Skip to main content
Log in

Organohalogen chalcones: design, synthesis, ADMET prediction, molecular dynamics study and inhibition effect on acetylcholinesterase and carbonic anhydrase

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

In an effort to discover potential acetylcholinesterase (AChE) and carbonic anhydrase (CA) inhibitors, a novel series of organohalogen chalcone derivatives (1220, 2330) was synthesized, and their chemical structures were characterized by spectral analysis. They showed a highly potent inhibition effect on AChE and hCAs (Ki values range from 5.07 ± 0.062 to 65.53 ± 4.36 nM for AChE, 13.54 ± 2.55 to 94.11 ± 10.39 nM for hCA I, and 5.21 ± 0.54 to 57.44 ± 3.12 nM for hCA II). In addition, the chalcone derivatives with the highest inhibitor score docked into the active site of the indicated metabolic enzyme receptors, and their absorption, metabolism, and toxic properties were evaluated according to ADMET's estimation.Compounds 16 and 19 exhibited the highest inhibition score, emerged as lead compounds, and inspired the development of more potent compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mahmudov I, Demir Y, Sert Y, Abdullayev Y, Sujayev A, Alwasel SH, Gulcin I (2022) Synthesis and inhibition profiles of N-benzyl-and N-allyl aniline derivatives against carbonic anhydrase and acetylcholinesterase–a molecular docking study. Arab J Chem 15(3):103645. https://doi.org/10.1016/j.arabjc.2021.103645

    Article  CAS  Google Scholar 

  2. Hoff E, Zou D, Schiza S, Demir Y, Grote L, Bouloukaki I, Hedner J (2020) Carbonic anhydrase, obstructive sleep apnea and hypertension: effects of intervention. J Sleep Res 29(2):e12956. https://doi.org/10.1111/jsr.12956

    Article  PubMed  Google Scholar 

  3. Sever B, Türkeş C, Altıntop MD, Demir Y, Akalın Çiftçi G, Beydemir Ş (2021) Novel metabolic enzyme inhibitors designed through the molecular hybridization of thiazole and pyrazoline scaffolds. Arch Pharm 354(12):2100294. https://doi.org/10.1002/ardp.202100294

    Article  CAS  Google Scholar 

  4. Yaşar Ü, Gönül İ, Türkeş C, Demir Y, Beydemir Ş (2021) Transition-metal complexes of bidentate Schiff-Base ligands: in vitro and in silico evaluation as non-classical carbonic anhydrase and potential acetylcholinesterase inhibitors. ChemistrySelect 6(29):7278–7284. https://doi.org/10.1002/slct.202102082

    Article  CAS  Google Scholar 

  5. Aydin BO, Anil D, Demir Y (2021) Synthesis of N-alkylated pyrazolo [3, 4-d] pyrimidine analogs and evaluation of acetylcholinesterase and carbonic anhydrase inhibition properties. Arch Pharm 354(5):2000330. https://doi.org/10.1002/ardp.202000330

    Article  CAS  Google Scholar 

  6. Boron WF (2010) Evaluating the role of carbonic anhydrases in the transport of HCO3−-related species. Biochim Biophys Acta 1804(2):410–421

    Article  PubMed  CAS  Google Scholar 

  7. Kaya Y, Erçağ A, Zorlu Y, Demir Y, Gülçin İ (2022) New Pd (II) complexes of the bisthiocarbohydrazones derived from isatin and disubstituted salicylaldehydes: synthesis, characterization, crystal structures and inhibitory properties against some metabolic enzymes. J Biol Inorg Chem 27(2):271–281. https://doi.org/10.1007/s00775-022-01932-9

    Article  PubMed  CAS  Google Scholar 

  8. Hamide M, Gök Y, Demir Y, Yakalı G, Tok TT, Aktaş A, Gülçin İ (2022) Pentafluorobenzyl-substituted benzimidazolium salts: synthesis, characterization, crystal structures, computational studies and inhibitory properties of some metabolic enzymes. J Mol Struct. https://doi.org/10.1016/j.molstruc.2022.133266

    Article  Google Scholar 

  9. Aggarwal M, Boone CD, Kondeti B, McKenna R (2013) Structural annotation of human carbonic anhydrases. J Enzyme Inhib Med Chem 28(2):267–277. https://doi.org/10.3109/14756366.2012.737323

