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Abstract 
Parkinson’s disease is a neurodegenerative disorder characterized by slow movement, tremors, and stiffness caused due to 
loss of dopaminergic neurons caused in the brain’s substantia nigra. The concentration of dopamine is decreased in the brain. 
Parkinson’s disease may be happened because of various genetic and environmental factors. Parkinson’s disease is related to 
the irregular expression of the monoamine oxidase (MAO) enzyme, precisely type B, which causes the oxidative deamination 
of biogenic amines such as dopamine. MAO-B inhibitors, available currently in the market, carry various adverse effects such 
as dizziness, nausea, vomiting, lightheadedness, fainting, etc. So, there is an urgent need to develop new MAO-B inhibitors 
with minimum side effects. In this review, we have included recently studied compounds (2018 onwards). Agrawal et al. 
reported MAO-B inhibitors with  IC50 0.0051 µM and showed good binding affinity. Enriquez et al. reported a compound 
with  IC50 144 nM and bind with some critical amino acid residue Tyr60, Ile198, and Ile199. This article also describes the 
structure–activity relationship of the compounds and clinical trial studies of related derivatives. These compounds may be 
used as lead compounds to develop potent compounds as MAO-B inhibitors.
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Abbreviations
MAO  Monoamine oxidase
PD  Parkinson’s disease
DA  Dopamine
FDA  The food and Drug Administration
TH  Tyrosine hydroxylase
AADC  Aromatic amino acid decarboxylase
DOPAC  3,4-Dihydroxy phenylacetic acid
HMV  Homovanillic acid
DDC  Dopa decarboxylase
DAT  Dopamine transporter
COMT  Catechol-O-methyl transferase
FAD  Flavin adenine dinucleotide
MAOIs  MAO inhibitors
SAR  Structure–activity relationship
BHT  Butylated hydroxytoluene
EWG  Electron-withdrawing group
EDG  Electron donating group

BBB  Blood Brain Barrier
CNS  Central nervous system

Introduction

Parkinson’s disease (PD) is a progressive neurodegenera-
tive disease clinically known as a movement disorder. It is a 
leading cause of motor problems and mental disabilities [1, 
2]. Loss of dopaminergic neurons in substantia nigra which 
results in reduction in the concentration of dopamine (which 
is an inhibitory neurotransmitter) in the brain [3–5] is char-
acteristic in PD. Due to inadequate dopamine concentration 
(Fig. 1), there is less inhibition of striatal neurons(control 
the balance of body movements), which is responsible for 
the difficulty in controlling movements in PD patients [6].

Age is a significant risk factor in Parkinson’s disease 
development, majorly older people are affected, but people 
below the age of 21 years(juvenile cases) are also affected 
[7, 8]. There are two types of symptoms of PD, motor symp-
toms such as tremors, stiffness, and slow movements, and 
a problem with balance and non-motor symptoms such as 
depression, insomnia, and cognitive dysfunction [9, 10]. Par-
kinsonism caused by Parkinson’s disease is called primary 
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parkinsonism, and the parkinsonism caused by other neuro-
degenerative diseases is called secondary parkinsonism [11, 
12]. Parkinson’s disease is a multifactorial condition that 
contains genetic and various environmental factors which 
give rise to the genesis of the disease [1]. This disease has 
diverse nature as its symptomology differs from one indi-
vidual to another; this disease may be influenced by demo-
graphical factors, environmental factors, and exposure to 
some neurotoxins which target the substantia nigra neurons 
[13]. Risk factors that may cause PD are exposure to some 
pesticides or cleaning chemicals, old age, family history, 
and inhalation of heavy metals [14–16]. The most impor-
tant mechanisms involved in the development of Parkinson’s 
disease include misfolded aggregates of proteins, oxidative 
stress, mitochondrial damage, failure of protein clearance 
pathway, neuroinflammation, and genetic mutation [17, 18]. 
According to the survey, the prevalence of Parkinson’s dis-
ease in elderly patients ranges from 20 to 70% [19]. A report 
by global trends 2019 suggested that the age-standardized 
incidence rate of Parkinson’s disease was 13.43/100,000 
[20]. For society, Parkinson’s disease conveys a mounting 
socioeconomic burden [9]. Cases of Parkinson’s disease are 
higher in men than women, which may be due to estrogen, 
which may act as a neuroprotective agent. The risk of dis-
ease development is lower in females, but they have higher 
mortality and progression of the disease [21, 22]. Out of 
various reasons, the leading cause of PD is recognized as the 
irregular expression of mitochondrial monoamine oxidases 
(MAO) enzyme, which may be related to the unnecessary 
metabolism of monoamine neurotransmitters, responsible 
for various neurodegenerative disorders [23–26].

The therapy which is currently in use focuses on treat-
ing PD by improving motor problems by increasing the 

