Skip to main content
Log in

Machine learning-based classification models for non-covalent Bruton’s tyrosine kinase inhibitors: predictive ability and interpretability

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

In this study, we built classification models using machine learning techniques to predict the bioactivity of non-covalent inhibitors of Bruton’s tyrosine kinase (BTK) and to provide interpretable and transparent explanations for these predictions. To achieve this, we gathered data on BTK inhibitors from the Reaxys and ChEMBL databases, removing compounds with covalent bonds and duplicates to obtain a dataset of 3895 inhibitors of non-covalent. These inhibitors were characterized using MACCS fingerprints and Morgan fingerprints, and four traditional machine learning algorithms (decision trees (DT), random forests (RF), support vector machines (SVM), and extreme gradient boosting (XGBoost)) were used to build 16 classification models. In addition, four deep learning models were developed using deep neural networks (DNN). The best model, Model D_4, which was built using XGBoost and MACCS fingerprints, achieved an accuracy of 94.1% and a Matthews correlation coefficient (MCC) of 0.75 on the test set. To provide interpretable explanations, we employed the SHAP method to decompose the predicted values into the contributions of each feature. We also used K-means dimensionality reduction and hierarchical clustering to visualize the clustering effects of molecular structures of the inhibitors. The results of this study were validated using crystal structures, and we found that the interaction between the BTK amino acid residue and the important features of clustered scaffold was consistent with the known properties of the complex crystal structures. Overall, our models demonstrated high predictive ability and a qualitative model can be converted to a quantitative model to some extent by SHAP, making them valuable for guiding the design of new BTK inhibitors with desired activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tankiewicz-Kwedlo A, Hermanowicz JM, Domaniewski T et al (2018) Simultaneous use of erythropoietin and LFM-A13 as a new therapeutic approach for colorectal cancer. Br J Pharmacol 175:743–762. https://doi.org/10.1111/bph.14099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Honigberg LA, Smith AM, Sirisawad M et al (2010) The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci USA 107:13075–13080. https://doi.org/10.1073/pnas.1004594107

    Article  PubMed  PubMed Central  Google Scholar 

  3. Burger JA, Wiestner A (2018) Targeting B cell receptor signalling in cancer: preclinical and clinical advances. Nat Rev Cancer 18:148–167. https://doi.org/10.1038/nrc.2017.121

    Article  CAS  PubMed  Google Scholar 

  4. Li X, Zuo Y, Tang G et al (2014) Discovery of a series of 2,5-diaminopyrimidine covalent irreversible inhibitors of Bruton’s tyrosine kinase with in vivo antitumor activity. J Med Chem 57:5112–5128. https://doi.org/10.1021/jm4017762

    Article  CAS  PubMed  Google Scholar 

  5. Wu J, Zhang M, Liu D (2016) Acalabrutinib (ACP-196): a selective second-generation BTK inhibitor. J Hematol Oncol 9:21. https://doi.org/10.1186/s13045-016-0250-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zou Y-X, Zhu H-Y, Li X-T et al (2019) The impacts of zanubrutinib on immune cells in patients with chronic lymphocytic leukemia/small lymphocytic lymphoma. Hematol Oncol 37:392–400. https://doi.org/10.1002/hon.2667

    Article  CAS  PubMed  Google Scholar 

  7. Dhillon S (2020) Tirabrutinib: first approval. Drugs 80:835–840. https://doi.org/10.1007/s40265-020-01318-8

    Article  CAS  PubMed  Google Scholar 

  8. Dhillon S (2021) Orelabrutinib: first approval. Drugs 81:503–507. https://doi.org/10.1007/s40265-021-01482-5

    Article  CAS  PubMed  Google Scholar 

  9. Wang Y, Zhang LL, Champlin RE, Wang ML (2015) Targeting Bruton’s tyrosine kinase with ibrutinib in B-cell malignancies. Clin Pharmacol Ther 97:455–468. https://doi.org/10.1002/cpt.85

    Article  CAS  PubMed  Google Scholar 

  10. Hu N, Wang F, Sun T et al (2021) Follicular lymphoma–associated BTK mutations are inactivating resulting in augmented AKT activation. Clin Cancer Res 27:2301–2313. https://doi.org/10.1158/1078-0432.CCR-20-3741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ma B, Bohnert T, Otipoby KL et al (2020) Discovery of BIIB068: a selective, potent, reversible Bruton’s tyrosine kinase inhibitor as an orally efficacious agent for autoimmune diseases. J Med Chem 63:12526–12541. https://doi.org/10.1021/acs.jmedchem.0c00702

