Skip to main content
Log in

Design, synthesis, molecular docking, and dynamic studies of novel thiazole derivatives incorporating benzimidazole moiety and assessment as antibacterial agents

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A general and sustainable approach for the synthesis of benzimidazole-thiazole compounds via an efficient, one-pot, domino, pseudo-four-component reaction using 5-amino-2-mercaptobenzimidazole, aralkyl halides, ammonium thiocyanate, and substituted α-bromo-acetophenones in glacial acetic acid at ambient temperature to give final compounds (4a–p) in good yields in shorter time. The spectral data of synthesized compounds were evaluated by analytical and spectral techniques (IR, 1H-NMR, 13C-NMR, and ESI-HRMS). Further, some of the synthesized compounds were screened for their in-vitro antibacterial activity studies using the agar well diffusion method against Gram-positive Streptococcus pneumoniae (2451) bacteria and Gram-negative Proteous mirabilis (2081) bacteria. Based on the MIC results, it was observed that the most active compounds 4b, 4e, 4f, and 4k show promising antibacterial activity with the zone of inhibition values of 2.85 cm 2.75 cm, 3.6 cm, and 3.3 cm against both Gram-negative and positive bacteria cell lines, respectively. Further, we have also insight into the molecular simulation studies, based on the binding results, compound 4i showed stable binding interactions with streptomycin drug with the active site of the gyrase protein (PDB ID: 1KIJ). The structure–activity relationship (SAR) studies of all the title scaffolds were also established. The antibacterial activity, molecular docking studies, and molecular dynamic simulations of the title compounds suggested that these are promising antibacterial active skeletons.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vila C, Rueping M (2013) Visible-light mediated heterogeneous C–H functionalization: oxidative multi-component reactions using a recyclable titanium dioxide (TiO2) catalyst. Green Chem 15:2056–2059. https://doi.org/10.1039/c3gc40587g

    Article  CAS  Google Scholar 

  2. Mamidala S, Peddi SR, Aravilli RK, Jilloju PC, Manga V, Vedula RR (2020) Microwave irradiated one-pot, three-component synthesis of a new series of hybrid coumarin based thiazoles: antibacterial evaluation and molecular docking studies. J Mol Struct. https://doi.org/10.1016/j.molstruc.2020.129114

    Article  Google Scholar 

  3. Vaarla K, Vishwapathi V, Vermeire K, Vedula RR, Kulkarni CV (2022) A facile one-pot multicomponent synthesis of alkyl 4-oxo-coumarinyl ethylidene hydrazono-thiazolidin-5-ylidene acetates and their antiviral activity. J Mol Struct 1249:131662. https://doi.org/10.1016/j.molstruc.2021.131662

    Article  CAS  Google Scholar 

  4. Cascioferro S, Parrino B, Carbone D, Schillaci D, Giovannetti E, Cirrincione G, Diana P (2020) Thiazoles, their benzofused systems, and thiazolidinone derivatives: versatile and promising tools to combat antibiotic resistance. J Med Chem 63:7923–7956. https://doi.org/10.1021/acs.jmedchem.9b01245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aggarwal T, Kumar S, Verma AK (2016) Iodine-mediated synthesis of heterocycles: via electrophilic cyclization of alkynes. Org Biomol Chem 14:7639–7653. https://doi.org/10.1039/c6ob01054g

    Article  CAS  PubMed  Google Scholar 

  6. Wang N, Saidhareddy P, Jiang X (2020) Construction of sulfur-containing moieties in the total synthesis of natural products. Nat Prod Rep 37:246–275. https://doi.org/10.1039/c8np00093j

    Article  CAS  PubMed  Google Scholar 

  7. Hassan A, Badr M, Hassan HA, Abdelhamid D, Abuo-Rahma GEA (2021) Novel 4-(piperazin-1-yl)quinolin-2(1H)-one bearing thiazoles with antiproliferative activity through VEGFR-2-TK inhibition. Bioorg Med Chem 40:116168. https://doi.org/10.1016/j.bmc.2021.116168

    Article  CAS  PubMed  Google Scholar 

  8. Osmaniye D, Görgülü S, Sağlık BN, Levent S, Özkay Y, Kaplancıklı ZA (2021) Design, synthesis, in vitro and in silico studies of some novel thiazole-dihydrofuran derivatives as aromatase inhibitors. Bioorg Chem 114:105123. https://doi.org/10.1016/j.bioorg.2021.105123