dopamine concentration in the brain or by stimulating the 
dopamine (DA) receptors [27, 28]. Approved drugs that are 
used to treat Parkinson’s disease (Fig. 2). Dopamine pre-
cursor Levodopa, Carbidopa/Benserazide [29, 30], which 
are peripheral decarboxylase inhibitors. Agonists of dopa-
mine receptors such as pramipexole/Apomorphine [31]. 
MAO-B inhibitors [32] such as Selegiline/Rasagiline/Safi-
namide. COMT inhibitors [33] as Tolcapone/Opicapone/
Entacapone comprises the approved drugs which are in use 
to treat Parkinson’s disease.rasagiline and Selegiline are 
irreversible MAO-B inhibitors, whereas Safinamide is a 
reversible MAO-B inhibitor recently approved by the food 
and Drug Administration (FDA) as an anti-parkinsonian 
agent [34, 35]. However, these drugs have limitations, 
such as safinamide causing retinopathy and several clinical 
problems in patients with liver impairment [36]. So, there 
is an urgent need to design and develop novel reversible 
MAO-B inhibitors to circumvent these problems. Other 
than MAO-B other targets which can be used to treat PD 
are α-Syn, Glutamate receptors, Molecular chaperones and 
autophagic pathways, and GPR109A [37]. PD belongs to 
synucleinopathy which develops with time. Degeneration 
of dopaminergic neurons and accumulation of alpha-syn 
protein intracellularly as Lewy bodies is the major reason 
for pathology of PD progression [38]. Glutamate recep-
tors modulate neural transmission in basal ganglia and this 
ability of glutamate receptors is used as possible targets 
for the treatment of PD. The primary motor symptoms of 
PD are alleviated due to modulated activity of the recep-
tors in the dopamine replacement therapy. The reduced 
progression of PD is delaying the neurodegenerative pro-
cess due to the antagonism of these receptors [39]. Molec-
ular chaperones regulate cellular proteostasis by balancing 
the folding and misfolding processes. Misfolded proteins 
are corrected by the chaperone system and contribute to 
proteostasis. In the PD brain, autophagic mechanisms are 
markedly dysregulated. The autophagic mechanisms that 
influence the illness phenotype include genes associated 
to PD [40, 41]. GPR109A is a G protein-coupled receptor 
which is also knowns as hydroxycarboxylic acid receptor 
2. The GPR109A is found in macrophages and has a role 
in inflammation. In PD, GPR109A mediates inflammatory 
action in PD and can be targeted for treatment [42]. Vari-
ous medications are used to treat PD, but MAO-B inhibi-
tors play a significant role in treating PD. MAO-B inhibi-
tors reduce the degradation of dopamine by penetrating 
the blood–brain barrier and inhibit central MAO activity 
[43]. MAO-B inhibitors showed very good safety and effi-
cacy in early and advanced stages of PD. It is reported in 
some clinical studies that when the patient use the MAO-B 
inhibitors for a longer duration there is a decrease in the 
consumption of levodopa [44, 45].

Fig. 1  Normal neurons v/s neurons in Parkinson’s disease
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Mechanism of anti‑parkinsonian drugs

Tyrosine, which is transferred from the blood–brain barrier, 
is converted to levodopa with the help of Tyrosine hydroxy-
lase (TH) (Fig. 3). Levodopa is then converted to Dopamine 
by aromatic amino acid decarboxylase (AADC) [46–48]. 
Dopamine formed is stored in vesicles until they are released 
into the synaptic cleft and binds and activates dopamine 
receptors in the striatum's neurons [49, 50]. The free dopa-
mine is metabolized by the MAO-B enzyme into 3,4-dihy-
droxy phenylacetic acid (DOPAC) and further converted to 
Homovanillic acid (HMV) by COMT [51, 52]. Levodopa 
used in the treatment of PD, is a Dopamine precursor. Levo-
dopa can cross the blood–brain barrier and be converted to 
Dopamine by the Dopa decarboxylase (DDC) enzyme in the 
presynaptic neuron of substantia nigra [53, 54]. The Dopa-
mine formed is stored in vesicles until they are released into 
the synaptic cleft and binds and activates dopamine recep-
tors on the neurons of the striatum, which control the motor 
activities of the body, smoothening movements and reducing 
muscle tone [55, 56]. After binding to the receptors and its 
activation, the DA quickly unbound from the receptor reup-
take by the Dopamine transporter (DAT) [57, 58].

Levodopa in the periphery is susceptible to the metabo-
lism by Catechol-O-methyl transferase (COMT), which can 
be inhibited by drugs such as Tolcapone or Entacapone and 

Dopa decarboxylase (DDC), which are inhibited by drugs 
such as Carbidopa or Benserazide [59, 60].

To prevent the metabolism of Dopamine in the brain, 
drugs such as MAO-B (Monoamine oxidase type B) 
inhibitors (Selegiline, Rasagiline, Safinamide) and COMT 
inhibitors (Tolcapone or Entacapone) are used [61, 62]. 
In addition, dopamine receptor agonists (Bromocriptine, 
Pramipexole, Ropinirole) activate the Dopamine receptors, 
which further control the mobility of the body [63, 64].

Problems in currently available mao inhibitors

The major metabolic enzymes for regulating biogenic amine 
levels in the brain and other tissues are monoamine oxidases 
(MAOs). They are present in the outer membrane of mito-
chondria [65].

There are two isoforms of this enzyme, MAO-A and 
MAO-B which are around 70% the same in amino acid 
sequence and have a similar structure of the active site 
[66]. All human tissues contain MAOs, but MAO-A pre-
dominates in the gastrointestinal system, placenta, and 
heart, whereas MAO-B predominates in platelets and glial 
cells in the brain [67]. MAOs are linked covalently to fla-
vin adenine dinucleotide (FAD) [68]. The substrates for 
MAO-A are adrenaline and serotonin, whereas for MAO-
B, the substrates are benzylamine and phenylethylamine 

Fig. 2  Approved drugs to treat 
Parkinson’s disease
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[69, 70]. Inhibitors of the MAO-A enzyme have thera-
peutic value against depression and anxiety, and MAO-B 
inhibitors are used in the treatment of Parkinson’s disease 
and Alzheimer’s disease [71, 72]. Earlier non-selective 
MAOs inhibitors were used, which were irreversible, but 
because of their toxicity, their use was reduced because 
Tyramine enters the systemic circulation when MAO-A is 
irreversibly blocked, which causes the release of norepi-
nephrine from peripheral adrenergic neurons resulting in a 
hypertensive crisis, sometimes known as the "cheese reac-
tion” [73]. It is a highly effective and helpful strategy to 
create novel MAO inhibitors (MAOIs) for treating various 
neurological and psychiatric illnesses [74]. So reversible 
inhibitors of MAO-A, such as moclobemide and clorgyline 
are used in the treatment of depression [75, 76], but these 
drugs have some adverse effects, such as headache, insom-
nia, and liver damage [77]. MAO inhibitors used in the 
treatment of depressive disorder, may promote the impair-
ment of cognition and result in the progression of dementia 

