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Abstract
The Akt pathway plays a significant role in various diseases like Alzheimer’s, Parkinson’s, and Diabetes. Akt is the cen-
tral protein whose phosphorylation controls many downstream pathways. Binding of small molecules to the PH domain 
of Akt facilitates its phosphorylation in the cytoplasm and upregulates the Akt pathway. In the current study, to identify 
Akt activators, ligand-based approaches like 2D QSAR, shape, and pharmacophore-based screening were used, followed 
by structure-based approaches such as docking, MM-GBSA, ADME prediction, and MD simulation. The top twenty-five 
molecules from the Asinex gold platinum database found to be active in most 2D QSAR models were used for shape and 
pharmacophore-based screening. Later docking was performed using the PH domain of Akt1 (PDB: 1UNQ), and 197105, 
261126, 253878, 256085, and 123435 were selected based on docking score and interaction with key residues, which were 
druggable and formed a stable protein–ligand complex. MD simulations of 261126 and 123435 showed better stability and 
interactions with key residues. To further investigate the SAR of 261126 and 123435, derivatives were downloaded from 
PubChem, and structure-based approaches were employed. MD simulation of derivatives 12289533, 12785801, 83824832, 
102479045, and 6972939 was performed, in which 83824832 and 12289533 showed interaction with key residues for a 
longer duration of time, proving that they may act as Akt activators.

Keywords Pharmacophore modeling · Fingerprint-based 2D QSAR · Shape-based screening · Akt activator · Molecular 
dynamic simulation

Introduction

Protein kinase B (Akt) is a serine/threonine kinase that lies 
at the nexus of survival and cell death pathways and is cru-
cial in numerous cell signaling systems associated with cell 
growth, division, metabolism, angiogenesis, and apoptosis. 
Akt displays critical metabolic effects, including glucose 
uptake in fat and muscle cells or the subduing neuronal cell 
death. Various diseases, such as Diabetes, cardiovascular, 
and neurological disorders, correlate well with the derange-
ment of Akt-regulated pathways.

The isoforms of Akt, known as Akt1, Akt2, and Akt3, 
are encoded by three separate genes; however, they all 
have a conserved structural domain composed of a kinase 
domain, an N-terminal pleckstrin homology domain (PH 
domain), and a C-terminal regulatory region containing a 
hydrophobic motif [1]. Akt isoforms are expressed differ-
ently in various tissues; the expression of Akt1 is ubiqui-
tous, Akt2 is concentrated in organs that react to insulin, 
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and Akt3 is substantially expressed in the brain and testes 
[2].

Akt pathway activation begins with ligand binding to 
cell surface receptor-like G-protein-coupled receptors 
(GPCRs), receptor tyrosine kinases (RTKs), and insulin 
receptor substrate (IRS), which leads to the phosphoryla-
tion of phosphoinositide 3-kinase (PI3K). Lipids are then 
phosphorylated by activated PI3K on the plasma mem-
brane, leading to the formation of the secondary mes-
senger phosphatidylinositol (3,4,5)-trisphosphate (PIP3) 
from phosphatidylinositol (3,4)-bisphosphate (PIP2). 
Akt is then recruited to the membrane by binding PIP3 
to the PH domain of Akt, which brings about a confor-
mational change required for phosphorylation by 3-Phos-
phoinositide-dependent kinase 1 (PDK1) at T308, and 
full activation is achieved by phosphorylation at S473 by 
mammalian target of rapamycin complex 2 (mTORC2). 
After activation of Akt, it acts on many downstream tar-
gets such as glycogen synthase kinase-3 beta (GSK-3β), 
Bcl-2 agonist of cell death (BAD), Forkhead, and mTOR 
pathways [3].

Akt1 has three domains: the PH domain (5–108), kinase 
(150–408), and AGC-kinase C (409–480) terminal. The 
PH domain has two orthogonal anti-parallel β-sheets 
formed by seven β-strands that are closed by an α-helix at 
the C-terminal at one end and by a β-barrel at the other. 
The β-barrel contains VL1–VL3 variable loops with dif-
ferent sequences and lengths. Phosphatidylinositol-(3,4,5)-
triphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol-
(3,4)-bisphosphate (PtdIns(3,4)P2) head groups bind 
to these loops, forming a highly basic pocket. The Apo 
AktαPH domain forms a complex hydrogen-bonding net-
work centered around ionic interactions between Lys 14, 
Glu 17, Asn 53, and Arg 86, as well as several water mol-
ecules. Upon binding, PtdIns(1,3,4,5)P4 disrupts the net-
work of hydrogen bonds (H-bonds), resulting in the shift 
of Arg 86 (2.3 Å) towards 4-phosphate, Lys 14 (1.2 Å) 
towards 3- and 4-phosphates, and Arg 23 (6.2 Å) towards 
1- and 3-phosphates. There is no change in the position 
of Asn 53, although it binds to the 3- and 4-phosphate 
groups. Acidic Glu 17 is repelled by phosphoinositide 
due to its negative charge, resulting in a conformational 
change of VL1 with backbone shifts at Tyr 18 (2.5 Å). In 
addition, Tyr 18 creates space for 5-phosphate by mov-
ing 5.0 Å away from the binding pocket, preventing steric 
hindrance. The movement of Glu 17 away from the bind-
ing pocket of the ligand enables the movement of Arg 86 
towards 4-phosphate. The VL3 loop undergoes a consid-
erable conformational change, moving up to 7.4 towards 
the phosphoinositide-binding pocket in the complex ligand 
bound compared to its position in the apo structure. The 
conformational shift caused by PtdIns(1,3,4,5)P4 binding 
could be attributed to the migration of Arg 86 at the base 