    Article  CAS  PubMed  Google Scholar 

  9. Bangade VM, Mali PR, Meshram HM (2021) Synthesis of potent anticancer substituted 5-benzimidazol-2-amino thiazoles controlled by bifunctional hydrogen bonding under microwave irradiations. J Org Chem 86:6056–6065. https://doi.org/10.1021/acs.joc.0c02542

    Article  CAS  PubMed  Google Scholar 

  10. Hu Y, Hu C, Pan G, Yu C, Ansari MF, Yadav Bheemanaboina RR, Cheng Y, Zhou C, Zhang J (2021) Novel chalcone-conjugated, multi-flexible end-group coumarin thiazole hybrids as potential antibacterial repressors against methicillin-resistant Staphylococcus aureus. Eur J Med Chem 222:113628. https://doi.org/10.1016/j.ejmech.2021.113628

    Article  CAS  PubMed  Google Scholar 

  11. Tomašič T, Katsamakas S, Hodnik Ž, Ilaš J, Brvar M, Solmajer T, Montalvão S, Tammela P, Banjanac M, Ergović G, Anderluh M, Mašič LP, Kikelj D (2015) Discovery of 4,5,6,7-tetrahydrobenzo[1,2-d ]thiazoles as novel DNA gyrase inhibitors targeting the ATP-binding site. J Med Chem 58:5501–5521. https://doi.org/10.1021/acs.jmedchem.5b00489

    Article  CAS  PubMed  Google Scholar 

  12. Yan Z, Liu A, Ou Y, Li J, Yi H, Zhang N, Liu M, Huang L, Ren J, Liu W, Hu A (2019) Design, synthesis and fungicidal activity evaluation of novel pyrimidinamine derivatives containing phenyl-thiazole/oxazole moiety. Bioorg Med Chem 27:3218–3228. https://doi.org/10.1016/j.bmc.2019.05.029

    Article  CAS  PubMed  Google Scholar 

  13. Adole VA, More RA, Jagdale BS, Pawar TB, Chobe SS (2020) Efficient synthesis, antibacterial, antifungal, antioxidant and cytotoxicity study of 2-(2-hydrazineyl)thiazole derivatives. ChemistrySelect 5:2778–2786. https://doi.org/10.1002/slct.201904609

    Article  CAS  Google Scholar 

  14. Mayhoub AS, Khaliq M, Kuhn RJ, Cushman M (2011) Design, synthesis, and biological evaluation of thiazoles targeting flavivirus envelope proteins. J Med Chem 54:1704–1714. https://doi.org/10.1021/jm1013538

    Article  CAS  PubMed  Google Scholar 

  15. Sever B, Altıntop MD, Demir Y, Akalın Çiftçi G, Beydemir S, Özdemir A (2020) Design, synthesis, in vitro and in silico investigation of aldose reductase inhibitory effects of new thiazole-based compounds. Bioorg Chem 102:104110. https://doi.org/10.1016/j.bioorg.2020.104110

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Z, Cao P, Fang M, Zou T, Han J, Duan Y, Xu H, Yang X, Li Q-S (2021) Design, synthesis, and SAR study of novel 4,5-dihydropyrazole-Thiazole derivatives with anti-inflammatory activities for the treatment of sepsis. Eur J Med Chem 225:113743. https://doi.org/10.1016/j.ejmech.2021.113743

    Article  CAS  PubMed  Google Scholar 

  17. Maghraby MTE, Abou-Ghadir OMF, Abdel-Moty SG, Ali AY, Salem OIA (2020) Novel class of benzimidazole-thiazole hybrids: the privileged scaffolds of potent anti-inflammatory activity with dual inhibition of cyclooxygenase and 15-lipoxygenase enzymes. Bioorg Med Chem 28:115403. https://doi.org/10.1016/j.bmc.2020.115403

    Article  CAS  PubMed  Google Scholar 

  18. Kiryanov AA, Sampson P, Seed AJ (2001) Synthesis of 2-alkoxy-substituted thiophenes, 1,3-thiazoles, and related S-heterocycles via Lawesson’s reagent-mediated cyclization under microwave irradiation: applications for liquid crystal synthesis. J Org Chem 66(23):7925–7929

    Article  CAS  PubMed  Google Scholar 

  19. Hodgetts KJ, Kershaw MT (2002) Regiocontrolled synthesis of substituted thiazoles. Org Lett 4:1363–1365. https://doi.org/10.1021/ol025688u