[78]. Drugs that are in use in the treatment of Parkinson's 
disease areSelegiline, Rasagiline, and safinamide, which 
are the selective inhibitors of MAO-B [79]. Selegiline and 
Rasagiline's lack of an apparent neuroprotective effect in 
clinical trials restricts their therapeutic applicability [80]. 
The main side effects of Selegiline, when used to treat 
Parkinson's disease, are hypotension, vertigo, and akinesia 
[81, 82]. It was also suggested that MAO inhibitors might 
have anticancer properties. Multiple cancer cells have been 
shown to overexpress MAO, and inhibiting the enzyme 
had an antiproliferative effect [83]. Rasagiline is an irre-
versible inhibitor of MAO-B, and it binds covalently with 
the active site resulting in side effects, but safinamide is 
a reversible inhibitor with lesser side effects [84, 85]. But 
safinamide cause retinopathy and several clinical problems 
in patients with liver impairment [36]. Due to all these 
limitations of the currently present MAO inhibitors, there 
is a demand to develop novel MAO-B inhibitors that could 
be used to treat Parkinson’s disease.

Fig. 3  Mechanism of action 
of Drugs which are used in 
Parkinson’s disease. COMT 
catechol-O-methyl trans-
ferase, DA dopamine, DDC 
dopa-decarboxylase, DOPAC 
3,4-dihydroxyphenylacetic 
acid, HVA homovanillic acid, 
L-DOPA levodopa, MAO-B 
monoamine oxidase B, 3-MT 
3-methoxytyramine, 3-O-MD 
3-O-methyldopa, DAT dopa-
mine transporter
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Recent advancements

In a study, Yeon et  al. synthesized a novel series of 
4-(Benzyloxy)phenyl and Biphenyl-4-yl derivatives for 
monoamine oxidase B (MAO-B) inhibition. In the syn-
thesized series, compound 1 showed potential activity with 
an  IC50 value of 0.009 µM against MAO-B. Additionally, 
structure–activity relationship (SAR) studies showed that 
compounds that carried no carbon between biaryl-linked 
units showed lower inhibitory activity. At the same time, 
amine and trifluoromethyl substitutions at the para posi-
tion were responsible for the more significant activity of 
compounds rather than ortho or meta substituents. Fur-
thermore, according to substrate-dependent kinetics, com-
pound 1 was a competitive MAO-B inhibitor. In vivo study 
of compound 1 for Parkinson’s disease by MPTP assay 
showed improved motor impairment activity further cor-
related with MAO-B inhibitory activity in the brain. The 
most potent compound 1 (4-((4-(Trifluoromethyl)benzyl)
oxy)phenyl)methanaminium chloride, showed better activ-
ity against PD, and it was found in the shielding of Dopa-
minergic neurons. Several behavioral abnormalities have 
been observed with the MPTP-induced mouse model used 
in the treatment of PD. (Fig. 4) showed the various sub-
stituents and linkers for generating potential compounds 
as MAO-B inhibitors [86].

Mellado et  al. reported a new series of seven pre-
nylated chalcone derivatives against MAOs. Out of those 
seven derivatives, compound 3 (E)-3-(4-(Dimethylamino)

phenyl)-1-(4-hydroxy-3-(3-methylbut-2-en-1-yl)phenyl)
prop-2-en-1-one showed the most potent MAO-B inhibi-
tory activity with an  IC50 value of 8.19 µM. Furthermore, 
structure–activity relationship (SAR) studies revealed that 
Phenyl and methoxy group substitution inactivates the 
compound due to steric impedance at the active site of the 
enzyme, ortho substitution is less active than para substitu-
tion, and introduction of dimethylamino group increased 
the MAOs inhibitory potency (Fig. 5). The Kinetics study 
indicated that compound 3 competitively inhibited the 
enzyme MAO-B. It was found that compounds 2 (E)-1-
(4-Hydroxy-3-(3-methylbut-2-en-1-yl)phenyl)-3-(4-meth-
oxyphenyl)prop-2-en-1-one and 3 showed potential MAOs 
inhibitory activity with better antioxidant activity as com-
pared to standard compound BHT (Butylated hydroxy-
toluene). The molecular docking studies showed that the 
activities of MAO-B inhibitors are related to hydrogen 
bonds and hydrophobic bonds with Tyr398 and Tyr435 
amino acid residues, respectively. So, these compounds 
can be suitable candidates for lead discovery for PD [87].

Agrawal et al. designed and synthesized a series of isox-
azole carbohydrazides derivatives against MAOs enzyme. 
In vitro studies showed that compounds did not show sig-
nificant activity against MAO-A, but some compounds 
showed MAO-B inhibitory activity at  IC50 equal to 50 µM. 
Compound 4 (Z)-5-Phenyl-N'-(1-(m-tolyl)ethylidene)isox-
azole-3-carbohydrazide, which carried a methyl group at 
the para position of the phenyl ring, appeared as the most 
potent MAO-B inhibitor with an  IC50 value of 0.0051 μM, 
followed by compound 5 (Z)-N'-(1-(3,4-Dimethoxyphenyl)

Fig. 4  4-(benzyloxy)phenyl 
derivatives as MAO-B inhibi-
tors
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ethylidene)-5-phenylisoxazole-3-carbohydrazide with meth-
oxy substituent at the meta and para positions of phenyl 
ring showed an  IC50 value of 0.0059 μM. The SAR showed 
that the substitution of the phenyl ring with the electron-
withdrawing group (EWG) decreased the activity, and 
substituting the electron-donating group (EDG) improves 
the activity (Fig. 6). The enzyme kinetic studies revealed 
that compounds 4 and 5 were reversible and competitive 
inhibitors. The docking studies further unlocked the potent 
inhibitors' binding site interactions, and compounds fit well 
in the active site of MAO-B near the FAD cofactor. The 
synthesized compounds were subjected to in silico ADME 

evaluation. All the compounds displayed favorable ADME 
profiles and were predicted to have good oral bioavailabil-
ity. Thus, the active compounds 4 and 5 obtained in this 
series can be promising leads for developing isoxazole-based 
potent MAO-B inhibitors for treating PD [88].