    Article  PubMed  Google Scholar 

  10. Kakakhan C, Türkeş C, Güleç Ö, Demir Y, Arslan M, Özkemahlı G, Beydemir Ş (2023) Exploration of 1, 2, 3-triazole linked benzenesulfonamide derivatives as isoform selective inhibitors of human carbonic anhydrase. Bioorg Med Chem 77:117111. https://doi.org/10.1016/j.bmc.2022.117111

    Article  PubMed  CAS  Google Scholar 

  11. Supuran CT (2008) Diuretics: from classical carbonic anhydrase inhibitors to novel applications of the sulfonamides. Curr Pharm Des 14(7):641–648. https://doi.org/10.2174/138161208783877947

    Article  PubMed  CAS  Google Scholar 

  12. Maren TH (1987) Carbonic anhydrase: general perspective and advances in glaucoma research. Drug Dev Res 10(4):255–276. https://doi.org/10.1002/ddr.430100407

    Article  CAS  Google Scholar 

  13. Rao PP, Sulekha S, Maithili DVN, Nallari P (2006) Carbonic anhydrase-II phenotypes in peptic Ulcer and Ulcerated cancers. Int J Hum Genet 6(2):153–158. https://doi.org/10.1080/09723757.2006.11885956

    Article  CAS  Google Scholar 

  14. De Simone G, Supuran CT (2007) Antiobesity carbonic anhydrase inhibitors. Curr Top Med Chem 7(9):879–884. https://doi.org/10.2174/156802607780636762

    Article  PubMed  Google Scholar 

  15. Supuran CT (2008) Carbonic anhydrase inhibitors: possible anticancer drugs with a novel mechanism of action. Drug Dev Res 69(6):297–303

    Article  CAS  Google Scholar 

  16. Demir Y, Türkeş C, Çavuş MS, Erdoğan M, Muğlu H, Yakan H, Beydemir Ş (2022) Enzyme inhibition, molecular docking, and density functional theory studies of new thiosemicarbazones incorporating the 4-hydroxy-3, 5-dimethoxy benzaldehyde motif. Arch Pharm. https://doi.org/10.1002/ardp.202200554

    Article  Google Scholar 

  17. Breijyeh Z, Karaman R (2020) Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules 25(24):5789. https://doi.org/10.3390/molecules25245789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ozaslan M, Saglamtas R, Demir Y, Genc Y, Saraçoğlu İ, Gülçin İ (2022) Isolation of some phenolic compounds from Plantago subulata L. and determination of their antidiabetic, anticholinesterase, antiepileptic and antioxidant activity. Chem Biodivers. https://doi.org/10.1002/cbdv.202200280

  19. World Health Organization (2017) Global action plan on the public health response to dementia. 2017–2025.

  20. Osmaniye D, Türkeş C, Demir Y, Özkay Y, Beydemir Ş, Kaplancıklı ZA (2022) Design, synthesis, and biological activity of novel dithiocarbamate-methylsulfonyl hybrids as carbonic anhydrase inhibitors. Arch Pharm 355(8):2200132. https://doi.org/10.1002/ardp.202200132

    Article  CAS  Google Scholar 

  21. Güleç Ö, Türkeş C, Arslan M, Demir Y, Yeni Y, Hacımüftüoğlu A, Beydemir Ş (2022) Cytotoxic effect, enzyme inhibition, and in silico studies of some novel N-substituted sulfonyl amides incorporating 1, 3, 4-oxadiazol structural motif. Mol Divers 26(5):2825–2845. https://doi.org/10.1007/s11030-022-10422-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Bilginer S, Gul HI, Anil B, Demir Y, Gulcin I (2021) Synthesis and in silico studies of triazene-substituted sulfamerazine derivatives as acetylcholinesterase and carbonic anhydrases inhibitors. Arch Pharm 354(1):2000243. https://doi.org/10.1002/ardp.202000243

    Article  CAS  Google Scholar 

  23. Tugrak M, Gul HI, Demir Y, Levent S, Gulcin I (2021) Synthesis and in vitro carbonic anhydrases and acetylcholinesterase inhibitory activities of novel imidazolinone-based benzenesulfonamides. Arch Pharm 354(4):2000375. https://doi.org/10.1002/ardp.202000375

    Article  CAS  Google Scholar 

  24. Türkan F, Huyut Z, Demir Y, Ertaş F, Beydemir Ş (2019) The effects of some cephalosporins on acetylcholinesterase and glutathione S-transferase: an in vivo and in vitro study. Arch Physiol Biochem 125(3):235–243. https://doi.org/10.1080/13813455.2018.1452037