of VL3 towards 4-phosphate [4]. The structure and func-
tion of the kinase domain and AGC-kinase C-terminal are 
in the supplementary introduction.

Akt is a valuable therapeutic target because it regulates 
the Akt signaling pathway. The discovery of Akt activa-
tors using various strategies, such as high-throughput 
cell-based assays, has led to identifying activators such 
as SC79 [7]. Although it has shown promising activity in 
multiple diseases, such as Diabetes, Alzheimer’s disease, 
ischemia-reperfusion injury, and stroke, the molecule is 
relatively unstable in aqueous environments. Later, while 
studying the mechanism of action of many phytochemi-
cals that help in Diabetes, Bai et al. identified more mol-
ecules that activate Akt, like baicalin [8], puerarin [9], 
chlorogenic acid [10], kaempferol-3-glucuronide [11], and 
quercetin-3-glucuronide [11]. To date, high-throughput 
virtual screening computational techniques have not been 
applied, possibly because of the lack of a crystal structure 
of full-domain Akt1 in the active conformation. Therefore, 
various ligand and structure-based computational tools 
were used for the first time to identify lead molecules that 
may act as Akt activators.

Materials and methodology

Computational studies were performed using the 
Schrödinger suite version 2018–3 for fingerprint-based 2D 
quantitative structure–activity relationship (QSAR) and 
2022–3 for all other studies (Schrödinger, LLC, New York) 
on the Ubuntu platform, using tools such as Ligprep, Can-
vas, Phase, shape screening, protein preparation wizard, 
GLIDE, WaterMap, and Desmond.

Protein selection and preparation

The PH domain of Akt1 (PDB ID:1UNQ), which binds to 
inositol 1,3,4,5-tetrakisphosphate, is the only crystal struc-
ture available in which the PH domain of Akt1 is in its active 
conformation; therefore, the same PDB was used for this 
study. The crystal structure of 1UNQ was downloaded from 
the RCSB website (http:// www. rcsb. org/) and processed 
using Protein Preparation Wizard [12]. First, missing hydro-
gen bonds and amino acid residues were added, and the ioni-
zation state of the het group was generated at pH 7.5 ± 0.2. 
In the second step, PROPKA H-bonds were assigned and 
optimized; subsequently, all water molecules in the protein 
structure were removed. Finally, the lowest energy level of 
the prepared protein structure was generated by minimizing 
the optimized potential for the liquid simulation (OPLS3e) 
force field.

http://www.rcsb.org/
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Ligand preparation and phase database creation

In this study, the Asinex gold platinum collection (305,168 
molecules) from the Asinex database was downloaded, 
which contains a historical compound that provides diverse 
and cost-effective molecules with drug-like properties in 
accordance with Lipinski’s Rule of Five. After importing the 
molecules, they were optimized using the Ligprep tool [13] 
to obtain 3-dimensional structures with an optimized ioniza-
tion state at pH 7.5 ± 0.2. The chirality of these molecules 
was determined using 3D structures, and energy minimiza-
tion was performed using the OPLS3e force field.

For various ligandbased approaches, such as pharma-
cophorebased ligand screening and shapebased screening, 
phase database was created using prepared molecules with-
out any ligand filter by generating a target number of con-
formers up to 800.

Fingerprint‑based 2D QSAR modeling

Canvas module (Schrodinger 2018-3) was used for the 
fingerprint-based 2D QSAR. A complex descriptor known 
as a fingerprint represents the two-dimensional structure of 
molecules. The different fingerprint arrangements generate 
a unique bit pattern for each molecule. The number of bits 
in the fingerprints is fixed and accounts for the connectivity 
between different structural fragments within the molecules. 
The bits represent the presence (1) and absence (0) of certain 
structural features in a bit string, and a hashed bit string is 

formed when all fragments are joined together into a bit 
string.

