT

Results and discussion

This study aimed to develop and validate a model using 26 
fenoterol analogs as potential selective and potent β2-AR 
agonists in MCET. Multiple pharmacophore models were 
created using various LRDs from four LRD classes, with 
a perfect sub-cluster identified by adding new clusters to 
a new core structure. The activity values of each fenoterol 
structure were tracked to develop a model using different 
LRD datasets in clusters. The models were trained and 
validated on 21 compounds using LOO-CV and the results 
were predicted on an external test set of only 5 compounds. 
The best model was determined based on high-statistical 
performance of  Q2 for the training set and  R2

ext for the 
external test set using LOO-CV. The table in the paper shows 
the results of different LRD classes with high values in both 
training and test sets (Table 3).

The statistical results of one type of LRD that stands out 
among the four classes of LRD are given in Table 3. For 
example, here, eLKlopman means that the Klopman Index, 
e: Electrostatic atomic charges for electrostatic interactions 
and L: atomic coefficients of Lumo on the ligand. Similarly, 
n_Charge: Among the charges, Natural charge means that 
there is a type of LRD that stands out more than Mulliken 
and electrostatic charges. The KI, which has the best values 
(Q2 = 0.981 and R2

ext = 0.998) among the LRDs, is compared 
with the most recently published study in Table 4 [56]. The 
root mean square of error (RMSE) in the training and test 
sets, together with the F-test, are given as 0.099, 0.024, and 
3.398, respectively. We can see that the F statistic (3.398) is 
larger than the F critical one tail (2.866), so we will reject 
the null hypothesis.

Observed β2-AR binding affinity  values① are taken from 
the literature [54]. For 3D-QSAR models, the predicted 
values from the  literature② [56] and the MCET  method③ are 
given.

The developed model in this study utilizes the KI, a class 
of LRD that includes both electrostatic and covalent descrip-
tors and features HSAB principles. Atomic partial charges 
are calculated based on the coefficients of the respective 
atom in the occupied orbitals, while the coefficients of the 
atoms are taken from the wave functions of the molecules' 
HOMO/LUMO. The KI is formed by combining the values 
from both terms on the right side of Eq. (1), with a small 

Table 3  Q2 and R2
ext values 

calculated with different 
descriptors of the ligand side for 
fenoterol stereoisomers

Descriptor Q2 R2
ext

n_Charge 0.751 0.882
f−_Fukui 0.890 0.850
LUMO 0.887 0.843
eLKlopman 0.981 0.998
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HOMO–LUMO gap indicating a predominance of covalent 
interactions, while a large gap indicates a predominance of 
electrostatic interactions. The QSAR model obtained with 
the KI considers both electrostatic and covalent interactions 
and allows for the calculation of receptor-side parameters 
ĸ and ξ, as shown in Table 5. The Levenberg–Marquardt 

algorithm is used to consider the parameters of the interac-
tion point simultaneously for both terms of KI in MCET. 
[26, 69, 70].

Positions marked as 1, 2, 3…,11 whose coordinates and 
parameters are given in Table 4, and the layout of the phar-
macophore structure consisting of P = 11 interaction points 

Table 4  Comparison of the 
observed values of β2-AR 
binding  affinity① with 
predictions made by  CoMFA② 
and MCET  methods③ in two 
different 3D-QSAR models

*Test set molecules

Num Comp Obs.① Pred.② Res.② Pred.③ Res.③

N01 R,R-1 6.460 6.127 0.333 6.461 − 0.001
N02 S,S-1 4.560 4.784 − 0.224 4.643 − 0.083
N03 R,S-1 5.430 5.380 0.050 5.512 − 0.082
N04 S,R-1 4.990 5.052 − 0.062 4.965 0.025
N05 R,R-2 6.320 6.354 − 0.034 6.262 0.058
N06 S,S-2 4.800 5.033 − 0.233 4.849 − 0.049
N07 R,S-2 5.710 5.629 0.081 5.566 0.144
N08 S,R-2 5.280 5.281 − 0.001 5.295 − 0.015
*N09 R,R-3 5.530 5.774 − 0.244 5.528 0.002
N10 S,S-3 4.540 4.496 0.044 4.540 0
N11 R,S-3 5.100 5.093 0.007 5.193 − 0.093
N12 S,R-3 4.640 4.697 − 0.057 4.682 − 0.042
N13 R,R-4 5.730 5.764 − 0.034 6.108 − 0.378
*N14 S,S-4 4.540 4.435 0.105 4.506 0.034
N15 R,S-4 5.220 5.033 0.187 5.155 0.065
*N16 S,R-4 4.510 4.690 − 0.180 4.477 0.033
N17 R,R-5 6.620 6.787 − 0.167 6.627 − 0.007
N18 S,S-5 5.600 5.520 0.080 5.529 0.071
N19 R,S-5 6.470 6.129 0.341 6.473 − 0.003
N20 S,R-5 5.750 5.745 0.005 5.726 0.024
*N21 R,R-6 5.030 5.189 − 0.159 5.003 0.027
N22 S,S-6 4.250 4.062 0.188 4.229 0.021
N23 R,S-6 4.500 4.380 0.120 4.565 − 0.065
N24 S,R-6 4.000 4.061 − 0.061 4.014 − 0.014
*N25 R-7 4.980 5.223 − 0.243 4.978 0.002
N26 S-7 4.690 4.531 0.159 4.693 − 0.003