    Article  PubMed  CAS  Google Scholar 

  25. Cheung J, Rudolph MJ, Burshteyn F, Cassidy MS, Gary EN, Love J, Height JJ (2012) Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem 55(22):10282–10286. https://doi.org/10.1021/jm300871x

    Article  PubMed  CAS  Google Scholar 

  26. Talesa VN (2001) Acetylcholinesterase in Alzheimer’s disease. Mech Ageing Dev 22(16):1961–1969. https://doi.org/10.1016/S0047-6374(01)00309-8

    Article  Google Scholar 

  27. Pereira GRC, Gonçalves LM, Abrahim-Vieira BDA, De Mesquita JF (2022) In silico analyses of a promising drug candidate for the treatment of amyotrophic lateral sclerosis targeting superoxide dismutase I protein. J Cell Biochem 123(7):1259–1277. https://doi.org/10.3390/pharmaceutics15041095

    Article  PubMed  CAS  Google Scholar 

  28. García-Ayllón MS, Small DH, Avila J, Sáez-Valero JN (2011) Revisiting the role of acetylcholinesterase in Alzheimer’s disease: cross-talk with P-tau and β-amyloid. Front Mol Neurosci 4:22. https://doi.org/10.3389/fnmol.2011.00022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Marucci G, Buccioni M, Dal Ben D, Lambertucci C, Volpini R, Amenta F (2021) Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology 190:108352. https://doi.org/10.1016/j.neuropharm.2020.108352

    Article  PubMed  CAS  Google Scholar 

  30. Singh M, Kaur M, Kukreja H, Chugh R, Silakari O, Singh D (2013) Acetylcholinesterase inhibitors as Alzheimer therapy: from nerve toxins to neuroprotection. Eur J Med Chem 70:165–188. https://doi.org/10.1016/j.ejmech.2013.09.050

    Article  PubMed  CAS  Google Scholar 

  31. Anil DA, Aydin BO, Demir Y, Turkmenoglu B (2022) Design, synthesis, biological evaluation and molecular docking studies of novel 1H–1, 2, 3-Triazole derivatives as potent inhibitors of carbonic anhydrase, acetylcholinesterase and aldose reductase. J Mol Struct 1257:132613. https://doi.org/10.1016/j.molstruc.2022.132613

    Article  CAS  Google Scholar 

  32. Kalaycı M, Türkeş C, Arslan M, Demir Y, Beydemir Ş (2021) Novel benzoic acid derivatives: synthesis and biological evaluation as multitarget acetylcholinesterase and carbonic anhydrase inhibitors. Arch Pharm 354(3):2000282. https://doi.org/10.1002/ardp.202000282

    Article  CAS  Google Scholar 

  33. Burmaoglu S, Algul O, Anıl DA, Gobek A, Duran GG, Ersan RH, Duran N (2016) Synthesis and anti-proliferative activity of fluoro-substituted chalcones. Bioorg Med Chem Lett 26(13):3172–3176. https://doi.org/10.1016/j.bmcl.2016.04.096

    Article  PubMed  CAS  Google Scholar 

  34. Burmaoglu S, Aktas Anil D, Gobek A, Kilic D, Yetkin D, Duran N, Algul O (2022) Design, synthesis and antiproliferative activity evaluation of fluorine-containing chalcone derivatives. J Biomol Struct Dyn 40(8):3525–3550. https://doi.org/10.1080/07391102.2020.1848627

    Article  PubMed  CAS  Google Scholar 

  35. Ouyang Y, Li J, Chen X, Fu X, Sun S, Wu Q (2021) Chalcone derivatives: role in anticancer therapy. Biomolecules 11(6):894. https://doi.org/10.3390/biom11060894

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Jesus A, Durães F, Szemerédi N, Freitas-Silva J, da Costa PM, Pinto E, Cidade H (2022) BDDE-inspired chalcone derivatives to fight bacterial and fungal infections. Mar Drugs 20(5):315. https://doi.org/10.3390/md20050315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Burmaoglu S, Algul O, Gobek A, Aktas Anil D, Ulger M, Erturk BG, Aslan G (2017) Design of potent fluoro-substituted chalcones as antimicrobial agents. J Enzyme İnhib Med Chem 32(1):490–495. https://doi.org/10.1080/14756366.2016.1265517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Duran N, Polat MF, Aktas DA, Alagoz MA, Ay E, Cimen F, Algul O (2021) New chalcone derivatives as effective against SARS-CoV-2 agent. Int J Clin Pract 75(12):e14846. https://doi.org/10.1111/ijcp.14846