    Article  CAS  PubMed  Google Scholar 

  20. Cordeiro R, Kachroo M (2020) Synthesis and biological evaluation of anti-tubercular activity of Schiff bases of 2-amino thiazoles. Bioorg Med Chem Lett 30:127655. https://doi.org/10.1016/j.bmcl.2020.127655

    Article  CAS  PubMed  Google Scholar 

  21. Fayed EA, Ragab A, Ezz Eldin RR, Bayoumi AH, Ammar YA (2021) In vivo sreening 1 toxicity studies of indolinone incorporated thiosemicarbazone, thiazole and piperidinosulfonyl moieties as anticonvulsant agents. Bioorg Chem 116:105300. https://doi.org/10.1016/j.bioorg.2021.105300

    Article  CAS  PubMed  Google Scholar 

  22. El-Naggar AM, El-Hashash MA, Elkaeed EB (2021) Eco-friendly sequential one-pot synthesis, molecular docking, and anticancer evaluation of arylidene-hydrazinyl-thiazole derivatives as CDK2 inhibitors. Bioorg. Chem. 108:104615. https://doi.org/10.1016/j.bioorg.2020.104615

    Article  CAS  PubMed  Google Scholar 

  23. Alkhaldi AAM, Al-Sanea MM, Nocentini A, Eldehna WM, Elsayed ZM, Bonardi A, Abo-Ashour MF, El-Damasy AK, Abdel-Maksoud MS, Al-Warhi T, Gratteri P, Abdel-Aziz HA, Supuran CT, El-Haggar R (2020) 3-Methylthiazolo[3,2-a]benzimidazole-benzenesulfonamide conjugates as novel carbonic anhydrase inhibitors endowed with anticancer activity: design, synthesis, biological and molecular modeling studies. Eur J Med Chem 207:112745–46. https://doi.org/10.1016/j.ejmech.2020.112745

    Article  CAS  PubMed  Google Scholar 

  24. Kankala S, Kankala RK, Gundepaka P, Thota N, Nerella S, Gangula MR, Guguloth H, Kagga M, Vadde R, Vasam CS (2013) Regioselective synthesis of isoxazole–mercaptobenzimidazole hybrids and their in vivo analgesic and anti-inflammatory activity studies. Bioorg Med Chem Lett 23:1306–1309. https://doi.org/10.1016/j.bmcl.2012.12.101

    Article  CAS  PubMed  Google Scholar 

  25. Sharma R, Bali A, Chaudhari BB (2017) Synthesis of methanesulphonamido-benzimidazole derivatives as gastro-sparing antiinflammatory agents with antioxidant effect. Bioorg Med Chem Lett 27:3007–3013. https://doi.org/10.1016/j.bmcl.2017.05.017

    Article  CAS  PubMed  Google Scholar 

  26. Chaurasia H, Singh VK, Mishra R, Yadav AK, Ram NK, Singh P, Singh RK (2021) Molecular modelling, synthesis and antimicrobial evaluation of benzimidazole nucleoside mimetics. Bioorg Chem 115:105227. https://doi.org/10.1016/j.bioorg.2021.105227

    Article  CAS  PubMed  Google Scholar 

  27. Abdel-Motaal M, Almohawes K, Tantawy MA (2020) Antimicrobial evaluation and docking study of some new substituted benzimidazole-2yl derivatives. Bioorg Chem 101:103972. https://doi.org/10.1016/j.bioorg.2020.103972

    Article  CAS  PubMed  Google Scholar 

  28. Huo X, Hou D, Wang H, He B, Fang J, Meng Y, Liu L, Wei Z, Wang Z, Liu F-W (2021) Design, synthesis, in vitro and in vivo anti-respiratory syncytial virus (RSV) activity of novel oxizine fused benzimidazole derivatives. Eur J Med Chem 224:113684. https://doi.org/10.1016/j.ejmech.2021.113684

    Article  CAS  PubMed  Google Scholar 

  29. Zhou B, Li B, Yi W, Bu X, Ma L (2013) Synthesis, antioxidant, and antimicrobial evaluation of some 2-arylbenzimidazole derivatives. Bioorg Med Chem Lett 23:3759–3763. https://doi.org/10.1016/j.bmcl.2013.05.004