Table 5  Atomic positions, 
Cartesian coordinates, ĸ and ξ 
values of reference molecules 
(n01 and n24) in the series of 
fenoterol stereoisomers

a, b, c  and dThe first four atoms in the core structure

Molecule No Atom No X Y Z Position ĸ value ξ value

n01 O2a 0 0 0 1 5.366 − 8.661
n01 O3b 6.003 0 0 2 − 1.064 − 4.781
n01 C6c 1.239 0.621 0 3 11.186 0.728
n24 C3d 3.630 0.377 − 0.262 4 − 1.644 27.994
n24 C1 3.792 1.746 − 0.017 5 − 1.965 8.063
n24 C2 2.671 2.536 0.238 6 5.450 43.398
n24 C5 2.355 − 0.188 − 0.250 7 2.574 − 63.367
n24 H1 3.705 4.151 0.457 8 0.454 26.256
n24 C7 4.825 − 0.483 − 0.620 9 0.678 8.425
n24 C8 5.047 − 0.509 − 2.152 10 0.084 2.688
n24 C4 1.388 1.983 0.245 11 6.237 19.930
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in the Z-matrix coordinate system are presented in Fig. 3. 
Figure 4 shows the congruence of observed and predicted 
activity.

The study utilized 11 interaction points on the active side 
of the receptor, labeled as 1, 2, 3… and 11, to calculate 
interaction energies between ligand atoms and receptor 
parameters using Eq. (1). Subsequently, activity values were 
computed using Eq. (2), based on these interaction energies. 
The resulting activity changes for each interaction point 

were referred to as GF and plotted on the y-axis against the 
interaction point number on the x-axis. While the activity 
changes were visualized in 3D space with various shapes 
and visuals, it was crucial to present GF in a simple two-
dimensional graphic as it captures the activity change in two 
dimensions without the need for a 4th dimension.

In the study, GF was observed at each interaction point for 
the series of molecules analyzed, and the changes in increas-
ing (AG) and decreasing (APS) activity at P = 11 interaction 
points were similar and clearly visible in the graph lines 
depicted in Fig. 5. As shown by the arrows, AG and APS 
are examples of two separate points. The high and compa-
rable statistical values obtained in the training and test sets, 
together with the internal validation showing similarity in 
GF values, attest to the stability and robustness of the model. 
The similarity of GF changes between the training set and 
the test set indicates that the model works effectively at each 
interaction point [71]. To ensure that the chosen model was 
not selected by chance, the GF validation of each point in 
both sets was conducted, indicating that the model is highly 
predictive and robust. Due to the large number of molecules 
analyzed, GF values for all molecules were not reported, 
and only some were shown. Molecules with very similar GF 
curves can be optimally subdivided in both sets.

The study observed that molecules with similar LRD 
values corresponding to one point of pharmacophore showed 
similar GF changes in activity. However, it is not possible 
for the LRDs of two molecules to be exactly the same at all 
points of interaction, and differences in activities between 
the two molecules can arise from either difference in LRD 
values or differences in geometric structures. Having a 
diverse set of molecules with different LRD and geometric 
structures is important for the development of the model. 
Models based on molecules with the same basic skeleton 
formed with the same geometric and LRD structures may 
not be sufficient to predict the activities of molecules with 
different basic skeletons. The study found that both the 
geometric and electronic differences of molecules with 
different basic skeletons often resulted in divergent GF 
lines, as shown in Fig. 5. The reliable model was developed 
from different independent variables provided by different 
skeleton molecules in the training set. Finally, it is worth 
noting that most (4/5) of the molecules with very similar 
GFs were included in the training set and only some (1/5) 
in the test set.

The robustness of the developed model, which was 
created by optimally dividing molecules between the 
training and test sets based on their GFs, indicates its high 
predictive ability. This means that a molecule with a GF 
similar to those in the model can be reliably evaluated in an 
external test set that was not used in the model fitting phase.