    Article  PubMed  CAS  Google Scholar 

  39. Elkhalifa D, Al-Hashimi I, Al Moustafa AE, Khalil A (2021) A comprehensive review on the antiviral activities of chalcones. J Drug Target 29(4):403–419. https://doi.org/10.1080/1061186X.2020.1853759

    Article  PubMed  CAS  Google Scholar 

  40. Thapa P, Upadhyay SP, Suo WZ, Singh V, Gurung P, Lee ES, Sharma M (2021) Chalcone and its analogs: therapeutic and diagnostic applications in Alzheimer’s disease. Bioorg Chem 108:104681. https://doi.org/10.1016/j.bioorg.2021.104681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Wilcken R, Zimmermann MO, Lange A, Joerger AC, Boeckler FM (2013) Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J Med Chem 56(4):1363–1388. https://doi.org/10.1021/jm3012068

    Article  PubMed  CAS  Google Scholar 

  42. Anil DA, Polat MF, Saglamtas R, Tarikogullari AH, Alagoz MA, Gulcin I, Burmaoglu S (2022) Exploring enzyme inhibition profiles of novel halogenated chalcone derivatives on some metabolic enzymes: synthesis, characterization and molecular modeling studies. Comput Biol Chem 100:107748. https://doi.org/10.1016/j.compbiolchem.2022.107748

    Article  PubMed  CAS  Google Scholar 

  43. Burmaoglu S, Kazancioglu EA, Kaya R, Kazancioglu M, Karaman M, Algul O, Gulcin I (2020) Synthesis of novel organohalogen chalcone derivatives and screening of their molecular docking study and some enzymes inhibition effects. J Mol Struct 1208:127868. https://doi.org/10.1016/j.molstruc.2020.127868

    Article  CAS  Google Scholar 

  44. Mughal EU, Sadiq A, Naeem AN, Javid A, Sumrra SH, Zafar MN, Khan BA, Malik FP, Ahmed I (2020) Exploring 3-benzyloxyflavones as new lead cholinesterase inhibitors: synthesis, structure–activity relationship and molecular modelling simulations. J Mol Struct Dyn 39(16):6154–6167. https://doi.org/10.1080/07391102.2020.1803136

    Article  CAS  Google Scholar 

  45. Greenblatt HM, Dvir H, Silman I, Sussman JL (2003) Acetylcholinesterase: a multifaceted target for structure-based drug design of anticholinesterase agents for the treatment of Alzheimer’s disease. J Mol Neurosci 20:369–383. https://doi.org/10.1385/JMN:20:3:369

    Article  PubMed  CAS  Google Scholar 

  46. George RF, Said MF, Bua S, Supuran CT (2020) Synthesis and selective inhibitory effects of some 2-oxindole benzenesulfonamide conjugates on human carbonic anhydrase isoforms CA I, CA II, CA IX and CAXII. Bioorg Chem 95:103514. https://doi.org/10.1016/j.bioorg.2019.103514

    Article  PubMed  CAS  Google Scholar 

  47. Cabaleiro-Lago C, Lundqvist M (2020) The effect of nanoparticles on the structure and enzymatic activity of human carbonic anhydrase I and II. Molecules 25:4405. https://doi.org/10.3390/molecules25194405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Bora RF, Genc Bilgicli H, Üç EM, Alagöz MA, Zengin M, Gulcin İ (2022) Synthesis, characterization, evaluation of metabolic enzyme inhibitors and in silico studies of thymol based 2-amino thiol and sulfonic acid compounds. Chem Biol Interact 366:110134. https://doi.org/10.1016/j.cbi.2022.110134

    Article  PubMed  CAS  Google Scholar 

  49. Hou Z, Cai Q, Cheng M (2021) Novel carbohydrate-based sulfonamide derivatives as selective carbonic anhydrase II inhibitors: synthesis, biological and molecular docking analysis. Bioorg Med Chem Lett 51:128291. https://doi.org/10.1016/j.bmcl.2021.128291

    Article  PubMed  CAS  Google Scholar 

  50. Winum JY, Scozzafava A, Montero JL, Supuran CT (2006) New zinc binding motifs in the design of selective carbonic anhydrase inhibitors. Mini-Rev Med Chem 6:921–936. https://doi.org/10.2174/138955706777934946