The active and inactive sets of molecules used in this 
study are listed in Supplementary Table S1. Seven differ-
ent fingerprints were generated: radial, linear, molprint 2D, 
dendritic, atom triplet, atom pair, and topological torsion. 
These fingerprints were employed to develop the Bayer clas-
sification model by categorizing IC50 as active as one and 
inactive as zero, the Y variable was selected as the IC50, and 
the X variable was selected as a binary property. The test 
set of inactive molecules (SC7, SC12, SC16, SC18, SC23, 
and SC28) was kept constant; however, the active test set 
was changed, as shown in Table 1, and the remaining ligand 
was used in the training set. After building the model, it was 
tested, and the model with 0 incorrect predictions was used 
to screen databases after generating binary properties.

Shape‑based virtual screening

For shape screening [14], known Akt activators such as ino-
sitol 1,3,4,5-tetrakisphosphate, chlorogenic acid, puerarin, 
baicalin, SC79, kaempferol-3-glucuronide, and quercetin-
3-glucuronide were used as a template to screen the phase 
database using pharmacophore-type volume scoring.

This approach uses phase feature definitions to map phar-
macophore sites to a structure, with each site represented by a 
two-angstrom hard sphere. This technique does not imply any 
specific pharmacophore model, as all sites in each structure 
are encoded into the shape, not just those essential for binding 

Table 1  List of models built using different combinations of active 
ligands in the test set where 1—inositol 1,3,4,5-tetrakisphosphate, 
B—baicalin, C—chlorogenic acid, P—puerarin, K—kaempferol-3-O-

glucuronide, Q—quercetin-3-O-glucuronide; Green color denotes 
models in which they were no incorrect prediction and red color mod-
els with wrong prediction
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to a particular target. Shape screening identifies many triplet 
pairs with similar geometries and local environments in the 
template and database structures. It then superimposes them 
based on the least-squares alignment of each pair of triplets 
using the triplet-based alignment; the superposition with the 
highest shape similarity is refined by realigning additional 
pairs of atoms/sites within 0.5 Ǻ of each other.

Pharmacophore modeling and virtual screening

Protein–ligand complex‑based pharmacophore

PDB 1UNQ contains the PH domain of Akt1 bound to ino-
sitol 1,3,4,5-tetrakisphosphate; therefore, the prepared pro-
tein–ligand complex was used for e-pharmacophore [15] 
generation using the phase module. The e-pharmacophore 
generates a hypothesis based on the complementarity of 
receptor and ligand features. The automatic mode was used, 
in which Glide XP scoring terms were used to determine 
which features contributed the most to the binding.

Multiple ligand‑based pharmacophores

For multiple ligand-based pharmacophores, the phase pro-
gram identified the pharmacophore features of each ligand. 
Common properties are sought to satisfy the requirements 
for their locations and orientations to create pharmacophore 
hypotheses. The hypotheses were scored based on geometric 
alignment and their ability to retrieve actives from a set of 
decoys and can be penalized to match inactive molecules. To 
develop the hypothesis for Akt1 activators, molecules that 
bind to the PH domain of Akt1, such as inositol 1,3,4,5-tet-
rakisphosphate, chlorogenic acid, puerarin, baicalin, SC79, 
kaempferol-3-glucuronide, and quercetin-3-glucuronide 
were used. The best fit and common features method was 
used, the target number of conformers for molecules was set 
at 800, and the hypothesis matched at least 80% of actives 
and had 4-5 pharmacophore features such as hydrogen bond 
donor, hydrogen bond acceptor, aromatic ring, negative 
ionic, positive ionic, and hydrophobic.

The phase database was screened using pharmacoph-
ore-based models in the Schrödinger PHASE module to 
find Akt1 activators with the desired chemical properties. 
For multiple ligand-based pharmacophores, compounds 
had to match at least four sites; for the protein–ligand 
complex-based e-pharmacophore hypothesis, the mini-
mum match requirement was three sites. The phase fit-
ness score, which evaluates how well compounds match 
the chemical properties of the pharmacophore sites based 
on vector alignments, volume terms, and root mean square 
deviation (RMSD) site matching, was used to rank the 
final hits from virtual screening.

Molecular docking and binding free energy 
calculation

After performing various ligand-based approaches, such as 
shape-based screening, pharmacophore-based screening, 
and fingerprint-based 2D QSAR, a list of molecules that 
were found to be active using most models was created and 
considered for molecular docking.

The Glide module was used for molecular docking [16], 
and a grid was generated centroid to the inositol 1,3,4,5-tet-
rakisphosphate of 20 Å size. Using the generated receptor 
grid, the inbound ligand was redocked to validate the dock-
ing protocol by calculating the RMSD of the pose generated 
after docking compared to the pose in the crystal structure. 
After validation, the top twenty-five molecules were docked 
using extra precision (XP) docking. The docked molecules 
were then analyzed for their interaction patterns and docking 
score. The top five molecules obtained from molecular dock-
ing were selected for molecular mechanics generalized born 
surface area (MM-GBSA), which provides binding energy 
to the protein–ligand complex. The prime MM-GBSA mod-
ule was used to determine the ligand-binding energies and 
ligand-strain energies for the top five molecules shortlisted 
in the docking studies. The OPLS3e force field and VSGB 
solvent model were used, while the molecules and recep-
tors were obtained from the project table and workspace, 
respectively. Since the MM-GBSA binding energies are 
approximate free energies of binding, a lower value (kcal/
mol) indicates stronger binding.