    Article  CAS  PubMed  Google Scholar 

  12. Elemam NM, Hachim MY, Hannawi S, Maghazachi AA (2020) Differentially expressed genes of natural killer cells can distinguish rheumatoid arthritis patients from healthy controls. Genes 11:492. https://doi.org/10.3390/genes11050492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Voice AT, Tresadern G, Twidale RM et al (2021) Mechanism of covalent binding of ibrutinib to Bruton’s tyrosine kinase revealed by QM/MM calculations. Chem Sci 12:5511–5516. https://doi.org/10.1039/D0SC06122K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jackson PA, Widen JC, Harki DA, Brummond KM (2017) Covalent modifiers: a chemical perspective on the reactivity of α, β-unsaturated carbonyls with thiols via hetero-michael addition reactions. J Med Chem 60:839–885. https://doi.org/10.1021/acs.jmedchem.6b00788

    Article  CAS  PubMed  Google Scholar 

  15. Crawford JJ, Johnson AR, Misner DL et al (2018) Discovery of GDC-0853: a potent, selective, and noncovalent Bruton’s tyrosine kinase inhibitor in early clinical development. J Med Chem 61:2227–2245. https://doi.org/10.1021/acs.jmedchem.7b01712

    Article  CAS  PubMed  Google Scholar 

  16. Reiff SD, Mantel R, Smith LL et al (2018) The BTK inhibitor ARQ 531 targets ibrutinib-resistant CLL and richter transformation. Cancer Discov 8:1300–1315. https://doi.org/10.1158/2159-8290.CD-17-1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thieme E, Liu T, Bruss N et al (2022) Dual BTK/SYK inhibition with CG-806 (luxeptinib) disrupts B-cell receptor and Bcl-2 signaling networks in mantle cell lymphoma. Cell Death Dis 13:1–11. https://doi.org/10.1038/s41419-022-04684-1

    Article  CAS  Google Scholar 

  18. Kawahata W, Asami T, Kiyoi T et al (2021) Discovery of AS-1763: a potent, selective, noncovalent, and orally available inhibitor of Bruton’s Tyrosine Kinase. J Med Chem 64:14129–14141. https://doi.org/10.1021/acs.jmedchem.1c01279

    Article  CAS  PubMed  Google Scholar 

  19. Keam SJ (2023) Pirtobrutinib: first approval. Drugs 83:547–553. https://doi.org/10.1007/s40265-023-01860-1

    Article  CAS  PubMed  Google Scholar 

  20. Yang Z, Tian Y, Kong Y et al (2022) Classification of JAK1 inhibitors and SAR research by machine learning methods. Artif Intell Life Sci 2:100039. https://doi.org/10.1016/j.ailsci.2022.100039

    Article  CAS  Google Scholar 

  21. Wang J, Ran T, Chen Y, Lu T (2020) Bayesian machine learning to discover Bruton’s tyrosine kinase inhibitors. Chem Biol Drug Des 96:1114–1122. https://doi.org/10.1111/cbdd.13656

    Article  CAS  PubMed  Google Scholar 

  22. Ma W, Wang Y, Chu D, Yan H (2019) 4D-QSAR and MIA-QSAR study on the Bruton’s tyrosine kinase (Btk) inhibitors. J Mol Graph Model 92:357–362. https://doi.org/10.1016/j.jmgm.2019.08.009

    Article  CAS  PubMed  Google Scholar 

  23. Márquez E, Mora JR, Flores-Morales V et al (2020) Modeling the Antileukemia activity of ellipticine-related compounds: QSAR and molecular docking study. Molecules 25:24. https://doi.org/10.3390/molecules25010024

    Article  CAS  Google Scholar 

  24. Xing G, Liang L, Deng C et al (2020) Activity Prediction of small molecule inhibitors for antirheumatoid arthritis targets based on artificial intelligence. ACS Comb Sci 22:873–886. https://doi.org/10.1021/acscombsci.0c00169

    Article  CAS  PubMed  Google Scholar 

  25. Reaxys. https://www.reaxys.com/. Accessed 27 Dec 2022

  26. ChEMBL Database. https://www.ebi.ac.uk/chembl/. Accessed 27 Dec 2022

  27. Watterson SH, Tebben AJ, Ahmad S (2016) Tricyclic Atropisomer Compounds, WO2016065222A1

  28. Hopkins BT, Bame E, Bell N et al (2019) Optimization of novel reversible Bruton’s tyrosine kinase inhibitors identified using tethering-fragment-based screens. Bioorg Med Chem 27:2905–2913. https://doi.org/10.1016/j.bmc.2019.05.021

    Article  CAS  PubMed  Google Scholar 

  29. Sutanto F, Konstantinidou M, Dömling A (2020) Covalent inhibitors: a rational approach to drug discovery. RSC Med Chem 11:876–884. https://doi.org/10.1039/D0MD00154F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Van Drie JH, Weininger D, Martin YC (1989) ALADDIN: an integrated tool for computer-assisted molecular design and pharmacophore recognition from geometric, steric, and substructure searching of three-dimensional molecular structures. J Comput-Aided Mol Des 3:225–251. https://doi.org/10.1007/BF01533070