    Article  PubMed  CAS  Google Scholar 

  51. Xu Y, Cheng S, Sussman JL, Silman I, Jiang H (2017) Computational studies on acetylcholinesterases. Molecules 22:1324. https://doi.org/10.3390/molecules22081324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Ali M, Bozdag M, Farooq U, Angeli A, Carta F, Berto P, Supuran CT (2020) Benzylaminoethyureido-tailed benzenesulfonamides: design, synthesis, kinetic and X-ray investigations on human carbonic anhydrases. Int J Mol Sci 21(7):2560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Ersan RH, Kuzu B, Yetkin D, Alagöz MA, Dogen A, Burmaoglu S, Algul O (2022) 2-Phenyl substituted benzimidazole derivatives: design, synthesis, and evaluation of their antiproliferative and antimicrobial activities. Med Chem Res 31:1192–1208. https://doi.org/10.1007/s00044-022-02900-3

    Article  CAS  Google Scholar 

  54. Kong Y, Wang K, Edler MC, Hamel E, Mooberry SL, Paige MA, Brown ML (2010) A boronic acid chalcone analog of combretastatin A-4 as a potent anti-proliferation agent. Bioorg Med Chem 18(2):971–977

    Article  PubMed  CAS  Google Scholar 

  55. Liu X, Go ML (2007) Antiproliferative activity of chalcones with basic functionalities. Bioorgan Med Chem 15(22):7021–7034. https://doi.org/10.1016/j.bmc.2007.07.042

  56. Verpoorte JA, Mehta S, Edsall JT (1967) Esterase activities of human carbonic anhydrases B and C. J Biol Chem 242(18):4221–4229. https://doi.org/10.1016/S0021-9258(18)95800-X

    Article  PubMed  CAS  Google Scholar 

  57. Yamali C, Gül Hİ, Demir Y, Kazaz C, Gülçin İ (2020) Synthesis and bioactivities of 1-(4-hydroxyphenyl)-2-((heteroaryl) thio) ethanones as carbonic anhydrase I, II and acetylcholinesterase inhibitors. Turk J Chem 44(4):1058–1067. https://doi.org/10.3906/kim-2004-36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Aktaş A, Yakalı G, Demir Y, Gülçin İ, Aygün M, Gök Y (2022) The palladium-based complexes bearing 1, 3-dibenzylbenzimidazolium with morpholine, triphenylphosphine, and pyridine derivate ligands: synthesis, characterization, structure and enzyme inhibitions. Heliyon 8(9):e10625. https://doi.org/10.1016/j.heliyon.2022

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ellman GL, Courtney KD, Andres V, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95. https://doi.org/10.1016/0006-2952(61)90145-9

    Article  PubMed  CAS  Google Scholar 

  60. Palabıyık E, Sulumer AN, Uguz H, Avcı B, Askın S, Askın H, Demir Y (2022) Assessment of hypolipidemic and anti-inflammatory properties of walnut (Juglans regia) seed coat extract and modulates some metabolic enzymes activity in triton WR-1339-induced hyperlipidemia in rat kidney, liver, and heart. J Mol Recognit. https://doi.org/10.1002/jmr.3004

    Article  PubMed  Google Scholar 

  61. Demirci Ö, Tezcan B, Demir Y, Taskin-Tok T, Gök Y, Aktaş A, Gülçin İ (2022) Acetylphenyl-substituted imidazolium salts: synthesis, characterization, in silico studies and inhibitory properties against some metabolic enzymes. Mol Divers. https://doi.org/10.1007/s11030-022-10578-3

    Article  PubMed  Google Scholar 

  62. Lineweaver H, Burk D, Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56(3):658–666

    Article  CAS  Google Scholar 

  63. Özaslan MS, Demir Y, Aksoy M, Küfrevioğlu ÖI, Beydemir Ş (2018) Inhibition effects of pesticides on glutathione-S-transferase enzyme activity of Van Lake fish liver. J Biochem Mol Toxicol 32(9):e22196. https://doi.org/10.1002/jbt.22196

    Article  PubMed  CAS  Google Scholar 

  64. Sever B, Altıntop MD, Demir Y, Türkeş C, Özbaş K, Çiftçi GA, Özdemir AA (2021) New series of 2, 4-thiazolidinediones endowed with potent aldose reductase inhibitory activity. Open Chem 19(1):347–357. https://doi.org/10.1515/chem-2021-0032

