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Abstract
N-methyl-D-aspartate receptors (NMDARs) play essential roles in vital aspects of brain functions. NMDARs mediate clinical 
features of neurological diseases and thus, represent a potential therapeutic target for their treatments. Many findings impli-
cated the GluN2B subunit of NMDARs in various neurological disorders including epilepsy, ischemic brain damage, and 
neurodegenerative disorders such as Parkinson’s disease, Alzheimer’s disease, Huntington’s chorea, and amyotrophic lateral 
sclerosis. Although a large amount of information is growing consistently on the importance of GluN2B subunit, however, 
limited recent data is available on how subunit-selective ligands impact NMDAR functions, which blunts the ability to render 
the diagnosis or craft novel treatments tailored to patients. To bridge this gap, we have focused on and summarized recently 
reported GluN2B selective ligands as emerging subunit-selective antagonists and modulators of NMDAR. Herein, we have 
also presented an overview of the structure–function relationship for potential GluN2B/NMDAR ligands with their binding 
sites and connection to CNS functionalities. Understanding of design rules and roles of GluN2B selective compounds will 
provide the link to medicinal chemists and neuroscientists to explore novel neurotherapeutic strategies against dysfunctions 
of glutamatergic neurotransmission.
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Introduction

Amino acid glutamate (Glu) mediates most excitatory 
neurotransmission in the brain and spinal cord [1]. Glu 
belongs to a characteristic excitatory neurotransmitter for 
the mammalian central nervous system (CNS). Upon axon 
firing, Glu is released into the synaptic cleft and binds to 
presynaptic and postsynaptic Glu-activated receptors to 
initiate neuronal response [2, 3].

Glu-activated receptors belong to two main classes (a) 
ionotropic Glu receptors (iGluRs), responsible for the fast 
signal transmission; and (b) metabotropic Glu receptors 
(mGluRs), producing slower signal transduction through 
secondary messenger systems [1, 2].

Glu acts through iGluRs by forming cation-permea-
ble ion channels and divided into three important sub-
groups based on ligand selectivity studies: (1) α-amino-
3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) 
receptors (GluA1 through GluA4), (2) kainic acid (KA) 
receptors (GluK1 through GluK5), and (3) NMDARs [3, 
4]. Thus, overstimulation of the glutamatergic neurotrans-
mission and unchecked activation of Glu receptors have 
significant relevance in the clinical manifestations of CNS 
diseases [5, 6].

NMDAR subunit composition and their operation 
in CNS

NMDARs are Glu-gated ion channels with a critical role in 
neurological processes [6]. Heterotetrameric NMDAR con-
sists of four subunits. Different NMDAR subunits have been 
cloned into three types: (1) two subunits of glycine-binding 
GluN1, (2) two subunits of Glu-binding GluN2, and/or (3) 
GluN3 subunits. GluN1 subunit has eight splice variants 
(GluN1a-h), the GluN2 subunit is encoded by four differ-
ent genes (GluN2A through 2D), and the GluN3 subunit 
is encoded by two different genes (GluN3A and GluN3B). 
Each subunit consists of an amino-terminal domain (ATD), 
ligand-binding domain (LBD), transmembrane domain 
(TMD), and intracellular carboxy-terminal domain (CTD). 
Binding sites for endogenous agonists Glu and glycine are in 
GluN1 and GluN2 (or GluN3) subunits [7–9]. Binding sites 
for phencyclidine [1-(1-phenyl cyclohexyl) piperidine, PCP] 
and Mg2+ are also located within the ion channel. ATD have 
binding sites for Zn2+, H+, polyamines, and ifenprodil [10].

NMDAR has characteristic features that leads to its 
importance in several neurological disorders (Fig.  1). 
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These features includes (1) two endogenous agonists (Glu 
and glycine) for opening of the ligand-gated ion channel; 
(2) Mg2+ ions block the ion channel at resting membrane 
potential, which is removed by depolarization of the sur-
rounding membrane; (3) extraordinary alliance between the 
agonism of Glu–glycine and voltage-dependent Mg2+ block-
ade results in the development of neuronal connections; (4) 
control over the influx of Ca2+ ions; and (5) several binding 
sites for ligands to modulate opening state of the ion chan-
nel [7–12].

Under physiological conditions, NMDARs mediates slow 
Ca2+ permeable synaptic current by binding to endogenous 
ligand Glu and co-agonist glycine, when voltage-dependent 
block by extracellular Mg2+ is relieved. Ca2+ ions have bene-
ficial effects on neuronal development in the CNS. However, 
overstimulation of NMDARs causes increased transmem-
brane flux of Ca2+, leading to neuronal death characterized 
by a progressive decline in cognition functions [13–17].

Elevated Ca2+ concentration through an opening of 
NMDARs also leads to excitotoxicity by increasing the 
concentration of neurotransmitter Glu. Excitotoxicity has a 
crucial role in the development and progression of neurode-
generative disorders such as epilepsy, Alzheimer’s disease 
(AD), Parkinson’s disease (PD), and other multiple CNS 
disorders [17–23].

An involvement of NMDARs in the process of excitotox-
icity supports the hypothesis that a blockade or modulation 
of receptor results in neuroprotective effects and develop 
subunit selective probes to treat multiple CNS diseases. 
Thus, NMDARs represents a promising target for develop-
ment of novel neurotherapeutic tools for the treatment of 
neurological diseases.

Role of NMDAR in neurodegenerative 
disorders

Alzheimer's disease

AD is a complex multifactorial neurodegenerative disor-
der characterized by inevitable loss of memory, cognitive 
abilities, and eventually an independent living ability [24]. 
By 2020, because of COVID-19, number of fatalities from 
AD increased by 17% [25]. The etiology of AD is not clear 
yet and several pathological events occur during disease 
progression such as amyloid-β (Aβ) deposition, tau accu-
mulation, cellular oxidative stress, acetylcholine depletion, 
dysfunctional autophagy, dysfunction of NMDAR, and a 
neuroinflammation [4, 26–29]. These multifactorial neu-
ropathological conditions lead to the synaptic dysfunction 
and subsequent neuronal death characterized by decline in 
neurocognitive abilities (Fig. 2). Possible neurotherapeutic 
targets involved in the AD are illustrated as Fig. 3.

Role of NMDAR in AD

NMDAR-mediated glutamatergic neurotransmission is 
essential for the synaptic plasticity and neuronal survival. 
Overactivation of NMDARs causes synaptic dysfunction 
by perturbing synaptic Ca2+ handling NMDAR subunits 
(Fig. 4). Thus, alteration in function of NMDAR is one of 
the mechanisms influencing the AD [30, 31].

NMDAR selective ligands as neurotherapeutics for AD

Memantine is the only clinically approved NMDAR 
antagonists and acts by preventing NMDAR-induced exci-
totoxicity. It preferentially functions as an antagonist of 
non-synaptic NMDARs [33, 34]. First GluN2B-selective 
candidate (Ifenprodil), blocks GluN2B receptor-medi-
ated currents and have shown 400-fold lower affinity for 
GluN2A subunit. It proved as a use-dependent, voltage-
independent, and non-competitive antagonist of GluN2B-
NMDAR [28]. Neramexane (an alkyl-cyclohexane ana-
logue) is a non-competitive NMDAR antagonist indicating 
long-term memory enhancement in adult rats analogous 
to the memantine (Fig. 5) [35]. Neramexane is structur-
ally related to a memantine (developed by Merz Pharma), 
acts as a NMDAR antagonist and exhibits neuroprotective 
activities [36]. It also acts through nicotinic acetylcholine 
receptor by antagonizing α9α10 subtype in chronic tin-
nitus and sensorineural hearing loss [36, 37].