    Article  PubMed  Google Scholar 

  31. sonnia. https://mn-am.com/products/sonnia. Accessed 27 Dec 2022

  32. Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50:742–754. https://doi.org/10.1021/ci100050t

    Article  CAS  PubMed  Google Scholar 

  33. scikit-learn. https://scikit-learn.org/stable/. Accessed 30 Apr 2023

  34. XGBoost. https://xgboost.readthedocs.io/en/stable/. Accessed 30 Apr 2023

  35. Chen Y, Huang W, Nguyen L, Weng T-W (2021) On the Equivalence between Neural Network and Support Vector Machine. In: Advances in Neural Information Processing Systems. Curran Associates, Inc., pp 23478–23490

  36. PyTorch. https://www.pytorch.org. Accessed 30 Apr 2023

  37. Louppe G (2014) Understanding random forests: from theory to practice. Preprint at http://arxiv.org/14077502

  38. Ribeiro MT, Singh S, Guestrin C (2016) “Why should i trust you?” Explaining the predictions of any classifier. in: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. pp 1135–1144

  39. Lundberg SM, Lee S-I (2017) A unified approach to interpreting model predictions. Adv Neural Inf Process Syst 30:4768–4777

    Google Scholar 

  40. Chaudhuri D, Chaudhuri BB (1997) A novel multiseed nonhierarchical data clustering technique. IEEE Trans on Syst, Man, Cybern Part B (Cybernetics) 27:871–876. https://doi.org/10.1109/3477.623240

    Article  CAS  Google Scholar 

  41. van der Maaten LJP, Hinton GE (2008) Visualizing high-dimensional data using t-SNE. J Mach Learn Res 9:2579–2605

    Google Scholar 

  42. Gomez EB, Ebata K, Randeria HS et al (2023) Pirtobrutinib preclinical characterization: a highly selective, non-covalent (reversible) BTK inhibitor. Blood. https://doi.org/10.1182/blood.2022018674

    Article  PubMed  Google Scholar 

  43. Watterson SH, De Lucca GV, Shi Q et al (2016) Discovery of 6-fluoro-5-(R)-(3-(S)-(8-fluoro-1-methyl-2,4-dioxo-1,2-dihydroquinazolin-3(4H)-yl)-2-methylphenyl)-2-(S)-(2-hydroxypropan-2-yl)-2,3,4,9-tetrahydro-1H-carbazole-8-carboxamide (BMS-986142): a reversible inhibitor of Bruton’s Tyrosine Kinase (BTK) conformationally constrained by two locked atropisomers. J Med Chem 59:9173–9200. https://doi.org/10.1021/acs.jmedchem.6b01088

    Article  CAS  PubMed  Google Scholar 

  44. Liu J, Guiadeen D, Krikorian A et al (2016) Discovery of 8-amino-imidazo[1,5- a ]pyrazines as reversible BTK Inhibitors for the treatment of rheumatoid arthritis. ACS Med Chem Lett 7:198–203. https://doi.org/10.1021/acsmedchemlett.5b00463

    Article  CAS  PubMed  Google Scholar 

  45. Liu J, Guiadeen D, Krikorian A et al (2020) Potent, non-covalent reversible BTK inhibitors with 8-amino-imidazo[1,5-a]pyrazine core featuring 3-position bicyclic ring substitutes. Bioorg Med Chem Lett 30:127390. https://doi.org/10.1016/j.bmcl.2020.127390

    Article  CAS  PubMed  Google Scholar 

  46. Hopkins BT, Bame E, Bajrami B et al (2022) Discovery and preclinical characterization of BIIB091, a reversible, selective BTK inhibitor for the treatment of multiple sclerosis. J Med Chem 65:1206–1224. https://doi.org/10.1021/acs.jmedchem.1c00926

    Article  CAS  PubMed  Google Scholar 

  47. Qiu H, Ali Z, Bender A et al (2021) Discovery of potent and selective reversible Bruton’s tyrosine kinase inhibitors. Bioorg Med Chem 40:116163. https://doi.org/10.1016/j.bmc.2021.116163

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Molecular Networks GmbH, Nuremberg, Germany for providing the programs SONNIA for our scientific work.

Author information

Authors and Affiliations

Authors

Contributions

Data collection, main modeling, and manuscript drafting: GL; k-means algorithm script, article grammar modification, and guidance: JL and YT; DNN algorithm script, submission guidance, and submission format modification: YZ; Supplemental calculation of the latest crystal structure 8FLL: XP; Correspondence: AY. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Aixia Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Li, J., Tian, Y. et al. Machine learning-based classification models for non-covalent Bruton’s tyrosine kinase inhibitors: predictive ability and interpretability. Mol Divers (2023). https://doi.org/10.1007/s11030-023-10696-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10696-6

Keywords

Navigation