Predicted pharmacokinetic property

The QikProp module was used to predict the absorption, 
distribution, metabolism, and excretion (ADME) charac-
teristics of the selected top five molecules. To assess the 
drug-likeness of the chosen molecules, several properties 
and descriptors were predicted which includes molecular 
weight, predicted central nervous system activity, pre-
dicted aqueous solubility, predicted octanol/water parti-
tion coefficient, predicted apparent Caco-2 permeability, 
predicted brain/blood partition coefficient, QPlogKhsa,/ 
Lipinski rule of 5, and predicted human oral absorption.

Molecular dynamics simulation

MD simulations [17, 18] were performed for all five hit 
molecules selected after extra precision docking. The 
Desmond module was used to generate periodic bound-
ary conditions of orthorhombic shape with a size of 
10 × 10 × 10 Å from the surface of the protein complex and 
solvated using the simple point charge water model (SPC) 
as a predefined solvent model. The system was neutralized 
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by adding sodium and chloride ions to maintain the iso-
osmotic condition and minimized for 100 ps using a 1.0 
(kcal/mol/Å) convergence threshold and 2000 maximum 
iterations. In the final step, the minimized solvated system 
was used for running the MD simulation at the normal 
pressure (1.01 bar) and temperature (300 K) ensemble for 
100 ns. After the simulation, a simulation interaction dia-
gram was generated to analyze the MD results, such as 
the plot for the protein–ligand RMSD and protein–ligand 
contacts during the simulation.

Result and discussion

Fingerprint‑based 2D QSAR modeling

After building various fingerprint-based 2D QSAR models, 
as discussed in Sect. 2.3, models that can accurately pre-
dict the active and inactive molecules in the test set were 
selected. Of the 147 models generated, only 87 could pre-
dict the test set of molecules without any error tabulated in 
Table 1 and were therefore used to predict the activity of 
305,168 database molecules. After predicting the activity, 
the top twenty-five molecules found to be active using most 
models were enlisted in Table 2. Out of the top twenty-five 
molecules, only seven molecules, 109586, 115183, 125036, 
142354, 197105, 253878, and 256085, were predicted to be 
active in all 87 models.

Shape‑based virtual screening

The top twenty-five molecules obtained from fingerprint-
based 2D QSAR were screened using known Akt activa-
tors, as discussed in Sect. 2.4. The shape sim score for the 
selected molecules is listed in Table 3. Of the twenty-five 
molecules, 133,584 showed the highest score in the five 
models obtained from quercetin-3-glucuronide (shape sim-
0.3638), puerarin (shape sim-0.471), kaempferol-3-glucuro-
nide (Shape sim-0.339), inositol 1,3,4,5-tetrakisphosphate 
(shape sim-0.421), and baicalin (shape sim-0.501), in the 
other two models chlorogenic acid (shape sim-0.285) and 
SC79 (shape sim-0.349) it had lower scores than the other 
molecules.

Pharmacophore modeling and virtual screening

Protein–ligand complex‑based pharmacophore

The model generated by this methodology has three accep-
tor groups, A8, A11, and A15, which are aligned with the 
three phosphate groups of inositol 1,3,4,5-tetrakisphosphate, 

which is the ligand bound to the PH domain of Akt1 (Fig-
ure 1). The A15 is 5 Å apart from A8, A15 is 10.42 Å apart 
from A11, and A11 is 8.46 Å apart from A8. Among the 
top twenty-five selected molecules, only five showed simi-
larities with the generated model, of which 133584 (fitness 
score—2.214) showed the highest fitness score, which also 
showed the highest shape similarity score in the shape-based 
screening approach. Other molecules that emerged as hits in 
this model were 115183 (fitness score—2.144), 109586 (fit-
ness score-1.997), 12931 (fitness score—1.932), and 132665 
(fitness score—1.768). The fitness score of all twenty-five 
selected molecules has been tabulated in Table 3.