In a recent study, Parambi et al. reported the synthesis 
of 26 oxygenated chalcone derivatives as the inhibitors of 
MAOs enzyme. All derivatives were potent against MAO-B, 
out of which compound 6 (E)-1-(Benzo[d][1,3]dioxol-5-yl)-
3-(4-fluorophenyl)prop-2-en-1-one, was the most potent 
compound with an  IC50 value of 0.0021 μM. On the other 
hand, most of the derivatives potently inhibited MAO-A, 

Fig. 5  Prenylated chalcone 
derivatives as MAO-B inhibi-
tors

Fig. 6  Isoxazole carbohydrazide 
derivatives as MAO-B inhibi-
tors
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and Compound 7 (E)-1-(Benzo[d][1,3]dioxol-5-yl)-3-(4-
ethylphenyl)prop-2-en-1-one, was the most potent MAO-A 
inhibitor showed an  IC50 value of 0.029 μM. Additionally, 
dialysis experiments showed that compounds 6 and 7 were 
reversible inhibitions of the MAOs enzyme. The SAR stud-
ies disclosed that replacement of halogen atoms such as fluo-
rine from para to any other position results in a decrease in 
the MAO-B inhibition, ethyl group at para position results in 
non-selective MAO-A inhibition and increasing the number 
of ‘n’ (number of alkyl groups between two oxygen atoms) 
results in an increase of inhibition potency (Fig. 7). The 
Kinetic studies showed that 6 and 7 competitively inhibited 
both the MAO isoforms, MAO-A and MAO-B  (Ki values of 
0.016 and 0.00050 μM respectively). Cytotoxicity studies 

revealed that potent compounds were non-toxic at 200 µg/
ml with a tiny percentage of cell death [89].

Enriquez et al. reported twelve novel 3-thiophenylcou-
marins as effective inhibitors of MAOs enzyme. Compound 
8 3-(4-Bromothiophen-2-yl)-7-hydroxy-2H-chromen-2-one 
was found to be the most potent compound with an  IC50 
value of 144 nM. Additionally, structure–activity relation-
ship studies (Fig. 8) showed that the presence of a hydroxy 
group at 8-position of coumarin enhances the MAO-A 
inhibitory activity, coumarin scaffold is essential for activ-
ity, selectivity for MAO-B increased when a single hydroxy 
group is present at 7-position of the coumarin ring. The 
Kinetics studies showed that compounds were reversible 
inhibitors. The derivatives showed neuroprotective agents 

Fig. 7  Oxygenated chalcone derivatives as MAO-B inhibitors

Fig. 8  3-thiophenylcoumarins 
derivatives as MAO-B inhibi-
tors
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in patients who were suffering from Parkinson’s Disease 
according to free radical scavenging assay. In this assay, 
compound 9 3-(4-Bromothiophen-2-yl)-7,8-dihydroxy-
2H-chromen-2-one displayed an  EC50 value of 5.82 µM near 
the  EC50 value of vitamin C i.e., 5.02 µM. MTT (dimethyl-
diphenyltetrazolium bromide) method was used to check the 
neurotoxicity profile of the compounds, and it found that 
there is a significant decrease in cell viability. Compound 
9 was evaluated against ROS (reactive oxygen species) in 
SH-SY5Y using DCFDA assay (conversion of dichlorofluo-
rescindiacetate to fluorescence dye dichlorofluorescein) and 
found that the compounds showed a significant effect against 
ROS formation. In vivo studies on the most potent com-
pound 8 revealed an increased locomotor activity, time per-
centage in movement, and movement velocity compared to 
reference compound selegiline. All the compounds showed a 
good pharmacokinetic profile and suitable physicochemical 
parameters in silico methods to be used as a candidate for 
lead optimization [90].

The same research group synthesized twelve novel Cou-
marin-pyridazine derivatives as MAO-B inhibitors. In vitro 
studies showed compound 3 was the most potent compound 
with an  IC50 value of 60 nM against MAO-B. In vivo studies 
suggested compound 10 7-Bromo-3-(6-bromopyridazin-3-
yl)-2H-chromen-2-one was a promising anti-parkinsonian 
agent. In structure–activity relationship studies, it was found 
that the presence of a bromine atom at C6 of pyridazine was 
good for the activity, and an additional increase in the inhibi-
tory potency and selectivity was observed when bromine 
atom was present at the coumarin fragment, particularly at 
C7 (Fig. 9). In silico (by ADME-Tox prediction) study sug-
gested that all the compounds exhibited drug-like properties 
[91]. The molecular docking studies disclosed some criti-
cal amino acid residues, such as Tyr60, Ile198, and Ile199, 
responsible for the activity of these coumarin-pyridazine 
derivatives [91].