Fig. 1   Functional subunits and structure of diheteromeric NMDARs. 
Endogenous agonist glutamate binds to the glutamate binding site; 
glycine and d-serine bind to a glycine modulatory site of NMDARs
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Epilepsy

Epilepsy is a complex neurological disorder resulting in 
an enduring predisposition to engender excessive neuronal 
activity that manifest in seizures. It is the second most 
chronic neurological condition affecting 1% people around 
the globe; however, existing antiepileptic drugs (AEDs) 
target only symptoms rather than the underlying cause [17, 
18, 38].

Epilepsy is connected to alterations in central inhibitory 
γ-aminobutyric acid (GABA) and excitatory glutamatergic 
neurotransmission. Overstimulation of glutamatergic trans-
mission and unchecked activation of Glu receptors have 
significant relevance in the clinical manifestations of epi-
lepsy [39]. AEDs functions mainly by blocking Glu-induced 
excitotoxicity, activating voltage-operated Na+ and/or Ca2+ 

Fig. 2   Neurological events 
occur during progression of 
the AD

Fig. 3   Therapeutic targets involved in the AD

Fig. 4   Overactivation of 
NMDAR leading to AD [32]

Fig. 5   Ligands acting against 
AD through binding with 
NMDAR [33–35]
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channels, activation of K+ channels, and through enhance-
ment of GABA-mediated inhibition (Fig. 6).

Role of NMDARs in epilepsy

NMDARs are activated by binding of the endogenous ligand 
Glu and co-agonist glycine, at their LBDs and removal of 
Mg2+ ion block by slight depolarization of the postsynaptic 
membrane (Fig. 7). Under physiological conditions, receptor 

activation at the NMDAR causes opening of an ion channel 
and permits cationic influx along their concentration gradi-
ent, resulting in membrane depolarization. Because of Ca2+ 
permeability, overactivation of NMDARs causes excitotox-
icity leading to a neurodegeneration, which largely explains 
the role of NMDARs in epilepsy [41].

NMDAR selective ligands for the treatment of epilepsy

Felbamate (a dicarbamate derivative) is a clinically 
approved AED acting as non-competitive GluN2B antago-
nist. The drug is approved by the Food and Drug Administra-
tion for the treatment of focal seizures and Lennox-Gastaut 
syndrome. It inhibits voltage-sensitive Na+/Ca2+ channel 
with potentiation of GABA-induced chloride currents and 
eventual inhibition of NMDAR [42].

Magnesium sulphate is a non-competitive GluN2 
antagonist. Mg2+ enters the brain and influences CNS by 
inhibiting NMDAR. Remacemide is a non-competitive 
GluN2B antagonist and acts as a potential AED with its 
active metabolite (desglycinyl-remacemide). It also acts as 
a voltage gated sodium channel blocker [43]. When used 
alone, remacemide has shown side effects such as vertigo, 
drowsiness, and gastrointestinal symptoms.

Amantadine acts by binding to NMDARs, it increases 
the rate of ion channel closure and useful as an adjunct in 
the treatment of refractory absence seizures (Fig. 8). It also 
acts as a nicotinic antagonist and dopamine agonist. It is 

Fig. 6   Specific targets for 
epilepsy [40]

Fig. 7   Function of NMDAR as an ion channel and mechanism of 
action for functional AEDs [41]

Fig. 8   NMDAR antagonists effective for the treatment of epilepsy [38]
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also used as an antiviral agent for the prophylactic or symp-
tomatic treatment of influenza A [44].

Parkinson disease

PD is a neurodegenerative disease affecting elderly and 
worsen with the time [45]. Inhibition of dopamine synthe-
sis and build-up of Lewy bodies (clumps of abnormal pro-
tein particles) are characteristic symptoms of PD, leading 
to the neuronal death from the substantia nigra [46]. These 
neuromolecular changes results into latent tremor, rigidity, 
and postural instability [47]. Non-motor symptoms includ-
ing cognitive abnormalities, tiredness, and sleepiness also 
considered as comorbidities of PD [43]. Approaches for the 
management of PD are illustrated as Fig. 9.

Role of NMDAR in PD

Glutamatergic transmission plays a distinctive role in the 
pathophysiology of PD. The exacerbation of dyskinesia 
has been related to the hyperphosphorylation and subse-
quent overactivation of NMDARs [49]. Glu and glycine 
bind together to activate NMDAR; antagonists molecules 
interfere with binding of these endogenous ligands to limit 
NMDAR activity.

NMDAR ligands for the treatment of PD

Amantadine and memantine (NMDAR antagonists) are 
used as supplements with other PD treatments. These ana-
logues blocks both acetylcholine and NMDARs, exhibiting 
their crucial role as PD therapeutics. Amantadine (NMDAR 

antagonist) is the only FDA-approved medication for the 
treatment of levodopa related dyskinesia in Parkinson's 
patients and to treat extrapyramidal side effects of medica-
tions. Currently no drugs are available that have significant 
effects on symptoms that develop in the later stages of PD. 
NMDAR ligands can also be used as a neuroprotective that 
slows the disease progression by blocking glutamatergic 
excitotoxicity and stimulating synaptogenesis with neuro-
trophic release [50].

Huntington’s disease

Huntington’s disease (HD) is a neurodegenerative disor-
der characterized by loss of striatal neurons. Huntingtin 
gene located on the short arm of chromosome 4p16.3 and 
is mainly responsible for the HD [51]. Disease predomi-
nantly develops in the middle of life and characterised by 
dementia with undesirable choreatic movements [52]. It is 
a neurological condition passed from one generation to the 
next generation. Figure 10 demonstrates the different targets 
involved in HD [53].

Role of NMDARs in HD

Animal studies showed that injections of kainic or quino-
linic acids produced lesions as seen in HD; supporting the 
hypothesis that NMDA receptor-mediated excitotoxicity 
may play a role in the etiology of disease [53].

For further research into HD, the role of PSD-95 was 
investigated. It is well-known scaffolding protein that binds 
to multiple cytoplasmic proteins, including normal hunting-
tin and GluN2-NMDARs. After binding, it causes receptor 

Fig. 9   Approaches for the man-
agement of PD [48]
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clustering in the post-synaptic membrane to result physi-
ological inhibition of NMDAR activity. Additionally, the 
presence of mutant huntingtin protein causes a disruption in 
PSD-95 binding to NMDARs and resulting in excitotoxic-
ity with ultimately increased neuronal cell death, which is 
consistent with HD [54].

NMDAR ligands in HD

Memantine reduces striatal cell death in PD. There have 
been no studies to evaluate memantine for cognition in HD 
[55]. Amantadine improves channel stability in tight spaces. 
To achieve symptomatic benefit for chorea, high doses of 
amantadine were required. Amantadine shown intolerable 
side effects such as hallucinations, confusion, insomnia, 
sleepiness, agitation, and anxiety at high dose [56, 57]. Rilu-
zole inhibits NMDARs by acting as a GluN2B antagonist. It 
inhibits Glu release from corticostriatal terminals (Fig. 11). 
Riluzole is an approved ligand for the treatment of amyo-
trophic lateral sclerosis and thus, the target of interest for 
treating depression. It also binds to voltage-gated sodium 
channels, thereby prevents the propagation of action poten-
tial and the eventual axonal release of Glu [58]. The drug 
had no effect on chorea, behavioural and cognitive symp-
toms, or functional independence in a large randomized 
3-year study [59].