Multiple ligand‑based pharmacophore

Ten models were generated for multiple ligand-based phar-
macophores (Table S2). Pharmacophore models were ranked 
according to the phase hypo score, among which AAAD_3, 
AAAD_5, and AAAD_9 had the highest phase hypo score 
of 1.17, but AAAD_5 had the highest BEDROC score of 
0.85 among the three models; therefore, they were selected 
for screening. The model has three acceptor groups (A2, A3, 
and A5), and one donor group D15, as shown in Figure 2. 
The distance between the acceptor groups was less than 
4 Å compared to the model obtained from Protein–ligand 
complex-based pharmacophore. It had a donor group aligned 
to the hydroxyl group in inositol 1,3,4,5-tetrakisphosphate. 
After the screening of the top twenty-five selected mole-
cules, only nine molecules showed similarities to that of 
the model, out of which three molecules had fitness scores 
of more than 1.5, which are 109586 (fitness score—2.338), 
115183 (fitness score—1.9), 126004 (fitness score—1.724). 
109586 were positive in 86 models generated by fingerprint-
based 2D QSAR and had a high score for protein–ligand 
complex-based pharmacophores.

Molecular docking and binding free energy calculation

After performing extensive ligand-based approaches such 
as fingerprint-based 2D QSAR, shape-based screening, and 
pharmacophore-based virtual screening, the top twenty-five 
molecules were selected for molecular docking. The crystal 
structure of the full-domain Akt1 structure is required to per-
form structure-based approaches, which is currently unavail-
able in the active conformation. The only crystal structure of 
Akt1 in the active conformation is 1UNQ, which is the PH 
domain of Akt1 bound to inositol 1,3,4,5-tetrakisphosphate. 
Although the structure and ligand binding to the PH domain 
changes in the presence of other domains, owing to the lack 
of availability of the full-domain crystal structure, 1UNQ 
was selected for further structure-based approaches. Before 
docking the selected molecules, the generated grid was vali-
dated by redocking the inbound ligand, and the RMSD was 
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found to be 1.455 (Fig. 3). Next, selected molecules and 
known activators, such as baicalin, puerarin, chlorogenic 
acid, kaemferol-3-glucuronide, and quercetin-3-glucuronide, 

were docked into the pocket. Chlorogenic acid showed the 
highest score (− 6.829 kcal/mol) among the known acti-
vators. Among the selected molecules, 197105 showed the 

Table 2  List of top twenty-five molecules selected based on Fingerprint-based 2D QSAR
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Table 2  (continued)
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Table 2  (continued)
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highest score of − 4.978 kcal/mol, showing interactions with 
Lys 14, Arg 23, Arg 25, and Asn 53. Other molecules, such 
as 197105, 261126, 253878, 256085, and 123435, had bind-
ing affinities between − 4.876 and − 4.605 and interacted 
with key residues. The docking score, binding energy, and 
2D interaction diagram of the known activators and selected 
molecules have been tabulated in Table S4 and Table 4, 
respectively.

Using Prime-MM-GBSA, the binding energies for the 
ligand were calculated, indicating the stability of the pro-
tein–ligand complex created during docking. The bind-
ing energy of the known activator ranged from − 40.96 to 
− 26.38 kcal/mol, among which quercetin 3-O-glucuronide 

had the highest binding energy of − 40.96 kcal/mol and 
SC79, the lowest of − 26.38 kcal/mol. For the selected 
molecule, 123,435 had the highest binding energy of 
− 39.89 kcal/mol, but in molecular docking, it showed the 
lowest dock score (− 4.605 kcal/mol) among the selected 
molecules.

Predicted ADME properties

The top five molecules, 123435, 197105, 253878, 256085, 
and 261126, were selected based on docking score, binding 
energy, and binding interaction with key residues and were 
subjected to ADME analysis using the Qikprop module. 

Table 3  List of top 25 ligands selected after 2D QSAR based on the number of models in QSAR in which it was predicted as active ligand, 
Shape similarity score, fitness score obtained after screening with shape-based screening, and pharmacophore models, respectively
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ADME properties included molecular weight, QPlogPo/w, 
QPlogS, rule of five, QPPCaco, percentage human oral 
absorption, CNS, and QPlogBB, tabulated in Table  4. 
All molecules have molecular weights within the accept-
able range of 200–500 Daltons, QPlogPo/w, representing 
the partition between octanol and water, and values within 
the acceptable range of − 2 to 6.5. The predicted aqueous 
solubilities (QPlogS) were 6.5–0.5. None of the molecules 
violated any of these five rules. Except for 197105, all mole-
cules had good permeability through QPPCaco and percent-
age of human oral absorption. All molecules had QPlogBB 
permeability within an acceptable range, but the predicted 
CNS activity was negative.