Saglik et al. designed and synthesized a series of novel 
Benzylamine-sulphonamide derivatives for MAO-B. The 
structure was determined using spectroscopic methods such 
as 1H-NMR, 13C-NMR, and HRMS. In vitro studies revealed 
that all the compounds selectively inhibit the MAO-B 
enzyme and compounds 11 N-benzyl-2-((5-chlorobenzo[d]
thiazol-2-yl)thio)-N-(4-sulfamoylphenyl)acetamide and 
compound 12 2-((5-chlorobenzo[d]thiazol-2-yl)thio)-N-
(3-methylbenzyl)-N-(4-sulfamoylphenyl)acetamide were 
found to be most potent with  IC50 values of 0.041 µM and 
0.065 µM, respectively. In contrast, the reference compound 
selegiline had an  IC50 value of 0.037 µM. Additionally, 
structure–activity relationship studies showed that the Pres-
ence of the sulfonamide group increased the inhibitory activ-
ity, the presence of the electron-withdrawing group  (NO2) 
decreased the activity, and the Presence of the Benzothiazole 
enhanced the MAO-B inhibitory activity (Fig. 10). Kinet-
ics studies revealed that compounds 11 and 12 showed a 
reversible and non-competitive inhibition in contrast to the 
conventional MAO inhibitors which were irreversible. Cyto-
toxicity assay was performed against the NIH3T3 cell line 
and found that compounds 11 and 12 showed an  IC50 value 
of greater than 1000 which is significantly higher than the 
effective concentration, and it can be concluded that these 
compounds were non-cytotoxic at their effective concentra-
tion. Molecular docking studies were performed for com-
pound 11, and found that it has a good binding affinity with 
the MAO-B enzyme [92].

In a study, Mathew et al. synthesized ten derivatives 
of methylthiosemicarbazones and evaluated them against 
MAOs and acetylcholinesterase. The most potent activity 
was shown by compounds 13 (E)-2-(1-(2,3-dihydrobenzo[b]
[1,4]dioxin-6-yl)ethylidene)-N-methylhydrazine-1-car-
bothioamide, compound 14 (E)-N-methyl-2-(1-(4-mor-
pholinophenyl)ethylidene)hydrazine-1-carbothioamide, 
and compound 15 (E)-2-(1-(4-ethoxyphenyl)ethylidene)-N-

Fig. 9  Coumarin-pyridazine 
derivatives as MAO-B inhibi-
tors
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methylhydrazine-1-carbothioamide with  IC50 values 5.48, 
7.06, and 8.03 µM, respectively. Additionally, SARs studies 
showed that the Presence of morpholine moiety is impor-
tant for activity, compounds which contain five-membered 
attachments were less potent than the compounds which 
contain a six-membered attachment, and the introduction of 
methylenedioxy ring increases the activity (Fig. 11). Kinet-
ics studies which were performed on compound 14, revealed 
that compound 14 is a competitive and reversible inhibitor 
of MAO-B with a mean  Ki value of 2.39 µM. Cytotoxicity 

studies revealed that 14 is non-toxic to (African green mon-
key kidney cells) Vero cells  (IC50 = 198.95 µg/mL). In silico 
studies revealed that compound 14 interacted with Tyr326 
of MAO-B with pi-pi interactions and hydrophobic interac-
tions, which played a vital role in holding the phenyl system 
in the entrance cavity of monoamine oxidase B enzyme [93, 
94].

Lazewska et  al. reported a novel series of 27 com-
pounds based on 1-(3-(4-tert-butylphenoxy)propyl)piperi-
dine ( compound 16b) as MAO-B inhibitors. Compound 

Fig. 10  Benzylamine-sulphon-
amide derivatives as MAO-B 
inhibitors

Fig. 11  Methylthiosemicarbazone derivatives as MAO-B inhibitors



 Molecular Diversity

1 3

16a 1-(3-(4-(tert-butyl)phenoxy)propyl)pyrrolidine was 
the most potent  (IC50 = 2.7 nM), even higher than the ref-
erence compounds rasagiline and safinamide. The Struc-
ture–activity relationship studies showed that compounds 
that contain a cyclic amine moiety (such as pyrrolidine 
and piperidine) played a very significant role in hMAO-B 
inhibition. A decrease in activity was observed with an 
increase in the length of the linker carbon chain (Fig. 12). 
According to reversibility studies it was found that all the 
tested compounds are reversible inhibitors. The Kinetic 
studies suggested that the compounds have a mixed mode 
of inhibition. In vitro toxicity studies in the HER293 cell 
line revealed that 16b is safe at 50 µM concentration. 
In vivo studies showed that 16b possesses significant anti-
parkinsonian as observed in the cross-leg position test, but 
a low positive effect was seen in the bar test [95].

In a recent study, Panova et al. synthesized a series of 
pyrazolo[1,5-a]qunoxalin-4-ones derivatives as MAOs 
inhibitors. Compound 17 2-(4-methoxyphenyl)-4-oxo-
1l2,10l4-pyrazolo[2,3-a]quinoxaline-5(4H)-carbonitrile 
 (IC50 = 0.763 µM) and compound 18 5-acetamido-4-oxo-
2-phenyl-4,5-dihydro-1l2,10l4-pyrazolo[2,3-a]quinoxalin-
7-yl acetate  (IC50 = 0.181 µM) were specific inhibitors of 
MAO-A and MAO-B respectively. Compound 19 5-aceta-
mido-2-(4-chlorophenyl)-4-oxo-4,5-dihydro-1l2,10l4-
pyrazolo[2,3-a]quinoxalin-7-yl acetate  (IC50 = 0.028 µM) 
was found to be the most potent inhibitor of MAO-A.

Additionally, SAR studies showed that the substituted 
chlorophenyl group at  R1 is suitable for MAO-A inhibi-
tion, the Presence of the CN group at  R2 improves the 
MAO-B specificity, and the acetyl group at  R3 is essential 
for inhibitory activity (Fig. 13) [96].