    Article  CAS  Google Scholar 

  65. Nadaroglu H, Gungor AA, Gundogdu Ö, Kishali NH, Sever B, Altintop MD (2019) Investigation of the inhibitory effects of isoindoline-1, 3-dion derivatives on hCA-I and hCA-II enzyme activities. J Mol Struct 1197:386–392. https://doi.org/10.1016/j.molstruc.2019.07.070

    Article  CAS  Google Scholar 

  66. Özçelik AB, Özdemir Z, Sari S, Utku S, Uysal M (2019) A new series of pyridazinone derivatives as cholinesterases inhibitors: synthesis, in vitro activity and molecular modeling studies. Pharmacol Rep 71:1253–1263. https://doi.org/10.1016/j.pharep.2019.07.006

    Article  PubMed  CAS  Google Scholar 

  67. Nose S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81(1):511–519

    Article  CAS  Google Scholar 

  68. Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101(5):4177–4189. https://doi.org/10.1063/1.467468

    Article  CAS  Google Scholar 

  69. Ersan RH, Alagoz MA, Ertan-Bolelli T, Duran N, Burmaoglu S, Algul O (2021) Head-to-head bisbenzazole derivatives as antiproliferative agents: design, synthesis, in vitro activity, and SAR analysis. Mol Divers 25:2247–2259. https://doi.org/10.1007/s11030-020-10115-0

    Article  PubMed  CAS  Google Scholar 

  70. Ersan RH, Alagoz MA, Dogen A, Duran N, Burmaoglu S, Algul O (2022) Bisbenzoxazole derivatives: design, synthesis, in vitro antimicrobial, antiproliferative activity, and molecular docking studies. Polycycl Aromat Compd 42(6):3103–3123. https://doi.org/10.1080/10406638.2020.1852589

    Article  CAS  Google Scholar 

  71. Anil D, Caykoylu EU, Sanli F, Gambacorta N, Karatas OF, Nicolotti O, Burmaoglu S (2021) Synthesis and biological evaluation of 3, 5-diaryl-pyrazole derivatives as potential antiprostate cancer agents. Arch Pharm 354(12):2100225. https://doi.org/10.1002/ardp.202100225

    Article  CAS  Google Scholar 

  72. Kocyigit UM, Budak Y, Eligüzel F, Taslimi P, Kılıç D, Gulçin İ, Ceylan M (2017) Synthesis and carbonic anhydrase inhibition of tetrabromo chalcone derivatives. Arch Pharm. https://doi.org/10.1002/ardp.201700198

    Article  Google Scholar 

  73. Stellenboom N (2019) Comparison of the inhibitory potential towards carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase of chalcone and chalcone epoxide. J Biochem Mol Toxicol 33(2):e22240. https://doi.org/10.1002/jbt.22240

    Article  PubMed  CAS  Google Scholar 

  74. Singh P, Swain B, Thacker PS, Sigalapalli DK, Purnachander Yadav P, Angeli A, Supuran CT, Arifuddin M (2020) Synthesis and carbonic anhydrase inhibition studies of sulfonamide based indole-1, 2, 3-triazole chalcone hybrids. Bioorg Chem 99:103839. https://doi.org/10.1016/j.bioorg.2020.103839

    Article  PubMed  CAS  Google Scholar 

  75. Burmaoglu S, Yilmaz AO, Polat MF, Kaya R, Gulcin İ, Algul O (2019) Synthesis and biological evaluation of novel tris-chalcones as potent carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase and α-glycosidase inhibitors. Bioorg Chem 85:191–197. https://doi.org/10.1016/j.bioorg.2018.12.035

    Article  PubMed  CAS  Google Scholar 

  76. Aslan HE, Demir Y, Özaslan MS, Türkan F, Beydemir Ş, Küfrevioğlu ÖI (2019) The behavior of some chalcones on acetylcholinesterase and carbonic anhydrase activity. Drug Chem Toxicol 42(6):634–640. https://doi.org/10.1080/01480545.2018.1463242

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Busra Ozturk Aydın synthesized all the molecules in the manuscript. Yeliz Demir carried out enzyme inhibition studies. Mehmet Abdullah Alagöz carried out computer biology studies. Derya Aktas Anıl made the characterization of all molecules.

Corresponding author

Correspondence to Derya Aktas Anil.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2932 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydin, B.O., Anil, D.A., Demir, Y. et al. Organohalogen chalcones: design, synthesis, ADMET prediction, molecular dynamics study and inhibition effect on acetylcholinesterase and carbonic anhydrase. Mol Divers (2024). https://doi.org/10.1007/s11030-023-10774-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10774-9

Keywords

Navigation