Molecular docking and binding free energy calculation 
of derivatives

After performing MD simulation of the top five molecules 
123435, 197105, 253878, 256085, and 261126 selected after 
the ligand-based screening, molecular docking, MM-GBSA, 
and MD simulation were performed, and the results have 
been discussed in Sect. 3.7. After MD simulation, it was 
found that molecules 261126 and 123435 were more stable 
and had many interactions with key amino acid residues like 
Lys 14, Arg 23, Arg 25, Asn 53, and Arg 86. To further 
explore the effect of substitution on the scaffold of 261126 
and 123435 in the ability to bind and form a stable complex 
with PH domain of Akt1 derivatives and to identify more 
potent Akt activator, derivatives were searched for 261126 
and 123435 molecules by using PubChem database. The 
261126 molecule had 664 derivatives, and the 123435 mole-
cule had 55 derivatives. These derivatives were downloaded, 

prepared into the 3D structure, and docked in 1UNQ pocket, 
and the top five molecules based on docking score were 
selected (Table 4). The docking score of the derivatives was 
more than − 4.978 kcal/mol, which was the highest for mol-
ecules identified from the Asinex gold platinum database. 
The docking score for 12289533 was − 6.3 kcal/mol, the 
highest among the derivatives and selected molecules. The 
binding energy of the derivatives was also much better than 
that of the selected molecules from the database, the highest 
being − 76.71 kcal/mol for 12289533. The derivatives also 
have druggable properties, as shown in Table 5. Finally, five 
derivatives, 12289533, 12785801, 83824832, 102479045, 
and 6972939, were chosen for MD simulation.

Molecular dynamic simulation analysis

The results of MD simulation have been illustrated for 
123435 and 261126 and their derivatives like 12289,533, 
12785801, 83824832, and 6972939 in Fig. 4 and Fig. 5 and 
discussed below. Other selected molecules like 197105, 
253878, 256085, and 102479045 (derivative of 123435) 
were performed, but due to inadequate results, they have 
been not discussed in the manuscript but have been illus-
trated in Fig. 1S and Fig. 2S.

The protein 1UNQ–ligand 261,126 complex system was 
used for the simulation contained 6408 molecules of water, 
and the charge of the system was neutralized with two coun-
ter sodium ions. During the MD simulation, all the crucial 
XP interactions were observed along with the other inter-
actions (Tyr 18 and Ile 19). However, loss of salt bridge 
with Lys 14 was observed, which was present in XP docking 
results. The system was stable for 60 ns with RMSD ranging 

Fig. 1  Protein–ligand complex-based pharmacophore model obtained by using 1UNQ
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from 4.5 to 7.5 Ǻ, after 60 ns RMSD fluctuated up to 12 Ǻ. 
Till 60 ns, a strong H-bond and water bridge interactions 
were retained with Lys 14, Arg 25, and Asn 53. However, the 
change in the RMSD after 60 ns might have occurred due to 
the loss of H-bond and water bridge interactions with three 
crucial amino residues, Lys 14, Arg 25, and Asn 53. There-
fore, new derivatives of the 261,126 ligand were identified 
(83,824,832, 12,785,801, 12,289,533) and subjected to the 
MD simulation to acquire the most potent Akt activators.

Derivative of 261,126 ligand bearing 10-oxo-
10H-pyrano[2,3-f]-8-carboxylate substitution (12289533) 
was selected for simulation study employing 1UNQ protein 
and 12289533 ligand complex. A fluctuation in the pro-
tein was observed till 60 ns, with the RMSD value ranging 
from 3 to 7.5 Ǻ. After 60 ns, the system stabilized, and the 
RMSD value of protein and ligand was found to be 3.5 and 
5 Ǻ, respectively. A drift in the RMSD value till 60 ns was 

Fig. 2  Multiple ligand-based pharmacophore model aligned with known activators like a inositol 1,3,4,5-tetrakisphosphate. b chlorogenic acid. c 
puerarin. d baicalin. e SC79. f kaempferol-3-glucuronide. and g quercetin-3-glucuronide respectively

Fig. 3  Superimposition of docked (green) and co-crystallized ligand 
(pink) pose of inositol 1,3,4,5-tetrakisphosphate of 1UNQ PBD for 
validating of docking protocol, the observed RMSD was 1.455
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exhibited by the loss of strong H-bond and water bridge 
interactions with Arg 23, Arg 25, and Asn 53 residues. How-
ever, the system was stabilized after 60 ns due to H-bond 
and water bridge interactions between ligand and protein 
amino residue, Arg 25. Lys 14 and Arg 86 residues have 

contributed to the overall stability of the simulation sys-
tem by retaining the H-bond and water bridge interactions 
throughout the simulation. Interaction with Arg 86 residue 
was pertained by the carboxylate group of the pyran ring 
system, which has not appeared in the case of the 261,126 

Table 4  2D interaction diagrams of the top five lead molecules selected after molecular docking and derivatives of 261126, 123435 with a sum-
mary of docking score, binding energy, and all non-bonding interactions
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ligand simulation system. Therefore, the system was rela-
tively stable in comparison with the 261,126 ligand. How-
ever, it was subordinate in comparison to the 83,824,832 
ligand. This might be due to the loss of H-bond and water 
bridge interaction with Arg 23, Arg 25, Asn 53, Glu 17, Tyr 
18, and Ile 19 residues. The results of the 1UNQ-12289533 
complex system revealed that the selected compound might 
show more potency as an Akt activator in line with 261126 
ligand. Therefore, it should be selected for future studies to 
interpret its potency towards Akt activation.