Ischemic stroke

The blockage of a brain blood vessel causes an ischemic 
stroke and make-up 87% of all strokes. Stroke is the third 
most common cause of disability and second most com-
mon cause of death. In cerebral ischaemia, the decreased 
blood flow to brain causes impairment of neuronal func-
tions leading to the neuronal cell death [60]. Specific 
therapeutic strategies employed to cure ischemic stroke 
are given as Fig. 12.

Complex role of NMDARs in cerebral ischemia

Cerebral ischemia is specifically characterised by limited 
blood flow with reduced amount of oxygen and nutrients 
needed to maintain the ionic homeostasis. Ionic gradient 
disruption depolarizes cells and initiating the release of Glu 
(an excitatory neurotransmitter) into the synaptic cavity. 
Functional reuptake transporters are unable to remove the 
excess Glu due to reduced energy associated with cerebral 
ischemia. Glutamatergic receptors become overactive lead-
ing to excitotoxicity and ultimate ischemic brain injury [60, 
61]. Thus, excitotoxicity is considered as one of the major 
pathogenic mechanisms underlying ischemic brain injury.

NMDARs plays a central role in excitotoxic neuronal 
death caused by ischemic stroke, but NMDAR blockers are 
not yet translated into clinical stroke treatments. However, 
NMDAR-associated signalling complexes has been iden-
tified as an important death-signalling pathways linked to 
NMDARs. Thus, development of ligands specifically regu-
lating NMDAR pathways has received an immense attention 
by neuroscientists to treat cerebral ischaemia.

Distinct role of NMDARs in neuronal survival and death

NMDARs are excessively activated in ischemic stroke 
and initiate toxic cascades that kill neurons. Activation of 

Fig. 10   Therapeutic targets for 
HD [53]

Fig. 11   Riluzole as a GluN2B selective NMDAR antagonist [59]
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NMDARs triggers both pro-survival or pro-death signalling 
pathways depending on subcellular locations or involvement 
of specific subunits of NMDARs. Stimulation of synaptic 
NMDAR results into the activation of pro-survival signalling 
pathways; however, activation of extra-synaptic NMDARs 
is related to pro-death pathways.

Synaptic NMDAR activation induces the expression of 
pro-survival genes and suppression of pro-death genes, even-
tually contributing to pro-survival effects. More specifically, 
synaptic NMDAR activation causes activation of phospho-
inositide-3-kinase (PI3K)/Akt kinase pathway and cAMP-
response element binding protein (CREB) dependent gene 
expression to promote expression of pro-survival genes. 
CREB induced expression of pro-survival genes triggers the 
protection of neurons against apoptotic insults. Activated 
extra-synaptic NMDARs decreases pro-survival signalling 
mediated by synaptic NMDARs, through dephosphoryla-
tion of NMDARs and inactivation of CREB to promote the 
expression of pro-death genes.

Both GluN2A and GluN2B subunits of NMDARs have 
shown characteristic role in the ischemic stroke. GluN2A-
NMDARs are associated with pro-survival effects, whereas 
GluN2B-NMDARs are linked to pro-death signalling com-
plexes. Thus, activation of either synaptic or extra-synaptic 
GluN2B-NMDARs results in excitotoxicity and neuronal 
apoptosis, whereas activation of GluN2A-NMDARs leads 
to neuronal survival and neuroprotection against ischemic 
insults [62–64].

NMDAR ligands in ischemic stroke

The non-competitive NMDAR antagonist (MK801) reduces 
ischemic cell death and prevents the growth of ischemia 

tolerance. Roles of NMDAR ligands in ischemia cell injury 
and ischemic tolerance are diverse (Fig. 13). Licostinel 
functions as a GluN2B antagonist. It is a potent competi-
tive antagonist at the glycine site on the NMDAR. Phase 
II clinical trial have shown agitation, dizziness, conscious 
level depression with gastrointestinal upset for the licosti-
nel. Renal toxicity in animals have prevented further clinical 
development of licostinel [63]. Selfotel is a Glu recognition 
site competitive antagonist of NMDAR. Stroke and trau-
matic brain injury trials have been conducted for the antago-
nist. Selfotel shown side-effects such as agitation, confusion, 
reduced consciousness level, hallucinations, and a hyperten-
sion. Clinical trials were halted due to the increased mortal-
ity. Aptiganel is a non-competitive NMDAR antagonist with 
high ion channel site affinity. Clinical trial was halted due 
to a higher mortality and inadequate therapeutic outcomes. 
Gavestinel acts as a competitive antagonist at the glycine 
site of NMDAR. In the trial, there was no evidence of benefit 
from gavestinel [64].

GluN2B subunit selective ligands for the treatment 
of cerebral ischemia

One of the major underlying causes for failure of NMDAR 
antagonists against cerebral ischemia may be the intricacy 
of NMDAR signalling. Given the roles of NMDARs in 
pro-survival and pro-death signalling in neurons, it would 
be better to develop NMDAR antagonists that selectively 
block only pro-death effects of NMDARs without disturb-
ing pro-survival pathways. NMDAR antagonists failed in 
the treatment of cerebral ischemia due to poor tolerance and 
inadequate therapeutic time window of ligands [64].

Fig. 12   Therapeutic strategies 
employed to cure ischemic 
stroke
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In conclusion, GluN2B-NMDARs could be the vital tar-
get for treatment of cerebral ischemia. GluN2B-selective 
antagonists may have a distinct benefit of inhibiting the 
pro-death effects of NMDAR signalling without affecting 
the pro-survival functions associated with GluN2A subunit. 
However, it is challenging to segregate different NMDAR 
subunits, identify synaptic and extra-synaptic sites to selec-
tively block extra-synaptic GluN2B subunit of NMDARs. 
Thus, development of GluN2B subunit selective antago-
nists with broad therapeutic time window would be urgently 
required for the plausible treatment of cerebral ischemia.

NMDAR inhibitory antibodies 
as an immunotherapeutic target

Antibody-based immunotherapies have been clinically suc-
cessful in the treatment of cancer and inflammatory diseases 
[65, 66]. However, till-date, functional antibodies for the 
modulation of targets involved in CNS diseases has not been 
extensively explored. Immunotherapeutic studies are domi-
nated by active or passive immunization approaches used to 
modify disease progression by targeting proteins implicated 
in the pathogenesis of neurodegenerative diseases [67]. Very 
few reports of antibody-based therapies in neurological dis-
eases have been discussed compared to other diseases. An 
anti-amyloid antibody that targets beta-amyloid in the brain 
poses an intriguing possibility for delaying the age-of-onset 
of AD [68].

Tajima et al. identified functional antibodies targeting 
GluN1-GluN2B NMDAR that allosterically downregulates 
an ion channel activity [69]. These antibodies downregu-
late ion channel functions by binding to ATD of NMDAR 
and stabiles the receptor in non-active conformation. These 

subunit specific antibodies will act as neurotherapeutics by 
downregulating the function of NMDARs. However, further 
re-engineering strategies for tuning the efficacy and potency 
of inhibition will be required to develop site specific func-
tional antibodies for the treatment of CNS diseases.