    Article  CAS  PubMed  Google Scholar 

  30. Galal SA, Abdelsamie AS, Shouman SA, Attia YM, Ali HI, Tabll A, El-Shenawy R, El Abd YS, Ali MM, Mahmoud AE, Abdel-Halim AH, Fyiad AA, Girgis AS, El-Diwani HI (2017) Part I: design, synthesis and biological evaluation of novel pyrazole-benzimidazole conjugates as checkpoint kinase 2 (Chk2) inhibitors with studying their activities alone and in combination with genotoxic drugs. Eur J Med Chem 134:392–405. https://doi.org/10.1016/j.ejmech.2017.03.090

    Article  CAS  PubMed  Google Scholar 

  31. Babkov DA, Zhukowskaya ON, Borisov AV, Babkova VA, Sokolova EV, Brigadirova AA, Litvinov RA, Kolodina AA, Morkovnik AS, Sochnev VS, Borodkin GS, Spasov AA (2019) Towards multi-target antidiabetic agents: discovery of biphenyl-benzimidazole conjugates as AMPK activators. Bioorg Med Chem Lett 29:2443–2447. https://doi.org/10.1016/j.bmcl.2019.07.035

    Article  CAS  PubMed  Google Scholar 

  32. Vitaku E, Smith DT, Njardarson JT (2014) Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J Med Chem 57:10257–10274. https://doi.org/10.1021/jm501100b

    Article  CAS  PubMed  Google Scholar 

  33. Jilloju PC, Persoons L, Kurapati SK et al (2022) Discovery of (±)-3-(1H-pyrazol-1-yl)-6,7-dihydro-5H-[1,2,4]triazolo[3,4-b][1,3,4] thiadiazine derivatives with promising in vitro anticoronavirus and antitumoral activity. Mol Divers 26:1357–1371. https://doi.org/10.1007/s11030-021-10258-8

    Article  CAS  PubMed  Google Scholar 

  34. Privalsky TM, Soohoo AM, Wang J, Walsh CT, Wright GD, Gordon EM, Gray NS, Khosla C (2021) Prospects for antibacterial discovery and development. J Am Chem Soc 143:21127–21142. https://doi.org/10.1021/jacs.1c10200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lu J, Patel S, Sharma N, Soisson SM, Kishii R, Takei M, Fukuda Y, Lumb KJ, Singh SB (2014) Structures of kibdelomycin bound to Staphylococcus aureus GyrB and ParE showed a novel U-shaped binding mode. ACS Chem Biol 9:2023–2031. https://doi.org/10.1021/cb5001197

    Article  CAS  PubMed  Google Scholar 

  36. Arévalo JMC, Amorim JC (2022) Virtual screening, optimization and molecular dynamics analyses highlighting a pyrrolo[1,2-a]quinazoline derivative as a potential inhibitor of DNA gyrase B of Mycobacterium tuberculosis. Sci Rep 12:4742. https://doi.org/10.1038/s41598-022-08359-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M (2015) PLIP: fully automated protein–ligand interaction profiler. Nucleic Acids Res 43:W443–W447. https://doi.org/10.1093/nar/gkv315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718. https://doi.org/10.1002/jcc.20291

    Article  CAS  PubMed  Google Scholar 

  40. Robertson MJ, Tirado-Rives J, Jorgensen WL (2015) Improved peptide and protein torsional energetics with the OPLS-AA force field. J Chem Theory Comput 11:3499–3509. https://doi.org/10.1021/acs.jctc.5b00356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director of the National Institute of Technology, Warangal Telangana, India, for providing lab facilities, and one of the authors R.C. thankful to the Ministry of Education, Government of India, for providing a research fellowship. R. C. wishes to thank Dr. Amrutha V Audipudi for biological activity and computational calculations.

Author information

Authors and Affiliations

Authors

Contributions

Raju Chedupaka carried out the laboratory work, conceptualization, wrote the main manuscript text, and methodology. Amrutha V Audipudi did the work on biology part of the manuscript. Akanksha Ashok Sangolkar did the computational part of the manuscript. Srikanth Mamidala helped in reviewing, editing, and formal analysis of the manuscript. Papisetti Venkatesham and Santhosh Penta helped for validation. Rajeswar Rao Vedula was the supervisor of the research work.

Corresponding author

Correspondence to Rajeswar Rao Vedula.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19517 KB)

Supplementary file2 (MPG 30432 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chedupaka, R., Audipudi, A.V., Sangolkar, A.A. et al. Design, synthesis, molecular docking, and dynamic studies of novel thiazole derivatives incorporating benzimidazole moiety and assessment as antibacterial agents. Mol Divers (2023). https://doi.org/10.1007/s11030-023-10675-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10675-x

Keywords

Navigation