Skip to main content

Advertisement

Log in

Computational biology-based study of the molecular mechanism of spermidine amelioration of acute pancreatitis

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Acute pancreatitis (AP) is an acute inflammatory gastrointestinal disease, the mortality and morbility of which has been on the increase in the past years. Spermidine, a natural polyamine, has a wide range of pharmacological effects including anti-inflammation, antioxidation, anti-aging, and anti-tumorigenic. This study aimed to investigate the reliable targets and molecular mechanisms of spermidine in treating AP. By employing computational biology methods including network pharmacology, molecular docking, and molecular dynamics (MD) simulations, we explored the potential targets of spermidine in improving AP with dietary supplementation. The computational biology results revealed that spermidine had high degrees (degree: 18, betweenness: 38.91; degree: 18, betweenness: 206.41) and stable binding free energy (ΔGbind: − 12.81 ± 0.55 kcal/mol, − 15.00 ± 1.00 kcal/mol) with acetylcholinesterase (AchE) and serotonin transporter (5-HTT). Experimental validation demonstrates that spermidine treatment could reduce the necrosis and AchE activity in pancreatic acinar cells. Cellular thermal shift assay (CETSA) results revealed that spermidine could bind to and stabilize the 5-HTT protein in acinar cells. Moreover, spermidine treatment impeded the rise of the expression of 5-HTT in pancreatic tissues of caerulein induced acute pancreatitis mice. In conclusion, serotonin transporter might be a reliable target of spermidine in treating AP. This study provides new idea for the exploration of potential targets of natural compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Werge M, Novovic S, Schmidt PN, Gluud LL (2016) Infection increases mortality in necrotizing pancreatitis: a systematic review and meta-analysis. Pancreatology 16(5):698–707. https://doi.org/10.1016/j.pan.2016.07.004

    Article  PubMed  Google Scholar 

  2. Biczo G, Vegh ET, Shalbueva N, Mareninova OA, Elperin J, Lotshaw E et al (2018) Mitochondrial dysfunction, through impaired autophagy, leads to endoplasmic reticulum stress, deregulated lipid metabolism, and pancreatitis in animal models. Gastroenterology 154(3):689–703. https://doi.org/10.1053/j.gastro.2017.10.012

    Article  CAS  PubMed  Google Scholar 

  3. Das SL, Singh PP, Phillips AR, Murphy R, Windsor JA, Petrov MS (2014) Newly diagnosed diabetes mellitus after acute pancreatitis: a systematic review and meta-analysis. Gut 63(5):818–831. https://doi.org/10.1136/gutjnl-2013-305062

    Article  PubMed  Google Scholar 

  4. Zhi M, Zhu X, Lugea A, Waldron RT, Pandol SJ, Li L (2019) Incidence of new onset diabetes mellitus secondary to acute pancreatitis: a systematic review and meta-analysis. Front Physiol 10:637. https://doi.org/10.3389/fphys.2019.00637

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hollemans RA, Hallensleben NDL, Mager DJ, Kelder JC, Besselink MG, Bruno MJ et al (2018) Pancreatic exocrine insufficiency following acute pancreatitis: systematic review and study level meta-analysis. Pancreatology 18(3):253–262. https://doi.org/10.1016/j.pan.2018.02.009

    Article  PubMed  Google Scholar 

  6. Peery AF, Crockett SD, Murphy CC, Jensen ET, Kim HP, Egberg MD et al (2022) Burden and cost of gastrointestinal, liver, and pancreatic diseases in the United States: update 2021. Gastroenterology 162(2):621–644. https://doi.org/10.1053/j.gastro.2021.10.017

    Article  PubMed  Google Scholar 

  7. Waldthaler A, Schutte K, Malfertheiner P (2010) Causes and mechanisms in acute pancreatitis. Dig Dis 28(2):364–372. https://doi.org/10.1159/000319416