Young et al. also provided an overview of immunothera-
peutic strategy for the treatment of stroke and epilepsy [70]. 
GluN1 antibodies have shown neuroprotective and anti-
seizure response in rodent models of stroke and epilepsy, 
respectively. GluN1 immunotherapy boost the neuroprotec-
tive capability of endogenous antibodies through modulating 
NMDAR signalling at neurons and by maintaining the health 
of blood–brain barrier.

In conclusion, target specific antibodies could also act 
as scaffolds to deliver therapeutic antibodies into the brain 
by incorporating one arm with specificity against subunit 
of NMDAR and other produces the adequate neuropharma-
cological effect. Detailed understanding of antibody-based 
therapies coupled with site-specific targeting of NMDAR 
subunits could be required for the development of novel neu-
rotherapeutics to treat neurological disorders.

Genetic evidence linking NMDAR 
to neurological diseases

Heterotetrameric NMDAR is assembled from seven dif-
ferent GRIN genes, namely two glycine-binding GluN1 
subunits (encoded by GRIN1 gene) combined with two Glu 
(GRIN2A-D) or glycine binding (GRIN3A-B) subunits [71]. 
Till date, thousands of different GRIN variants have been 
discovered in paediatric patients, with majority of mutations 
concentrated within GRIN2A and GRIN2B genes [72, 73].

Fig. 13   NMDAR ligands failed 
in clinical trials of ischemic 
stroke [63, 64]
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Pathogenic variants in GRIN genes causes severe brain 
disorders as identified in patients with AD, PD, epilepsy, 
attention deficit hyperactivity disorder, autism spectrum dis-
order, developmental delay, schizophrenia, and intellectual 
disability [74]. More specifically, GRIN1 mutations have 
a significant effect on a neuronal activity leading to focal 
dyscognitive, myoclonic, febrile, hypermotor, tonic-atonic, 
and generalized seizures [75]. For instance, Met641Leu de 
novo variant in GRIN1, and other de novo GRIN1 mutations 
were identified in severe early infantile spasms and encepha-
lopathies [76]. GRIN2A constitutes a locus for mutations 
in patients with early onset of convulsions. GRIN2A gene 
present at human chromosome 16p13 leads to Rolandic epi-
lepsy. Genetic studies also suggested that GRIN2A (GRIN2B 
was not involved) was a modifier gene for the PD [77, 78]. 
GRIN2B mutation is a rare cause of severe epileptic enceph-
alopathy [79]. However, GRIN2B gene present at human 
chromosome 12p13 encoding GluN2B subunit was iden-
tified in patients with variable degree of ID, behavioural 
issues, and EEG abnormalities [80].

Till-date, no specific therapeutic options are available to 
combat GRIN associated diseases. Nevertheless, in gain-
of-function mutations, FDA approved drug memantine 
(non-competitive NMDAR antagonist) has been exten-
sively explored as a medication for associated neurological 
diseases [35, 81]. Loss-of-function mutations are harder to 
treat, as few subunit-selective drugs are helpful as a treat-
ment [82].

Recent human genetic studies of heteromeric NMDAR 
mutations have shown that the GRIN associated mutations 
are a recurrent cause of severe and complex neurodevel-
opmental disorders. These highlights of genetic evidence 
can provide important clues in curating and functionally 
characterizing each mutation before treatment can be for-
mulated [83]. Relation of a specific mutation to the alteration 
of NMDARs function may also provide an avenue to the 
targeted therapy for the treatment of brain diseases.

Role of GluN2B subunit of NMDAR in CNS 
diseases

Till date, it remains unclear which NMDAR subunit is criti-
cally involved in the synaptic transmission and influx of 
Ca2+ ions at many synapses. Given this lack of basic infor-
mation about NMDAR subunits and their role in neurode-
generative diseases, there has been intense activity in devel-
oping subunit-selective probes that can be further used to 
obtain more important information about synaptic receptor 
identity and functions.

GluN2 subunit shows the differential temporal and spa-
tial distribution in the CNS and thus provide an opportunity 
to develop region-specific modulators/antagonists based on 

compounds selective for one or another region of the GluN2 
subunit. Diheteromeric NMDARs had multiple binding sites 
for extracellular small-molecule ligands as subunit-selective 
allosteric modulators. GluN1/GluN2 heterodimer with regu-
latory binding sites for small molecules are shown in Fig. 14. 
These specific sites for binding of allosteric modulators and 
antagonists will provide an idea to develop a subunit selec-
tive ligand that holds strong neurotherapeutic potential.

Despite of the potential to develop probes that can modu-
late NMDARs in specific brain structures afforded by GluN2 
subunits, very few advances in developing subunit-selective 
antagonists or modulators have occurred between 2010 and 
2021 [6, 7, 9].

GluN2B selective ligands

Discovery of an extensive class of GluN2B selective antag-
onists (prototypical analog ifenprodil, (1) has allowed a 
detailed exploration of a role of the GluN2B subunit in neu-
rological indications [84, 85]. However, off-target effects of 
ligands in clinical testing have hindered approval for their 
human use (Fig. 15 [84–89]).

It has been accepted that the modulation/blockade of 
GluN2B/NMDARs has significant relevance for its clinical 
manifestations in several CNS diseases. Among NMDAR 
subunits, the GluN2B subunit has been more focused on 
basic and clinical neuroscience research over the past two 
decades, producing an overwhelming body of evidence that 
affects NMDAR and is effective in the prevention of adverse 
neurological symptoms in various models of neurological 
and neurodegenerative diseases.

Recent progress in the development 
of GluN2B selective ligands

In this review, we focused on GluN2B/NMDAR-targeted 
compounds and provided a brief overview of potent com-
pounds synthesized, explored, and reported in recent years 
as GluN2B/NMDAR modulators or antagonists. The col-
lected data could be helpful to yield therapeutically relevant 
insights into neurological diseases.

Irvine et al. (2019) designed and synthesized a series 
of novel naphthalene derivatives as NMDAR modulators 
[90]. Herein, we have outlined and discussed the effects of 
most active analogs from series of synthesized compounds 
(Fig. 16). 6-n-pentyl (10) and 6-isohexyl (11) 2-naphthoic 
acid derivatives have shown potentiating effects on specific 
subunits of NMDARs. Compounds 11 and 13 showed con-
vincing positive allosteric modulatory activity at GluN2B 
subunit. Compound 10 enhanced NMDAR mediated 
cationic currents at diheteromeric NMDAR consisting 
of GluN1/GluN2A-D subunit combinations. Addition of 
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3-cyclopentylprop-1-yl at 6th position of naphthalene gave 
compound 12; led to a similar level of potentiating activity 
on GluN2A-D subunits when compared to compound 11, 

with the previous being more potent on GluN2A/NMDAR. 
In conclusion, these analogs will be helpful as a neurothera-
peutic tool to study synaptic functions and could be used as 

Fig. 14   Crystal structure of GluN1/GluN2 heterodimer with regulatory binding sites for modulation of NMDAR [4, 6, 7]. (+) and (−) signs rep-
resent positive and negative allosteric modulators

Fig. 15   Drugs in clinical 
settings as GluN2B selective 
NMDAR antagonists [84–89]
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a potential lead for the development of future drug candidate 
to treat schizophrenia and other CNS disorders (Fig. 16).