GF is a valuable tool in understanding the relative binding 
contributions of atoms at the point of interaction, including 

Fig. 3  Representation of pharmacophore with the placement of the 
core structure in the Z-matrix coordinate system

Fig. 4  Experimental and calculated activity plot of the training and 
test sets of fenoterol stereoisomers



Molecular Diversity 

positive contributions from AG and negative contributions 
from APS. This information is crucial for computer-
aided rational design of bioactive molecules and can help 
researchers visualize the skeletal structure and atom types 
of a new molecule. The GF also allows for easy comparison 
of molecules in the training and test sets, providing further 
evidence of the robustness and validity of the model.

The ongoing research on the development of 
pharmacophore with MCET not only identifies the 
fragments responsible for binding, but also measures their 
relative binding contribution at each interaction point. The 
GF-important binding sites (both positive, AG and negative, 
APS) highlighted in Fig. 5 provide crucial information for 
computer-aided rational design of bioactive molecules and 
visual analysis by researchers. Additionally, the GF analysis 
demonstrates how well the established model aligns with 
experimental reality.

The 3D QSAR model developed using MCET has the 
potential to explain the stereo configuration and structural 
modifications of molecules in terms of their observed 
binding affinities, measured as  Ki values for the 26 fenoterol 
analogs. The findings of the model are partly consistent 
with those of previous studies [54, 72, 73]. According 
to the model, the β2-AR selectivity of fenoterol analogs 

is due to the adrenaline-like structure of the amino alkyl 
group located within the transmembrane (TM) components 
of the molecules. The model suggests that hydrogen bond 
interactions are formed between the p- and m-oxygen 
moieties on the phenyl ring of both fenoterol and methoxy 
phenoterol and tyrosine 308 (Y308) in TM7 and/or histidine 
296 (H296) in TM6, contributing to the binding affinity.

In the developed 3D QSAR model using MCET, all the 
atoms in pharmacophore have been shown to contribute 
to the binding affinity through both non-bonding covalent 
interactions and electrostatic interactions based on HSAB 
theory. Specifically, the model identified that the selectivity 
of fenoterol analogs towards β2-AR is due to the adrenaline-
like structure of the amino alkyl part of the molecules within 
the transmembrane (TM) components. The model also 
revealed that hydrogen bond interactions are formed between 
the p- and m-oxygen moieties on the phenyl ring in both 
fenoterol and methoxyphenoterol, and tyrosine 308 (Y308) 
in TM7 and/or histidine 296 (H296) in TM6. Additionally, 
the interactions of other C-atoms in the phenyl group are 
also included in the model. Notably, C-atoms 3 and 6 have 
a sterically adverse effect on the receptor with APS, while 
C-atom 7 has a highly electrostatic effect with AG, as shown 
in Fig. 5. Overall, the developed 3D QSAR model has the 

Fig. 5  ‘Graphical Fingerprint 
(GF) of a few randomly selected 
molecules from the investigated 
molecules
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potential to explain the stereo configuration and structural 
modifications of fenoterol analogs and is partially consistent 
with previous studies.

Conclusion

In this study, 3D-QSAR studies were conducted for 26 
compounds of fenoterol stereoisomers that are effective 
on the β2AR target. As a result of computational studies, 
the  Q2 value of this derivative set was calculated as 0.981 
and the  R2

ext value was calculated as 0.998, according to 
the Klopman (Electrostatic Lumo Klopman) descriptor. 
The fact that the results are greater than 0.9 indicates that a 
good model has been proposed in 3D-QSAR. Additionally, 
this study contributes to the literature. First, in cases where 
3D-QSAR regression problems cannot distinguish stereo 
isomers, the clustering of molecules in the ZMR system has 
proven its usability by giving good results for healthy data 
sets. The second is to account for activity changes using GF 
interaction points. What this means is that it has been proven 
that latent, significant and low-dimensional GF can enable 
the prediction of experimentally measured or unmeasured 
molecular properties without the need for multidimensional 
analysis. The GF method used in this study offers many 
unique and innovative advantages. First, it allows 3D-QSAR 
predictive models to be understood and implemented 
graphically. Second, it allows the determination of APS and 
AG dimensions for each interaction domain of the model. 
Third, it predicts the most efficient atom types and AG 
values for an interaction point. Fourth, it serves as a safe 
tool to use GF as a reference in a molecular database created 
through quantum chemical calculations. Finally, it facilitates 
the interpretation of activity results, and GF analysis can 
help select the simplest and most active molecule.
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