    Article  CAS  PubMed  Google Scholar 

  8. Lee PJ, Papachristou GI (2019) New insights into acute pancreatitis. Nat Rev Gastroenterol Hepatol 16(8):479–496. https://doi.org/10.1038/s41575-019-0158-2

    Article  CAS  PubMed  Google Scholar 

  9. Sendler M, Dummer A, Weiss FU, Kruger B, Wartmann T, Scharffetter-Kochanek K et al (2013) Tumour necrosis factor alpha secretion induces protease activation and acinar cell necrosis in acute experimental pancreatitis in mice. Gut 62(3):430–439. https://doi.org/10.1136/gutjnl-2011-300771

    Article  CAS  PubMed  Google Scholar 

  10. Merza M, Hartman H, Rahman M, Hwaiz R, Zhang E, Renstrom E et al (2015) Neutrophil extracellular traps induce trypsin activation, inflammation, and tissue damage in mice with severe acute pancreatitis. Gastroenterology 149(7):1920-19318 e8. https://doi.org/10.1053/j.gastro.2015.08.026

    Article  CAS  PubMed  Google Scholar 

  11. Shanbhag ST, Choong B, Petrov M, Delahunt B, Windsor JA, Phillips ARJ (2018) Acute pancreatitis conditioned mesenteric lymph causes cardiac dysfunction in rats independent of hypotension. Surgery 163(5):1097–1105. https://doi.org/10.1016/j.surg.2017.12.013

    Article  PubMed  Google Scholar 

  12. Wen L, Voronina S, Javed MA, Awais M, Szatmary P, Latawiec D et al (2015) Inhibitors of ORAI1 prevent cytosolic calcium-associated injury of human pancreatic acinar cells and acute pancreatitis in 3 mouse models. Gastroenterology 149(2):481-492 e7. https://doi.org/10.1053/j.gastro.2015.04.015

    Article  CAS  PubMed  Google Scholar 

  13. Javed MA, Wen L, Awais M, Latawiec D, Huang W, Chvanov M et al (2018) TRO40303 ameliorates alcohol-induced pancreatitis through reduction of fatty acid ethyl ester-induced mitochondrial injury and necrotic cell death. Pancreas 47(1):18–24. https://doi.org/10.1097/MPA.0000000000000953

    Article  CAS  PubMed  Google Scholar 

  14. Madeo F, Hofer SJ, Pendl T, Bauer MA, Eisenberg T, Carmona-Gutierrez D et al (2020) Nutritional aspects of spermidine. Annu Rev Nutr 40:135–159. https://doi.org/10.1146/annurev-nutr-120419-015419

    Article  CAS  PubMed  Google Scholar 

  15. Yadav M, Parle M, Jindal DK, Sharma N (2018) Potential effect of spermidine on GABA, dopamine, acetylcholinesterase, oxidative stress and proinflammatory cytokines to diminish ketamine-induced psychotic symptoms in rats. Biomed Pharmacother 98:207–213. https://doi.org/10.1016/j.biopha.2017.12.016

    Article  CAS  PubMed  Google Scholar 

  16. Choi YHPH (2012) Anti-inflammatory effects of spermidine in lipopolysaccharide-stimulated BV2 microglial cells. J Biomed Sci 19(1):31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jeong JW, Cha HJ, Han MH, Hwang SJ, Lee DS, Yoo JS et al (2018) Spermidine protects against oxidative stress in inflammation models using macrophages and zebrafish. Biomol Ther (Seoul) 26(2):146–156. https://doi.org/10.4062/biomolther.2016.272

    Article  CAS  PubMed  Google Scholar 

  18. Hyvonen MT, Herzig KH, Sinervirta R, Albrecht E, Nordback I, Sand J et al (2006) activated polyamine catabolism in acute pancreatitis: alpha-methylated polyamine analogues prevent trypsinogen activation and pancreatitis-associated mortality. Am J Pathol 168(1):115–122. https://doi.org/10.2353/ajpath.2006.050518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hyvönen MTMM, Uimari A, Keinänen TA, Jänne J, Alhonen L (2007) Mechanisms of polyamine catabolism-induced acute pancreatitis. Biochem Soc Trans 35(2):326–330