Novel phenanthrenes were reported by Kudova et al. 
(2015) as NMDAR antagonists [91]. Here, the struc-
ture–activity relationship of pregnenolone sulfate analogs 
with structural modifications on steroidal D-ring has been 
described. For discussion, only potent NMDAR antago-
nists from reported analogs have been considered. When 
compared alkyl modifications on D-ring to acetyl moiety of 
pregnenolone sulfate; it was indicated that these modifica-
tions caused a decrease in IC50 at NMDARs. On the other 
hand, when 17-acetyl moiety of pregnanolone sulfate was 
replaced with hydrogen; more effective NMDAR inhibitors 
were produced. Comparison of IC50s of active compounds 
14 (C17-ethyl, IC50 = 0.4 ± 0.1  μM), 15 (C17-isopropyl, 
IC50 = 0.16 ± 0.02 μM), 17 (C17-methyl, IC50 = 0.6 ± 0.1 μM), 

and 18 (C17-isobutyl, IC50 = 0.09 ± 0.01  μM) displayed 
admirable changes in their activities with respect to preg-
nanolone sulfate. In conclusion, the replacement of pregna-
nolone acetyl moiety with an alkyl substituent has a subop-
timal effect on the ability of neurosteroids as inhibitors of 
NMDAR-induced cationic currents (Fig. 17).

Slavikova et al. (2016) developed and reported phen-
anthrenes as NMDAR antagonists [92]. Perhydrophenan-
threne analogs with fully saturated phenanthrene skeleton 
analogous to the steroidal system were developed and then 
screened against NMDAR for possible activity. A preclini-
cal assay was used to test the potential of these compounds 
to modify NMDAR cationic currents. These compounds 
were then screened selectively against recombinant GluN1/
GluN2B subunits of NMDARs. In SAR studies, it was 
found that diverse polar substituents can entirely or partially 

Fig. 16   Naphthalene analogs 
as GluN2B selective NMDAR 
modulators [90]

Fig. 17   Phenanthrene analogs 
as GluN1/GluN2B selective 
NMDAR antagonists [91]
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degrade steroidal D-ring with the preservation of NMDAR 
antagonistic activity. Compound 27 was the most potent 
modulator of NMDAR from the library of perhydrophenan-
threne analogs. An analogue (27) was also effective against 
GABA receptor. However, the exact role of synthesized mol-
ecules to minimize undesired psychomimetic side effects 
through GABA inhibition was not described. Thus, the ste-
roidal D-ring is considered as a vital pharmacophore for 
both NMDAR/GABA selectivity and open-up the possibility 
of developing more receptor-specific neurotropic steroids as 
neurotherapeutics (Fig. 18).

Dey et al. (2018) reported 2-methyltetrahydro-3-benzaz-
epin-1-ol as GluN2B selective NMDAR antagonists [93]. 
2-methyltetrahydro-3-benzazepin-2-ols bind at the GluN1-
1a/GluN2B interface like co-crystallized ligand (Ifenprodil). 
As seen in docking studies, phenyl moiety and 3-benzaz-
epine were in the hydrophobic region of GluN1-1a/GluN2B 
NMDARs. Protonated amino and hydroxy groups of (R, R) 
cis-31 created two H-bonds with CONH2 moiety of Gln110 

at GluN2B subunit. When compared to GluN2B affinity of 
(R, R) 29, the 4-phenylbutyl derivative (cis-31) has shown 
reduced affinity demonstrating the importance of a phenolic-
OH moiety. The introduction of methyl moiety at the 2nd 
position also showed a reduction in GluN2B affinity (cis-
31). However, reduced GluN2B affinity was compensated 
by homologation of 4-phenylbutyl (cis-31) to 5-phenylpentyl 
side chain (cis-32, Ki = 56 nM). In conclusion, an extension 
of the side chain was main contributing factor for high affin-
ity as the 5-phenylpentyl group increased GluN2B affinity 
of cis-32 by 5-fold (Fig. 19).

Tewes et  al. (2015) synthesized four stereoisomeric 
2-methyl-3-(4-phenylbutyl)tetrahydro-3-benzazepin-1-ols 
using multistep synthesis [94]. Among these derivatives, 
phenols exhibited higher GluN2B affinity than methyl ethers 
(Fig. 20). GluN2B affinity increased in the following order: 
(1R, 2S) < (1S, 2S) < (1S, 2R) < (1R, 2R). Stereoisomeric 
phenols (R, R)-43 and (S, R)-44 have shown the highest 
GluN2B affinity with excellent cytoprotective activity. 

Fig. 18   Pregnanolone sulfate 
analogues as GluN1/GluN2B 
selective NMDAR antagonists 
[92]
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Results proved the potential of these compounds as GluN2B 
selective NMDARantagonists. Molecular docking of 3-ben-
zazepin-1-ols also supported the experimentally determined 
GluN2B affinities, as these compounds have shown promi-
nent binding at N-terminal domain of GluN1-1b/GluN2B 
subunits. Benzyl ethers have shown high GluN2B bind-
ing affinity without cytoprotective effects. Reason for the 
high affinity of benzyl ethers at the GluN2B subunit was its 
binding at the lipophilic sub-pocket close to the ifenprodil 
binding site of NMDAR. These findings will be considered 
for the future development of GluN2B selective NMDAR 
antagonists.

Dey et al. (2016) designed and synthesized 3-benzaz-
epines as GluN2B selective NMDAR antagonists [95]. The 
deconstruction approach analysed importance of phenolic-
OH moiety for affinity and selectivity at GluN2B subunit. 
Phenolic-OH of 3-benzazepine-1,7-diol (46) was removed 
to obtain 3-benzazepin-1-ol (47) without other substituents 
at aromatic ring (Fig. 21). Insertion of N-triflyl protecting 
group was required to produce 3-benzazepin-1-ol (47). It 
was shown that the 3-benzazepin-1-ol (47) without phe-
nolic-OH also interact with GluN2B subunit. However, the 
analogue has shown 5-fold reduced affinity compared to a 
phenol (46). Pharmacophore-based docking studies were 
performed to analyse the interactions of 3-benzazepin-1-ol 
(47) in the receptor binding pocket of GluN2B/NMDARs. 
Docking studies revealed the same binding pose with similar 
H-bond and hydrophobic interactions for docked 3-benzaz-
epin-1-ol (47) compared to a crystallized keto-ifenprodil. In 
docking studies, the 3-benzazepin-1-ol (47) adopted binding 
mode analogous to a co-crystallized ligand. Computational 
data supported the affinity of outlined analogues, as phenyl 

ring of compound (47) was embedded in hydrophobic region 
of NMDAR through hydrophobic interactions with Tyr109 
(GluN1) and Ile111 (GluN2B); protonated benzazepine also 
formed H-bond with >C=O group of Gln110 (GluN2B), like 
the protonated piperidine of a crystallized structure.

Benzazepine derivatives were structurally modified and 
synthesized by Dey et al. to target GluN2B subunits of 
NMDAR [96]. These compounds were screened for their 
abilities as selective NMDAR antagonists. Outlined com-
pounds without substitutions at aromatic ring have exhibited 
very high GluN2B affinities. Characteristic GluN2B affin-
ity of compounds 48 (Ki = 2.2 nM) and 49 (Ki = 6.0 nM) 
led to the conclusion that the interaction of phenolic-OH 
moiety was not essential for better GluN2B affinity. Phe-
nylcyclohexyl derivative was found to be most effective 
GluN2B/NMDAR antagonist. 3-benzazepin-1-ol (48) with 
conformationally restricted phenylcyclohexyl substituent 
represented as effective GluN2B ligand with higher selec-
tivity over non-NMDARs [PCP binding site (> 4500-fold), 
σ1 (37-fold), and σ2 receptors (25-fold)]. Eventually, the 
replacement of phenylcyclohexyl by benzylpiperidin-4-yl 
moiety (49) resulted into slightly decreased GluN2B affin-
ity (Ki = 6 nM), but significantly reduced selectivity over σ1 
and σ2 receptors (Fig. 22).