Li et al. designed and synthesized pyridoxine-resveratrol 
derivatives as MAO-B inhibitors. In vitro studies revealed 
that compounds 20 (E)-3-(2-(2,2,8-trimethyl-4H-[1,3]
dioxino[4,5-c]pyridin-5-yl)vinyl)phenol, compound 21 (E)-
N-methyl-N-(prop-2-yn-1-yl)-4-(2-(2,2,8-trimethyl-4H-[1,3]
dioxino[4,5-c]pyridin-5-yl)vinyl)aniline, and 22 (E)-2,2,8-
trimethyl-5-(4-(4-methylpiperazin-1-yl)styryl)-4H-[1,3]
dioxino[4,5-c]pyridine were the most potent inhibitors with 
 IC50 values 0.01 µM, 0.01 µM, and 0.02 µM, respectively.

The Structure–activity relationship studies revealed that 
a decrease in the ability of electron-donating substituent 
would decrease the inhibitory activity, significant reduction 
of the activity observed when N-methyl-N-propargylamine 
is replaced with N, N-propargylamine. No change in activity 
when there is an extension of the carbon chain. The Pres-
ence of a cyclic amine group was found on the aromatic ring 
(Fig. 14). According to reversibility studies, it was found 
that compounds 20 and 22 were reversible inhibitors, but 
compound 21 was an irreversible inhibitor. Molecular dock-
ing of the most potent compound with the MAO enzyme 
revealed modes of interaction such as hydrogen bonds, 
hydrophobic interactions, and π–π interactions. The bind-
ing energy of compound 20 was found to be − 9.44 kcal/mol 
and − 11.65 kcal/mol for MAO-A and MAO-B, respectively. 
Synthesized compounds were checked for antioxidant activ-
ity, and results revealed that the compounds have good anti-
oxidant activity and antioxidant capacity index between 1.98 
and 2.89. All three derivatives showed a high blood–brain 
barrier permeability and the neuroprotective effect on 
 H2O2-induced PC-12 cell injury. So they can become excel-
lent MAO-B inhibitors [97].

In a study, Osmaniye et  al. reported a new series 
of thiosemicarbazide derivatives and evaluated them 

Fig. 12  1-(3-(4-tert-butylphe-
noxy)propyl)piperidine deriva-
tives as MAO-B inhibitors
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against the MAO-B enzyme. Compounds 23 (E)-
2-(benzofuran-2-ylmethylene)-N-(2-methoxyethyl)hydra-
zine-1-carbothioamide and compound 24 (E)-2-(benzo[b]
thiophen-2-ylmethylene)-N-(2-methoxyethyl)hydrazine-
1-carbothioamide were the most effective agent with an 
 IC50 value of 0.042 µM and 0.056 µM, respectively. These 
compounds showed a similar inhibitory effect as Selegiline 
(reference compound). The SAR studies (Fig. 15) revealed 

that the methoxyethyl group increased the MAO-B inhibi-
tory activity, and benzofuran was more active than benzo-
thiophene. The Kinetic studies disclosed that compounds 
were reversible and non-competitive, and  Ki values of com-
pounds 23 and 24 were 0.035 µM and 0.046 µM, respec-
tively. Cytotoxicity assay revealed that compounds 23 
and 24 were non-cytotoxic at therapeutic concentration 
against MAO-B. According to molecular docking studies, 
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compounds showed various interactions, such as π–π inter-
action and hydrogen bonds; hydrazine moiety was essentia 
for polar interactionsl. Compounds showed favorable van der 
Waals interactions with amino acid residues such as Leu171, 
Ile198, Cys172, Gln206, Phe343, Tyr326, Tyr398, Tyr435, 
and FAD molecule. Similarly, electrostatic interactions of 
these compounds were found with amino acid residues such 
as Gln65, Tyr188, Cys172, Ile198, Tyr326, Gln206, Tyr435, 
and FAD molecule [98].

Liu et al. designed and synthesized a series of novel 
3,4-dihydrocoumarin derivatives and evaluated their inhib-
itory activity against the MAO-B enzyme. Compound 25 
7-((4-(2-fluorobenzyl)benzyl)oxy)-2H-chromen-2-one was 
found the most potent with  IC50 equal to 0.37 nM. This 
compound was even more potent than reference iproniazid. 

The kinetics study showed that compound 25 is a reversible 
and competitive inhibitor of MAO-B. Additionally, Struc-
ture–Activity relationship studies showed that benzyloxy 
substituent is critical for activity, fluorine at ortho position 
enhanced the activity, an electron-withdrawing group such 
 NO2 decreased the activity, electron-donating  CH3 increased 
the activity as shown in (Fig. 16). Molecular modeling stud-
ies were done to explain the selectivity toward human mono-
amine oxidase enzyme. Dihydro coumarin moiety interacted 
with Lle 198, Leu 171, Gln 206, and Cys 172 amino acid 
residues. Cytotoxic and neuroprotective studies in the PC12 
cell line revealed that compounds showed little toxicity at 
200 µM, but most were safe at 50 µM and 100 µM, and 
compound 25 showed a 48% increase in protection against 
6-OHDA treated cells. According to ADMET prediction 

Fig. 15  Thiosemicarbazide 
derivatives as MAO-B inhibi-
tors

Fig. 16  The 2,3-dihydro cou-
marin derivatives as MAO-B 
inhibitors
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studies, new compounds showed a good pharmacokinetic 
profile which exhibits their biological importance [99].