    Article  PubMed  Google Scholar 

  20. Uimari A, Merentie M, Sironen R, Pirnes-Karhu S, Peraniemi S, Alhonen L (2012) Overexpression of spermidine/spermine N1-acetyltransferase or treatment with N1–N11-diethylnorspermine attenuates the severity of zinc-induced pancreatitis in mouse. Amino Acids 42(2–3):461–471. https://doi.org/10.1007/s00726-011-1025-9

    Article  CAS  PubMed  Google Scholar 

  21. Huang QY, Zhang R, Zhang QY, Dai C, Yu XY, Yuan L et al (2023) Disulfiram reduces the severity of mouse acute pancreatitis by inhibiting RIPK1-dependent acinar cell necrosis. Bioorg Chem 133:106382. https://doi.org/10.1016/j.bioorg.2023.106382

    Article  CAS  PubMed  Google Scholar 

  22. Zhang R, Wen L, Shen Y, Shi N, Xing Z, Xia Q et al (2016) One compound of saponins from Disocorea zingiberensis protected against experimental acute pancreatitis by preventing mitochondria-mediated necrosis. Sci Rep 6:35965. https://doi.org/10.1038/srep35965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu J, Liu J, Tong X, Peng W, Wei S, Sun T et al (2021) Network pharmacology prediction and molecular docking-based strategy to discover the potential pharmacological mechanism of Huai Hua san against ulcerative colitis. Drug Des Dev Ther 15:3255–3276. https://doi.org/10.2147/DDDT.S319786

    Article  Google Scholar 

  24. Dong Y, Zhao Q, Wang Y (2021) Network pharmacology-based investigation of potential targets of astragalus membranaceous-angelica sinensis compound acting on diabetic nephropathy. Sci Rep 11(1):19496. https://doi.org/10.1038/s41598-021-98925-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xia QD, Xun Y, Lu JL, Lu YC, Yang YY, Zhou P et al (2020) Network pharmacology and molecular docking analyses on Lianhua Qingwen capsule indicate Akt1 is a potential target to treat and prevent COVID-19. Cell Prolif 53(12):e12949. https://doi.org/10.1111/cpr.12949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen L, Ren LQ, Liu Z, Liu X, Tu H, Huang XY (2021) Bio-informatics and in vitro experiments reveal the mechanism of schisandrin A against MDA-MB-231 cells. Bioengineered 12(1):7678–7693. https://doi.org/10.1080/21655979.2021.1982307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen X, Xu M, An Y (2021) Identifying the essential nodes in network pharmacology based on multilayer network combined with random walk algorithm. J Biomed Inform 114:103666. https://doi.org/10.1016/j.jbi.2020.103666

    Article  PubMed  Google Scholar 

  28. Tao Q, Du J, Li X, Zeng J, Tan B, Xu J et al (2020) Network pharmacology and molecular docking analysis on molecular targets and mechanisms of Huashi Baidu formula in the treatment of COVID-19. Drug Dev Ind Pharm 46(8):1345–1353. https://doi.org/10.1080/03639045.2020.1788070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Morris GML-WM (2008) Molecular docking. Methods Mol Biol 443:365–382

    Article  CAS  PubMed  Google Scholar 

  30. Seeliger D, de Groot BL (2010) Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J Comput Aided Mol Des 24(5):417–422. https://doi.org/10.1007/s10822-010-9352-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jha P, Ragnarsson L, Lewis RJ (2020) Structure-function of the high affinity substrate binding site (S1) of human norepinephrine transporter. Front Pharmacol 11:217. https://doi.org/10.3389/fphar.2020.00217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee J, Hitzenberger M, Rieger M, Kern NR, Zacharias M, Im W (2020) CHARMM-GUI supports the Amber force fields. J Chem Phys 153(3):035103. https://doi.org/10.1063/5.0012280