Rath et al. (2017) synthesized 3-benzazepines as subu-
nit selective GluN2B/NMDAR antagonists and determined 
their affinities using in vitro assays [97]. Potent methyl 
ethers (52 and 54) from series have shown high GluN2B 
affinity (52, Ki = 472 nM and 54, Ki = 606 nM). Replace-
ment of methoxy group by hydroxyl substituent resulted 
into 3-fold increase in GluN2B affinity of phenol (53, 
Ki = 157 nM). Given structural modification was justified 

Fig. 19   2-Methyltetrahydro-
3-benzazepin-1-ol as GluN2B/
NMDAR antagonists [93]
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as potent compounds have shown higher GluN2B affinity 
than unmodified methyl ether (50). Moreover, compound 
containing hydroxymethyl side chain have shown analogous 

GluN2B affinity (54, Ki = 606 nM) compared to the lead 
analogue (50, Ki = 706 nM). Alteration in the phenolic-OH 
position and benzylic-OH replacement by vinyl group was 

Fig. 20   Stereoisomeric 
2-methyl-3-(4-phenylbutyl)
tetrahydro-3-benzazepin-1-ols 
as GluN2B selective NMDAR 
antagonists [94]

Fig. 21   3-Benzazepin-1-ol as 
GluN2B selective NMDAR 
antagonists [95]
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well tolerated by GluN2B subunit with slight reduction of 
affinity (Fig. 23).

Borgel et al. (2019) investigated pharmacokinetic param-
eters of enantiomerically pure GluN2B/NMDAR antagonists 
[98]. Log D values of these analogues were in the good range 
for penetration of blood–brain barrier to reach CNS [55 (Log 
D = 1.68), methyl ether (56, Log D = 2.46) and benzyl ether 
(57, Log D = 4.14)]. Benzyl ether (57) has shown the high-
est Log D value. Moreover, Log D value for well-known 

GluN2B antagonist (Ifenprodil) was described for the first 
time (Log D = 1.49). In conclusion, these compounds were 
proved as active GluN2B/NMDAR antagonists (Fig. 24).

Ahmed et  al. (2019) synthesized N-methyl-N-(3-
phenylpropyl)-6,7,8,9-tetrahydro-5H-benzo[7]annulen-
7-amine (58) and N-(3-(4-fluorophenyl)propyl)-6,7,8,9-
tetrahydro-5H-benzo[7]annulen-7-amine (59) as plausible 
GluN2B active ligands. Later, these compounds were inves-
tigated for binding affinities towards GluN2B subunits and 

Fig. 22   Benzazepines as 
GluN2B selective NMDAR 
antagonists [96]

Fig. 23   Structurally modified 
3-benzazepines as GluN2B 
selective NMDAR antagonists 
[97]

Fig. 24   Log D values for ben-
zazepines effective as GluN2B 
selective NMDAR antagonists 
[98]
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selectivity over non-NMDARs [99]. A robust radiosynthesis 
was established to afford [18F] (59) with moderate radio-
chemical yields, high molar activities, and excellent radio-
chemical purities. Although 6,7,8,9-tetrahydro-5H-benzo[7]
annulen-7-amines showed high affinity and selectivity, these 
compounds lacked prominent polar features that would be 
required to label them as potential GluN2B/NMDAR imag-
ing agents. These findings led to conclusion that the reported 
class of compounds would require further structural modifi-
cations to develop more efficacious GluN2B imaging agents 
(Fig. 25).

3-Benzazepines with 4-phenylbutyl substituents at 3rd 
position bearing F-atom (in either β or γ-position) were 
synthesized by Thum et al. [100]. An impact of fluorine and 
substitution pattern on affinity and selectivity at GluN2B/
NMDAR was evaluated using pharmacological assays. Phe-
nolic-3-benzazepine (60) with fluorine atom at γ-position 
exhibited promising GluN2B affinity (Ki = 16 nM). Thus, the 
substitution of F-atom was an essential feature to increase 
affinity of these analogues as selective NMDAR antagonists 
(Fig. 26).

Wagner et al. (2019) designed and synthesized benzaz-
epine derivatives as selective GluN2B/NMDAR antagonists 

[101]. Here, phenylbutyl substituent of potent GluN2B 
antagonist (61) was modified to uncover high GluN2B affin-
ity fluorinated ligands. Modification was tried to develop 
fluorinated PET tracers for imaging of GluN2B subunits. 
Introduction of 2-fluoroethoxy moiety at ortho, meta, and/or 
para positions of terminal phenyl group (62) led to the con-
siderably reduced affinity towards prominent ifenprodil bind-
ing site of GluN2B/NMDARs. From reported compounds, 
phenol with p-fluoroethoxy moiety at terminal phenyl ring 
was presented as effective GluN2B probe to treat CNS dis-
orders (Fig. 27).

Lutnant et al. (2016) synthesized bioisosteric benzimi-
dazolones as potent GluN2B/NMDAR antagonists [102]. 
Benzimidazolone was unsuitable bioisostere of phenol or 
methyl ether to become potential GluN2B antagonists. Tri-
cyclic 7-annulenobenzimidazolone system was too rigid to 
induce a fit at ifenprodil binding site of NMDAR. However, 
the tricyclic amine (63) opened-up the possibility for several 
modifications at various ring positions of the skeleton struc-
ture. From series of tricyclic [7]-annulenobenzimidazolo-
nes, compound 63 (Ki = 697 nM) showed adequate binding 
affinity at GluN2B subunit of NMDARs. Additionally, the 
compound 63 (Ki = 549 nM) interact with σ2 receptors but 
with poor selectivity. These facts suggested that compound 
63 will be utilized as lead for the development of selective 
GluN2B antagonists (Fig. 28).

Benzo[7]annulenes were structurally modified by 
Gawaskar et al. and screened to uncover their abilities as 
GluN2B selective NMDAR antagonists [103]. Benzo[7]
annulen-7-amines were designed and synthesized through 
conformational restriction of potent GluN2B ligand [Ro 
25-6981 (8)] and through removal of polar hydroxyl group. 
Structurally modified compounds have shown moderate 

Fig. 25   N-methyl-N-(3-phenylpropyl)-6,7,8,9-tetrahydro-5H-benzo[7]annulen-7-amine (58) and N-(3-(4-fluorophenyl)propyl)-6,7,8,9-tetrahy-
dro-5H-benzo[7]annulen-7-amine (59) as GluN2B selective NMDAR antagonists [99]

Fig. 26   Phenolic-3-benzazepine (60) as GluN2B/NMDAR antago-
nists [100]

Fig. 27   Structurally modified 
benzazepines as GluN2B selec-
tive NMDAR antagonists [101]
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GluN2B affinities (16–57 nM). Results revealed that polar 
substituents on Ro 25-6981 (8) were not essential for strong 
interaction with GluN2B/NMDARs. However, an insertion 
of nitro group at 2nd position of benzo[7]annulene scaf-
fold increased GluN2B affinity up to 5–10-fold compared 
to unsubstituted derivatives (Fig. 29). Phenylpropylamine 
analogue [65 (Ki = 1.6 nM)] was proved as potent a GluN2B 
selective ligand. Docking studies also revealed that the phe-
nylpropylamine (65) have shown additional H-bonding 
between protonated central amino group (65) and carbamoyl 
moiety of amino acid (Gln110) in ifenprodil binding pocket. 
Nitro analogues were able to bind at ifenprodil binding site 
with analogous orientation to that of co-crystallized ligand 
that may be the reason for high binding affinity of synthe-
sized ligands.