Another derivative of 261,126 ligand bearing 3-methyl 
carboxylate substitution along with the 6,8-dichloro group 

on the 4-oxo-4H-chromene-2-carboxylate scaffold is enti-
tled 12,785,801. The selected ligand was subjected to 100 ns 
simulation. The fluctuation in the RMSD was reported 
throughout the simulation. However, the system stabilized 
between 65 and 95 ns during the simulation period. After 
95 ns RMSD value fluctuated up to 10.5 Ǻ. The alteration 
in the system might be reported due to the introduction of 
the methyl carboxylate group at the 3rd position, as it led 
to ligand fluctuation. Besides this, inconsistent H-bond and 
water bridge interactions of the ligand with Asn 53 and 
Arg 86 might lead to a significant drift in the RMSD value 
throughout the simulation.

Table 4  (continued)
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Protein (1UNQ)–ligand complex of 83,824,832 deriva-
tives of 261,126 was subjected to 100 ns simulation. The 
system comprises 6394 molecules of water and 986 mol-
ecules of heavy atoms. Three counter ions of sodium neu-
tralized the charge of the system. The protein–ligand com-
plex was stable throughout the simulation compared to the 
261126 ligand with RMSD values 2.2 and 3.2 Ǻ, respec-
tively. A slight drift was observed between 20 to 40 ns, but 
the RMSD deviation was less than 3 Ǻ which is well within 
the acceptable range. Stability to the 83824832 ligand sys-
tem was contributed by introducing the 3-oxide group in 
the 261,126 ligand composed of the 4H-chromene-2-car-
boxylate scaffold, illustrated in Table S4. The introduction 
of the oxido group at the 3rd position helped to retain all the 
crucial H-bond and water bridge interactions with Lys 14, 
Arg 23, Arg 25, and Asn 53 residues. Besides, the system 
also maintained additional H-bond and water bridge interac-
tions with Glu 17, Tyr 18, and Ile 19 residues which might 
also provide stability to the complex. The overall stability of 
the complex exhibited that 83824832 could act as a potential 
activator for Akt.

MD simulation study was conducted for the 123,435 
ligand, which has phenyl, hydroxy, and propanoate groups 
substituted at the 2nd, 5th, and 7th positions of the 4-oxo-
4H-chromene moiety. The protein–ligand complex system 
was stable throughout the simulation as per the RMSD plot. 
However, the RMSD value of the protein and ligand was 
found to be 3.8 and 7 Ǻ, respectively. A significant differ-
ence in the protein and ligand RMSD value was observed 
due to the introduction of the phenyl group at the 2nd posi-
tion, which led to the contribution of high ligand fluctuation. 
Besides this, introducing the phenyl group also contributed 
to the loss of H-bond and water bridge interactions with 

crucial amino acid residues, such as Lys 14, Asn 53, and 
Arg 86.

Another simulation study was executed for 6,972,939, 
a derivative designed from the 123,435 ligand with 1UNQ 
protein to identify potent lead as an Akt activator. The ligand 
comprises 2-phenyl and 5,7-bis(oxy)dipropionate substitu-
tion on the 4-oxo-4H-chromene scaffold. In this simulation 
study, 1UNQ-6972939 complex system composed 6500 
water molecules and 986 heavy atom molecules. Three 
counter sodium ions neutralized the charge of the complex. 
RMSD of protein and ligand was found to be 3.5 and 7.5 Ǻ. 
A drift in the RMSD value was observed from 0 to 50 ns, 
and the system was stabilized after 50 ns. The ligand has 
retained most of the crucial H-bond and water bridge inter-
actions with Lys 14, Arg 23, Arg 25, Asn 53, and Arg 86 
residues. However, a high RMSD value was reported for pro-
tein and ligand. The reason behind this might be the ligand 
fluctuation due to the introduction of the phenyl group at 
the 2nd position. The Phenyl group at the 2nd position led 
to a significant fluctuation in ligand RMSF value. Therefore, 
this ligand could be subjected to further studies with lead 
optimization to acquire potent Akt activators.

The simulation revealed that 83824832 and 12289533 
could be potential lead compounds as Akt activators in 
the PI3K/Akt pathway. The study also predicted approxi-
mately the SAR (Structure–activity relationship) of the 
compounds bearing 4-oxo-4H-chromene moiety. The sub-
stitution of electron-withdrawing groups (EWG) might be 
favorable at the 2nd position, like the carboxylate group in 
261126, 83824832, and 12289533, instead of the electron 
donating group (EDG) like phenyl in 123435 and 6972939 
ligands for 4-oxo-4H-chromene moiety as Akt activator. 
Small EWD groups (like oxido groups) might be favorable 
for activity at 3rd position. Substitution of the halogen 

Table 5  predicted ADME of the top five lead molecules by using various parameters like solubility, partition, toxicity, absorption, and drugga-
bility