    Article  CAS  PubMed  Google Scholar 

  33. Jo S, Kim T, Im W (2007) Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS ONE 2(9):e880. https://doi.org/10.1371/journal.pone.0000880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fox TKPA (1998) Application of the RESP methodology in the parametrization of organic solvents. J Phys Chem B 102(41):8070–8079

    Article  CAS  Google Scholar 

  35. Li GFL, He Q et al (2021) Structural optimization for pyrimidine analogues inhibitors against MAP kinase interacting serine/threonine kinase 1(MNK1) based on molecular simulation. J Mol Struct 1243(1):130688. https://doi.org/10.1016/j.molstruc.2021.130688

    Article  CAS  Google Scholar 

  36. Abraham CS, Muthu S, Prasana JC, Armakovic SJ, Armakovic S, Rizwana BF et al (2018) Spectroscopic profiling (FT-IR, FT-Raman, NMR and UV-Vis), autoxidation mechanism (H-BDE) and molecular docking investigation of 3-(4-chlorophenyl)-N, N-dimethyl-3-pyridin-2-ylpropan-1-amine by DFT/TD-DFT and molecular dynamics: a potential SSRI drug. Comput Biol Chem 77:131–145. https://doi.org/10.1016/j.compbiolchem.2018.08.010

    Article  CAS  PubMed  Google Scholar 

  37. Khnifira M, Boumya W, Abdennouri M, Sadiq Mh, Achak M, Serdaroğlu G et al (2021) A combined molecular dynamic simulation, DFT calculations, and experimental study of the eriochrome black T dye adsorption onto chitosan in aqueous solutions. Int J Biol Macromol 166:707–721. https://doi.org/10.1016/j.ijbiomac.2020.10.228

    Article  CAS  PubMed  Google Scholar 

  38. Abraham CS, Muthu S, Prasana JC, Armakovic S, Armakovic SJ, Rizwana BF et al (2019) Computational evaluation of the reactivity and pharmaceutical potential of an organic amine: a DFT, molecular dynamics simulations and molecular docking approach. Spectrochim Acta A 222:117188. https://doi.org/10.1016/j.saa.2019.117188

    Article  CAS  Google Scholar 

  39. Jo S, Cheng X, Lee J, Kim S, Park SJ, Patel DS et al (2017) CHARMM-GUI 10 years for biomolecular modeling and simulation. J Comput Chem 38(15):1114–1124. https://doi.org/10.1002/jcc.24660

    Article  CAS  PubMed  Google Scholar 

  40. Case DA, Aktulga HM, Belfon K, Ben-Shalom IY, Berryman JT, Brozell SR et al (2022) Amber 2022. University of California, San Francisco

  41. Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51(1):69–82. https://doi.org/10.1021/ci100275a

    Article  CAS  PubMed  Google Scholar 

  42. Jambeck JP, Lyubartsev AP (2012) An extension and further validation of an all-atomistic force field for biological membranes. J Chem Theory Comput 8(8):2938–2948. https://doi.org/10.1021/ct300342n

    Article  CAS  PubMed  Google Scholar 

  43. Rahman SU, Ali HS, Jafari B, Zaib S, Hameed A, Al-Kahraman Y et al (2021) Structure-based virtual screening of dipeptidyl peptidase 4 inhibitors and their in vitro analysis. Comput Biol Chem 91:107326. https://doi.org/10.1016/j.compbiolchem.2020.107326

    Article  CAS  PubMed  Google Scholar 

  44. Kostelnik A, Cegan A, Pohanka M (2017) Anti-Parkinson drug Biperiden inhibits enzyme acetylcholinesterase. Biomed Res Int 2017:2532764. https://doi.org/10.1155/2017/2532764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Martinez Molina D, Jafari R, Ignatushchenko M, Seki T, Larsson EA, Dan C et al (2013) Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341(6141):84–87. https://doi.org/10.1126/science.1233606