To prove the hypothesis of beneficial effects of elec-
tron deficient aromatic systems on the GluN2B affinity, 
a set of pyridine annulenes were synthesized by Zscherp 
et al. [104]. Bioisosteric modification and replacement of 
nitrobenzene in compound 66 by pyridine (67) led to 200-
fold reduced GluN2B affinity. These results proved that the 
high GluN2B affinity of compound 66 was only due to the 

electron withdrawing nitro group. Reduced GluN2B affin-
ity of pyridine derivatives indicated that the pyridine ring 
was not an appropriate bioisosteric replacement for chlo-
robenzene and nitrobenzene. High affinity of compound 66 
at GluN2B subunit was due to polar interactions of NO2 
group with GluN2B/NMDAR. Active analogue (66) estab-
lished H-bond network with the conserved water molecule in 
binding pocket of NMDAR; the interaction was responsible 
for high GluN2B affinity (Fig. 30).

Fluorinated benzo[7]annulen-7-amines were designed 
and synthesized as selective GluN2B/NMDAR antagonists 
by Thum et al. [105]. Diverse substituted benzo[7]annulen-
7-amines were then utilized to develop structure–affinity 
relationships of GluN2B antagonists. Reported compounds 
have various fluorinated and nonfluorinated spacers with 
diverse substituents at amino group of benzo[7]annulen-
7-amines. Results supported the addition of fluorine atom 
at the side chain to develop selective GluN2B/NMDAR 
antagonists. Methyl-ether with β-fluorinated phenylpro-
pyl side chain (69, Ki = 9.2 µM) and bromo analogue with 
γ-fluorinated phenylbutyl chain (68, Ki = 14 µM) were found 
to be promising GluN2B ligands from series of synthesized 
compounds (Fig. 31).

Gawaskar et al. (2017) designed and synthesized selective 
NMDAR antagonists utilizing structure-based drug design 
strategy [106]. When focused on a potent analogue, 2-chlo-
roderivative (71) was recognised as one of the most promis-
ing ligands from reported compounds. Compound 71 has 
high affinity (Ki = 2.1 nM) and well supported by docking 
studies. A strong halogen bond interaction between com-
pound 71 (Ki = 2.1 nM) and proximal amino acid Glu236; 
may be the reason behind affinity of outlined compound. 
Unexpectedly, the OBn derivative (72, Ki = 3.6 nm) also 
showed high GluN2B affinity in neuropharmacological assay 
and was able to occupy pocket of GluN2B/NMDAR through 
flexible benzyloxy substituent. Phenyl ring of benzyloxy 

Fig. 28   Bioisosterically modified benzimidazolone (63) as GluN2B 
selective NMDAR antagonists [102]

Fig. 29   Benzo[7]annulenes as 
GluN2B selective NMDAR 
antagonists [103]

Fig. 30   Pyridine annulene (67) 
as GluN2B selective NMDAR 
antagonists [104]
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group interact with positively charged guanidine of Arg115 
at GluN2B subunit. Thus, the compound 72 was highly 
selective towards GluN2B subunit over σ1, σ2 receptors and 
PCP binding site (Fig. 32).

GluN2B/NMDAR is an effective target for chronic pain 
due to its involvement in the disease and distribution in CNS 
[107]. Anan and co-workers identified cyclohexanol-based 
compounds (73; IC50 = 7.0 nM and 74; IC50 = 7.1 nM) as 
selective GluN2B/NMDAR antagonists (Fig. 33). A com-
bination of scaffold hopping approach, bioisosteric replace-
ment, and optimization of pharmacokinetic profile resulted 
in identification of cyclohexanol-based compounds as effec-
tive GluN2B/NMDAR antagonists. These compounds were 
further optimized by controlling lipophilicity and screened 
to develop structure–activity relationship as GluN2B selec-
tive antagonists. Compounds 73 and 74 also demonstrated 
excellent analgesic activity in mouse formalin test at both 
early and late phases.

Negative allosteric modulators (NAMs) of GluN2B/
NMDARs have proved to be a potential pharmacological 
tool for treating chronic neurodegenerative diseases [108]. 
Buemi et al. designed and synthesized NAMs through com-
putational studies and obtained effective GluN2B probes. 
Series of indoles utilizing lead compound (75, IC50 = 25 nM) 

were synthesized and further tested for efficacies through 
competition assay at GluN2B subunit of NMDAR. Com-
pounds 76 (IC50 = 83  nM) and 77 (IC50 = 71  nM) were 
observed as moderately effective NAMs when compared to 
lead compound 75 (Fig. 34). Additionally, molecular dock-
ing studies have been executed for active compounds (75 and 
76); results agreed with the biological data. Lead compounds 
75 and 76 have shown contacts at GluN1/GluN2B ligand 
binding site of NMDARs. Presented results will be useful to 
design novel NAMs targeting at interface of GluN1/GluN2B 
subunit (Fig. 34).

Temme et al. (2018) designed and developed benzo[7]
annulene derivatives as an GluN2B/NMDAR antagonists 
[109]. Modification of reported GluN2B/NMDAR antago-
nists through replacing phenolic hydroxyl group (78) with 
hydroxymethyl moiety (79) resulted in the metabolically sta-
ble NAMs of GluN2B subunit. Phenolic-OH and hydroxy-
methyl moieties acts as H-bond donors making them more 
hydrophilic; but hydroxymethyl group was less prone to glu-
curonidation and sulfation during biotransformation in liver 
resulting metabolically more stable compounds.

Here, we have discussed most active analogue (79) from 
synthesized compounds by Temme et al. Previously reported 
phenol with phenylpropyl side chain (78; Ki = 21 nM) has 

Fig. 31   Fluorinated benzo[7]
annulen-7-amines as GluN2B 
selective NMDAR antagonists 
[105]

Fig. 32   Potent benzo[7]
annulen-7-amines as GluN2B 
selective NMDAR antagonists 
[106]

Fig. 33   Cyclohexanols as 
GluN2B selective NMDAR 
antagonists [107]
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exhibited lower GluN2B affinity and cytoprotective activ-
ity than phenylbutyl homolog (78a; Ki = 28 nM). Modi-
fied hydroxymethyl derivative have shown good affinity 
at GluN2B subunits (79, Ki = 101 nM) with high selectiv-
ity over other non-NMDAR binding sites. Compound 79 
has 10-fold lower cytoprotective activity when compared 
to ifenprodil (Fig. 35). Thus, phenylpropyl derivative (79) 
with hydroxymethyl moiety represented as more selective 
GluN2B antagonist. Molecular docking also revealed that 
the H-bond between Glu236 and hydroxymethyl moiety 
(79) was responsible for stabilizing the closed NMDAR 
conformation.