In a recent study, Besada et al. synthesized a series of 
Pyridazinon-dithiocarbamate hybrids as MAO-B inhibi-
tors. The in vitro studies revealed that all the compounds 
showed selectivity for the hMAO-B enzyme. The most 
potent compounds were 26 2-(1-Methyl-6-oxo-1,6-dihy-
dropyridazin-3-yl)ethyl di(piperidin-1-yl)carbamodithio-
ate, 27 (1,4-Dimethyl-6-oxo-1,6-dihydropyridazin-3-yl)
methyl di(piperidin-1-yl)carbamodithioate, 28 (1-Methyl-
6-oxo-1,6-dihydropyridazin-4-yl)methyl di(piperidin-1-yl)
carbamodithioate, and 29 (1-Benzyl-6-oxo-1,6-dihydropyri-
dazin-4-yl)methyl di(piperidin-1-yl)carbamodithioate with 
 IC50 values 11.88 µM, 7.48 µM, 16.51 µM, and 6.71 µM 
respectively. It has been found that all the potent compounds 
showed reversible behavior. Additionally, the SAR studies 
(Fig. 17) revealed that the Presence of dithiocarbamate 
moiety at different positions of pyridazinone is essential 
for activity, and the substitution of dithiocarbamate at  C4 
slightly increased potency. The activity increased when the 
linker magnitude was increased from 1 to 2, and the Pres-
ence of a phenyl ring at the diazaheterocyclic core increased 
the the inhibition profile and selectivity of the compound. 
Methyl substitution on nitrogen was more potent than the 
bulky benzyl group. Furthermore, cell toxicity studies on 
human cell line SH-SY5V revealed that compounds exhib-
ited no significant cellular toxicity at the effective concentra-
tion. The Molecular Docking studies showed two different 
binding modes for the compounds i.e., the alkyl chain linking 
both scaffolds and the binding of the dithiocarbamate group 
in the proximity of the basic residues Phe168, Leu171, and 
Cys172. Finally, the predicted ADME descriptors showed 
that the novel pyridazinone/dithiocarbamate derivatives 

showed good drug-like properties for oral absorption and 
BBB permeation [100].

Halaby et al. synthesized 21 new biphenyl piperazine 
derivatives and screened them against MAOs. In vitro tests 
were performed, and compound 30 2-(4-(4-(2-ethoxyphenyl)
piperazin-1-yl)phenyl)-5-methyl-1H-benzo[d]imidazole was 
found to be the most potent compound with an  IC50 value of 
0.053 µM while the reference compound rasagiline and sele-
giline with  IC50 value of 0.237 µM and 0.040 µM, respec-
tively. The Structure–activity relationship studies (Fig. 18) 
revealed that 1,4-biphenylpiperazine moieties were signifi-
cant for MAO inhibitory activity, the presence of benzimi-
dazole scaffold increased the activity and substitutions with 

Fig. 17  Pyridazinone/dithiocar-
bamate derivatives as MAO-B 
inhibitors

Fig. 18  Biphenylpiperazine derivatives as MAO-B inhibitors
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electron-donating groups such as methoxy showed more 
selectivity toward MAO-A enzyme.

Furthermore, the kinetics study revealed that compound 
30 is a mixed inhibitor  (Ki = 0.017 µM). The reversibility 
studies showed that compound 30 was a reversible inhibi-
tor. According to cytotoxicity studies  IC50 value was calcu-
lated to be 54.45 µM against the SH-SY5Y cell line, which 
showed that synthesized derivatives were non-toxic at active 
concentration. The compound 30 showed excellent drug-
like properties as per ADME prediction studies. Molecular 
docking studies showed the binding interactions and essen-
tial amino acid residue in the binding cavity. Finally, this 
information is helpful in developing safe and potent new 
anti-parkinsonian drugs [101]. The Molecular docking 
studies revealed that the most potent compound 30 does not 
correctly fit in the active site of the MAO-A enzyme, so 
the compound may bind due to displacement of conserved 
water molecules and the reason for the significant affinity of 
the compound for the MAO-A enzyme. ADME parameters 
were predicted using the swissADME tool by calculations 
of various physicochemical parameters such as lipophilic-
ity, molecular weight, solubility, polarity, and polar surface 
area, etc., and concluded that these compounds may have 
good brain penetration and oral bioavailability and can be 
potential MAO-B inhibitors.

Tok et al. designed and synthesized thirty novel 2,5-dis-
ubstituted-1,3,4-oxadiazole derivatives and evaluated their 
inhibitory activity against MAOs enzyme. In vitro studies 
showed that none of the compounds were active against 
MAO-A, but compound 31 1-(4-Chlorophenyl)-3-(5-(5-
(4-chlorophenyl)-1,3,4-oxadiazol-2-yl)pyridin-2-yl)urea, 
compound 32 1-(4-Chlorophenyl)-3-(5-(5-(4-nitrophenyl)-
1,3,4-oxadiazol-2-yl)pyridin-2-yl)urea, and compound 33 

1-(4-Chlorophenyl)-3-(5-(5-(4-methoxyphenyl)-1,3,4-oxadi-
azol-2-yl)pyridin-2-yl)urea were the most potent compounds 
with  IC50 values 0.039, 0.066, and 0.045 µM, respectively 
against the MAO-B isoform. Additionally, structure–activity 
relationship studies revealed that the presence of 1,3,4-oxa-
diazole ring was necessary for the activity, substitution of 
phenyl ring with chloro-group enhanced the activity and 
replacing with nitro group decreased the activity as com-
pared to chloro-group (Fig. 19). Furthermore, the Docking 
studies were performed to determine the interaction between 
compound H8 and active site of the enzyme. A halogen bond 
was formed between the chlorine atom of the 4-chlorophe-
nyl ring attached to the urea group of compound 31 with 
the carbonyl of Leu164 amino acid, and a hydrogen bond 
was established between the amino group and the carbonyl 
of Pro102. So, all this information provides us with lead 
i.e. Compound 31 which is a potent and selective MAO-B 
inhibitor that can be used for further development of the 
treatment for Parkinson’s Disease [102].