    Article  CAS  PubMed  Google Scholar 

  46. Peng Y, Zhang X, Zhang T, Grace PM, Li H, Wang Y et al (2019) Lovastatin inhibits Toll-like receptor 4 signaling in microglia by targeting its co-receptor myeloid differentiation protein 2 and attenuates neuropathic pain. Brain Behav Immun 82:432–444. https://doi.org/10.1016/j.bbi.2019.09.013

    Article  PubMed  Google Scholar 

  47. Lv Q, Xing Y, Liu J, Dong D, Liu Y, Qiao H et al (2021) Lonicerin targets EZH2 to alleviate ulcerative colitis by autophagy-mediated NLRP3 inflammasome inactivation. Acta Pharm Sin B 11(9):2880–2899. https://doi.org/10.1016/j.apsb.2021.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shen Y, Wen L, Zhang R, Wei Z, Shi N, Xiong Q et al (2018) Dihydrodiosgenin protects against experimental acute pancreatitis and associated lung injury through mitochondrial protection and PI3Kgamma/Akt inhibition. Br J Pharmacol 175(10):1621–1636. https://doi.org/10.1111/bph.14169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Computation and biology: a partnership (2021) Nat Methods 18(7):695. https://doi.org/10.1038/s41592-021-01215-2

  50. Wang G, Bai Y, Cui J, Zong Z, Gao Y, Zheng Z (2022) Computer-aided drug design boosts RAS inhibitor discovery. Molecules 27(17):5710. https://doi.org/10.3390/molecules27175710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kollman PA, Massova I, Reyes C et al (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33(12):889–897. https://doi.org/10.1021/ar000033j

    Article  CAS  PubMed  Google Scholar 

  52. Rico MI, Lebedenko CG, Mitchell SM, Banerjee IA (2022) Molecular dynamics simulations, docking and MMGBSA studies of newly designed peptide-conjugated glucosyloxy stilbene derivatives with tumor cell receptors. Mol Divers 26(5):2717–2743. https://doi.org/10.1007/s11030-021-10354-9

    Article  CAS  PubMed  Google Scholar 

  53. Yu H, Tardivo L, Tam S, Weiner E, Gebreab F, Fan C et al (2011) Next-generation sequencing to generate interactome datasets. Nat Methods 8(6):478–480. https://doi.org/10.1038/nmeth.1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang YC, Chen SL, Deng NY, Wang Y (2016) Computational probing protein-protein interactions targeting small molecules. Bioinformatics 32(2):226–234. https://doi.org/10.1093/bioinformatics/btv528

    Article  CAS  PubMed  Google Scholar 

  55. Saponara E, Grabliauskaite K, Bombardo M, Buzzi R, Silva AB, Malagola E et al (2015) Serotonin promotes acinar dedifferentiation following pancreatitis-induced regeneration in the adult pancreas. J Pathol 237(4):495–507. https://doi.org/10.1002/path.4595

    Article  CAS  PubMed  Google Scholar 

  56. Cataldo LR, Cortes VA, Mizgier ML, Aranda E, Mezzano D, Olmos P et al (2015) Fluoxetine impairs insulin secretion without modifying extracellular serotonin levels in MIN6 beta-cells. Exp Clin Endocrinol Diabetes 123(8):473–478. https://doi.org/10.1055/s-0035-1549964

    Article  CAS  PubMed  Google Scholar 

  57. Brenner B, Harney JT, Ahmed BA, Jeffus BC, Unal R, Mehta JL et al (2007) Plasma serotonin levels and the platelet serotonin transporter. J Neurochem 102(1):206–215. https://doi.org/10.1111/j.1471-4159.2007.04542.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tao X, Chen Q, Li N, Xiang H, Pan Y, Qu Y et al (2020) Serotonin-RhoA/ROCK axis promotes acinar-to-ductal metaplasia in caerulein-induced chronic pancreatitis. Biomed Pharmacother 125:109999. https://doi.org/10.1016/j.biopha.2020.109999