Temme et al. (2020) synthesized compounds bearing 
3-benzazocines, tetralinamines and indanamines as selec-
tive NMDAR antagonists [110]. Eight-membered 3-ben-
zazocine ring was helpful to increase GluN2B/NMDAR 
affinity as indicated by compound 80 (Ki = 32 nM). 3-Benza-
zocine analogue (80) was identified as most active GluN2B 
selective antagonist with moderate cytoprotective activity 

(IC50 = 0.89 µM). Compound (80) has also shown Ca2+ 
current inhibition (60% at 10 mM) in electrophysiological 
recordings. An indanamine derivative also shown good affin-
ity at GluN2B subunit (81, Ki = 3.2 nM) with cytoprotective 
activity. Results indicated that phenyl substituents around 
ring-contracted tetralinamines (81a, Ki = 8.4  nM) and 
indanamines (81, Ki = 3.2 nM) were favourable for higher 
GluN2B affinity (Fig. 36).

Krausova et al. (2018) designed and developed novel 
GluN2B/NMDAR modulators [111]. Herein, library of 
compounds bearing C-3 hemiester moiety with Δ5- double 
bond was utilized to generate novel selective antagonists. 
Analogues formed by various modifications at position 
C-17 were evaluated for their abilities to modulate func-
tional activity against NMDAR subunits. Results indicated 
that the structural modification of C-17 substituent of D-ring 
maintained positive modulatory effect against NMDARs. 
However, potentiating effect of these compounds exhibited 
dependency on length of C-3 substituents for each D-ring 

Fig. 34   Indoles as GluN2B 
selective NMDAR antagonists 
[108]

Fig. 35   Benzo[7]annulene as 
GluN2B selective NMDAR 
antagonists [109]
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modification. These compounds were proved as positive 
modulators of recombinant GluN1/GluN2B subunits.

Compound 83 (EC50 = 7.4 uM) and 84 (EC50 = 1.8 μM) 
were considered as the most efficacious and potent modula-
tor from reported compounds. In addition, compound 82 has 
a subunit-independent effect at recombinant NMDARs and 
has only minor inhibitory effect at non-NMDARs. These 
analogues will be modified at C-3 and/or at D-ring for fur-
ther optimization of neuropharmacological properties to 
produce novel neuroactive compounds (Fig. 37).

Strong et al. (2017) designed and developed novel tet-
rahydroisoquinolines as positive allosteric NMDAR mod-
ulators derived from known class of GluN2C/D-selective 
tetrahydroisoquinoline analogues [112, 113]. Prototypical 
positive allosteric modulator (85, EC50 = 300 nm) was highly 
selective for GluN2C and GluN2D subunits than other 
NMDAR subunits.

Compounds reported were active at GluN2B, GluN2C, 
and GluN2D subunits of NMDAR. These compounds 
have shown distinct structural-activity relationship based 
on structural differences around isopropoxy functionality. 
An introduction of isopropoxy group and its modifications 
resulted into enhanced activity at GluN2B subunits (Fig. 38).

Two important substituents as a methoxy group at meta 
position and an ethoxy group at para position (B-ring) 
were highlighted in Fig. 38. Changes to compound 86 
(GluN2B; EC50 = 5.2 µM) have shown different effects 
on NMDAR potentiation than 85. These two functional 
groups were inactive when introduced at 85, however 
compound 87 (GluN2B subunit; EC50 = 5.3 µM) was only 

active at GluN2B subunit in presence of isopropoxy group 
on C-ring. These results suggested that the isopropoxy 
group (86) was able to revive potential at NMDAR that 
was absent in previous compound (85). Although, thio-
amide was inactive on compound 85 but it was essential 
for potent activity of tetrahydroisoquinoline with isopro-
poxy group [86; EC50 = 5.2 µM, Fig. 39]. S-(−)-enantiomer 
of compound 88 (GluN2B subunit; EC50 = 7.2 µM) was 
separated and shown activity only at GluN2B subunit. 
When S-(−)-enantiomer (88) was converted to thioam-
ide (89); only S-(−)-89 was active at GluN2B subunit 
(EC50 = 0.55 µM), whereas R-(+)-89 was inactive at all 
NMDAR subunits.

In conclusion, only compounds 88 and 89 have shown 
highest degree of selectivity and efficacy at GluN2B com-
pared to other NMDAR subtypes. These results provided 

Fig. 36   3-Benzazocine (80), 
tetralinamine (81a) and indan-
amine (81) as GluN2B selective 
NMDAR antagonists [110]

Fig. 37   Steroidal 3-hemiesters 
as GluN2B selective NMDAR 
antagonists [111]

Fig. 38   Modified analogues of tetrahydroisoquinolines [113]
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Fig. 39   Tetrahydroisoquinolines 
as GluN2B subunit selective 
positive allosteric modulators 
[113]
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starting point for the development of selective positive allos-
teric modulators of GluN2B subunits.

Baumeister et  al. (2019) synthesized and developed 
[7]annulene[b]thiophen-6-amine derivatives as NMDAR 
antagonists [114]. Bioisosteric replacement of benzene, 
methoxybenzene and aniline moieties of available potent 
GluN2B is selectively antagonized by the thiophene ring. 
The pharmacological data obtained for thiophene derivatives 
[(89) and (90)] indicated that the bioisosteric replacement 
of GluN2B ligands by using thiophene was well tolerated. 
[7]Annulenothiophene (89) without benzylic OH moiety 
revealed 8-fold higher GluN2B affinity (Ki = 26 nM) than 
with benzylic OH (90, Ki = 204 nM). Thiophene bioisos-
tere showed preference to GluN2B subunit over σ receptors. 
However, overall data suggested that the benzylic-OH moi-
ety does not seem to be essential for higher GluN2B subunit 
affinity (Fig. 40).

Baumeister et al. (2020) modified and synthesized [7]
annuleno[b]thiophenes as GluN2B/NMDAR antagonists 
[115]. Higher GluN2B affinity was achieved with [7]
annuleno[b]thiophenes with 3-phenylpropylamino (92, 
Ki = 6 nM) or 4-phenylbutylamino moieties (93, Ki = 9 nM; 
Fig. 41). Unfortunately, these structural modifications have 
shown high GluN2B affinity and slight σ receptor affinity. 

Preferred interaction with the ifenprodil binding site of 
GluN2B/NMDARs could only be observed in case of meth-
ylamines. Among the series of homologous secondary 
amines, the 4-phenylbutylamine has shown highest GluN2B 
affinity which is analogous to ifenprodil (Ki = 10 nM) and 
eliprodil (Ki = 13 nM).

Conclusion

NMDARs are diverse in subunit composition, biophysical 
and pharmacological properties, interacting partners and 
subcellular localization. Subunit composition varies across 
CNS regions during neuronal development and neurological 
disease states. At fully mature synapses, NMDAR subunit 
contents depend on the neuronal activity.

Here, we have collected and described the recent data of 
potential selective ligands of GluN2B subunit of NMDARs. 
Arranged comprehension of distinct roles of GluN2B selec-
tive ligands is beneficial for both medicinal chemists and 
neuroscientists to define new strategies to counteract the 
deleterious effects of deregulated NMDAR functions.

Information presented in this review will be obliging to 
understand the structure–function relationship of potential 
GluN2B subunit selective ligands that will advance under-
standing of many aspects of brain function at molecular, 
cellular, and systems level and provide new treatment 
modalities. Moreover, taking stock of these subunit selec-
tive compounds, as can and has been done previously [17, 
18], reminds us that the future is bright and that the persis-
tent, thoughtful, creative, and collaborative efforts stand an 
excellent chance of solving the most stubborn and intractable 
neurological problems.
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