ID assigned Molecular weight QPlogPo/w QPlogS Rule of five QPPCaco % Human oral 
absorption

CNS QPlogBB

197105 162.145 − 1.005 0.257 0 6.008 35.001 − 2 − 1.63
261126 224.6 1.347 − 2.45 0 62.898 67.022 − 1 − 0.728
253878 202.157 2.747 − 2.479 0 405.519 89.709 − 1 − 0.096
256085 198.194 2.746 − 2.553 0 373.013 89.055 − 1 − 0.31
123435 326.305 3.486 − 4.608 0 46.493 77.2 − 2 − 1.471
Derivatives of 261,126
 12289533 336.642 0.34 − 2.776 0 0.678 25.912 − 2 − 2.183
 12785801 317.082 1.869 − 3.232 0 4.981 50.37 − 2 − 1.221
 83824832 240.599 1.422 − 2.905 0 31.329 62.047 − 2 − 1.075

Derivatives of 123,435
 102479045 816.725 1.997 − 4.521 3 0.145 0 − 2 − 4.949
 6972939 398.368 2.939 − 4.004 0 5.888 57.933 − 2 − 1.828
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group at the 6th position might favor activity. However, 
substitution at the 5th and 7th positions might be unfavora-
ble for the activity. Hence, the study will help to design the 
most potent Akt activators of the 4-oxo-4H-chromene scaf-
fold using computational lead optimization approaches.

Conclusion

The Akt pathway, which lies at the nexus of survival and 
cell death pathways, has been explored for many diseases 
like stroke, Alzheimer’s, Parkinson’s, and Diabetes. Still, 
only a few molecules like SC79 have been proven as Akt 

Fig. 4  RMSD plots of protein and ligand complex after MD simulation for 100 ns
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activators. SC79 has been studied for its effect on AD and 
stroke, which is relatively unstable in the aqueous environ-
ment, so it is impossible to develop as a drug molecule. 
Other known molecules like baicalin, chlorogenic acid, 
puerarin, kaempferol-3-glucuronide, and quercetin 3-glucu-
ronide have been proven to bind to the PH domain of Akt1. 
However, they have not been studied thoroughly for their 
effect on Akt kinase and explored for other diseases as Akt 
activators.

In the present study, we have identified lead molecules 
that can act as Akt activators for the first time using com-
putational tools like ligand-based and structure-based 
approaches. At first, a ligand-based approach like fin-
gerprint-based 2D QSAR was used in which known Akt 

activators (like inositol 1,3,4,5-tetrakisphosphate, baicalin, 
chlorogenic acid, puerarin, kaempferol-3-glucuronide, and 
quercetin 3-glucuronide) and known inactive molecules 
were used to build 147 fingerprint-based 2D QSAR mod-
els. Of these, only 87 models predicted the active and inac-
tive without error. Further, these 87 models predicted the 
activity of 305,168 molecules obtained from the Asinex gold 
platinum database. After that, the top twenty-five molecules 
found to be active using most of the fingerprint-based 2D 
QSAR models were selected. Shape-based models were 
built using known activators, pharmacophore models were 
built using 1UNQ PDB, and known activators were used to 
screen the top twenty-five molecules. After fingerprint-based 
2D QSAR, shape-based screening, and pharmacophore 

Fig. 5  2D interaction diagram, protein–ligand contacts, and timeline representation of the interactions for 100 ns MD simulation in which green 
represents H-bonds, pink represents an Ionic bond, blue represents a water bridge, and gray represents hydrophobic interaction
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structure-based approaches were used, docking with the PH 
domain of Akt1 (1UNQ PDB) was done. In which top five 
molecules were selected based on docking score and interac-
tion with key amino acid residues like Lys 14, Arg 23, Arg 
25, Asn 53, and Arg 86. The binding energy and ADME 
properties were predicted for the top five molecules. Further, 
an MD simulation was performed to prove that the selected 
top five lead molecules bind to the PH domain of Akt1. In 
MD simulation, two molecules, 123435 and 261126, were 
more stable and interacted with key residues longer than 
other selected molecules.

To study the effect of substitution on scaffold and to iden-
tify better Akt activator derivatives of 123435 and 261126 

were searched on PubChem and Molecular docking, MM-
GBSA and ADME prediction was performed. Finally, MD 
simulation of 12289533, 12785801, 83824832, 102479045, 
and 6972939 was performed in which 83824832 and 
12289533 were found to be the most stable with showing 
interaction with key residues for a longer duration of time 
throughout the simulation. Therefore, based on the research 
work, we have identified two lead molecules, 83824832 and 
12289533, which may act as Akt activators by binding to 
the PH domain and promoting phosphorylation of Akt in 
the cytoplasm. For further validation, in-vitro and in-vivo 
experiments should be performed to confirm its activity as 
Akt activators.

Fig. 5  (continued)
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