    Article  CAS  PubMed  Google Scholar 

  59. Hamada K, Yoshida M, Isayama H, Yagi Y, Kanazashi S, Kashihara Y et al (2007) Possible involvement of endogenous 5-HT in aggravation of cerulein-induced acute pancreatitis in mice. J Pharmacol Sci 105(3):240–250. https://doi.org/10.1254/jphs.FP0071049

    Article  CAS  PubMed  Google Scholar 

  60. Tsukamoto A, Sugimoto T, Onuki Y, Shinoda H, Mihara T, Hori M et al (2017) The 5-HT(3) receptor antagonist ondansetron attenuates pancreatic injury in cerulein-induced acute pancreatitis model. Inflammation 40(4):1409–1415. https://doi.org/10.1007/s10753-017-0584-7

    Article  CAS  PubMed  Google Scholar 

  61. Yang JM, Yang XY, Wan JH (2022) Multiple roles for cholinergic signaling in pancreatic diseases. World J Gastroenterol 28(25):2910–2919. https://doi.org/10.3748/wjg.v28.i25.2910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li B, Wu J, Bao J, Han X, Shen S, Ye X et al (2020) Activation of alpha7nACh receptor protects against acute pancreatitis through enhancing TFEB-regulated autophagy. Biochim Biophys Acta Mol Basis Dis 1866(12):165971. https://doi.org/10.1016/j.bbadis.2020.165971

    Article  CAS  PubMed  Google Scholar 

  63. Wu J, Yin Y, Qin M, Li K, Liu F, Zhou X et al (2021) Vagus nerve stimulation protects enterocyte glycocalyx after hemorrhagic shock via the cholinergic anti-inflammatory pathway. Shock 56(5):832–839. https://doi.org/10.1097/SHK.0000000000001791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lugea A, Gong J, Nguyen J, Nieto J, French SW, Pandol SJ (2010) Cholinergic mediation of alcohol-induced experimental pancreatitis. Alcohol Clin Exp Res 34(10):1768–1781. https://doi.org/10.1111/j.1530-0277.2010.01264.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Madeo F, Bauer MA, Carmona-Gutierrez D, Kroemer G (2019) Spermidine: a physiological autophagy inducer acting as an anti-aging vitamin in humans? Autophagy 15(1):165–168. https://doi.org/10.1080/15548627.2018.1530929

    Article  CAS  PubMed  Google Scholar 

  66. Zhou S, Gu J, Liu R, Wei S, Wang Q, Shen H et al (2018) Spermine alleviates acute liver injury by inhibiting liver-resident macrophage pro-inflammatory response through ATG5-dependent autophagy. Front Immunol 9:948. https://doi.org/10.3389/fimmu.2018.00948

    Article  CAS  PubMed  Google Scholar 

  67. Al-Habsi M, Chamoto K, Matsumoto K, Nomura N, Zhang B, Sugiura Y et al (2022) Spermidine activates mitochondrial trifunctional protein and improves antitumor immunity in mice. Science 378(6618):eabj3510. https://doi.org/10.1126/science.abj3510

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (No. 82100684), natural Science Foundation of Chongqing China (CSTB2022NSCQ-MSX1493), Guizhou Provincial Science and Technology Project (No. QKHJC [2020]1Y382), and Chongqing University of Technology Postgraduate Quality Development Action Plan Funding Results (gzlcx 20232115).

Author information

Authors and Affiliations

Authors

Contributions

Yan Shen and Hongtao Duan designed the study, performed the main experiments and drafted the manuscript. Lu Yuan, Aiminuer Asikaer, and Yiyuan Liu did literature search and analyzed the data. Rui Zhang, Yang Liu and Yuanqiang Wang revised the manuscript. Zhihua Lin obtained the financial support for the project leading to this publication, supervised the experiments, and revised the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Zhihua Lin.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 370 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Duan, H., Yuan, L. et al. Computational biology-based study of the molecular mechanism of spermidine amelioration of acute pancreatitis. Mol Divers (2023). https://doi.org/10.1007/s11030-023-10698-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10698-4

Keywords

Navigation