Ozdemir et al. designed and synthesized a series of pyri-
dazinone derivatives as MAO-B inhibitors in a recent study. 
In vitro assay was carried out to check the MAO-inhibitory 
activity and selectivity of synthesized derivatives and found 
that compound 34 2-(3-(4-(4-Chlorophenyl)piperazin-1-yl)-
6-oxopyridazin-1(6H)-yl)acetohydrazide was the most effec-
tive MAO-B inhibitor with  Ki and selectivity index equal 
to 0.022 µM and 206.82, respectively. Furthermore, struc-
ture–activity relationship studies showed that piperazine-
linked pyridazinone is necessary for the activity, the substi-
tuted phenyl at the piperazine ring enhanced the hMAO-B 
inhibitory activity, and halogen substitutions are significant 
for the activity. In contrast, the addition of a second halogen 
decreased the activity (Fig. 20). Additionally, the Docking 

Fig. 19  1,3,4-oxadiazole deriva-
tives as MAO-B inhibitors
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studies revealed that pyridazinone and hydrazine group are 
essential for the interaction between the compound and 
active site of the enzyme. According to in silico ADME 
prediction studies, the compounds were drug-like for various 
physicochemical parameters [103].

Elkamhawy et al. synthesized 36 novel Safinamide deriv-
atives and evaluated them against MAO-B. Compound 35 
N-(3-chloro-4-((4-fluorobenzyl)oxy)phenyl)pyrazine-2-car-
boxamide, compound 36 N-(3-chloro-4-((3-chlorobenzyl)
oxy)phenyl)pyrazine-2-carboxamide, and compound 37 
N-(3-chloro-4-((3-(trifluoromethyl)benzyl)oxy)phenyl)
pyrazine-2-carboxamide showed the most potent inhibitory 
activity with  IC50 values of 9.7 nM, 5.1 nM, and 3.9 nM, 
respectively. Additionally, the SAR studies revealed that 
the presence of carboxamide moiety (2-pyrazinyl) enhanced 
the activity, and the presence of halogen at the 3,4-posi-
tion enhanced the MAO-B inhibitory activity as shown in 

(Fig. 21). Furthermore, the Docking studies provided knowl-
edge about the interaction between the inhibitor and enzyme. 
In vivo studies showed that the nigrostriatal dopaminergic 
neurons were significantly protected by oral administration 
of 37, so compound 37 can be considered a novel, potent, 
and selective hMAO-B inhibitor for treating Parkinson’s 
disease [104].

In a study, Rehuman et al. designed and synthesized two 
series of dimethoxy-halogenated chalcone derivatives and 
evaluated their MAO inhibitory activity. In vitro studies 
showed that compound 38 (E)-3-(4-Chlorophenyl)-1-(2,4-
dimethoxyphenyl)prop-2-en-1-one was the most potent 
inhibitor of MAO-B with an  IC50 value of 0.067 µM and 
followed by compound 39 (E)-1-(2,3-dimethoxyphenyl)-
3-(4-fluorophenyl)prop-2-en-1-one with an  IC50 value of 
0.118  µM. Additionally, structure–activity relationship 
studies revealed that different orientation of halogen atoms 

Fig. 20  Pyridazinone deriva-
tives as MAO-B inhibitors

Fig. 21  Safinamide derivatives 
as MAO-B inhibitors
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at different locations of B ring changed the activity of the 
compounds, such as chloro at ortho position was more potent 
as compared to meta or para position (Fig. 22). According 
to kinetics study, compounds 38 and 39 show competitive 
and reversible inhibition with  Ki value 0.032 and 0.045 µM, 
respectively. Cytotoxicity was checked using the MTT assay 
method on the Vero epithelial cell line, and it found that 
38 was non-toxic below 100 µg/ml. Induced fit docking 
simulations were performed to determine the binding mode 
between the synthesized compounds and MAO-B enzyme 
and found the two compounds with similar binding pockets 
with ortho-chlorine and ortho-fluorine interact with Y326 
and F168, and hydrogen bond stabilized the side chain of 
Y188 within the binding pocket. It was concluded that com-
pounds 38 and 39 were good candidates for the development 
of the new class of MAO-B inhibitors [105].

Alagoz et al. reported the synthesis of 16 novel com-
pounds and evaluated their MAO inhibitory activity 
against two isoforms of the enzyme, i.e., MAO-A and 
MAO-B. The most potent compound found to be 40 (E)-
N'-(4-chlorobenzylidene)-2-(3-(4-(4-methoxyphenyl)
piperazin-1-yl)-6-oxopyridazin-1(6H)-yl)acetohydrazide 
with an  IC50 value of 0.17 µM followed by compound 41 
(E)-N'-(4-chlorobenzylidene)-2-(3-morpholino-6-oxopyri-
dazin-1(6H)-yl)acetohydrazide  (IC50 = 0.27 µM). Addition-
ally, structure–activity relationship studies revealed that 
para-chloro substitution increased the MAO-B inhibitory 
activity, and the substitution of  R1 with -OCH3 showed 
higher activity than -CF3 substitution (Fig. 23). These com-
pounds were reversible and competitive inhibitors with  Ki 
value 0.230 and 0.146 µM, respectively. According to the 
PAMPA test, it is revealed that compounds 40 and 41 trans-
verse the blood–brain barrier very quickly as it has good 

CNS permeability. The docking studies revealed that the rea-
son for the potent inhibitory efficiency of compounds 40 and 
41 might be due to interaction with some essential residue 
i.e., E84 and Y326 in MAO-B. Bioavailability prediction 
studies showed that compounds 40 and 41 have drug-like 
properties, so they can be considered a candidate for devel-
oping MAO-B inhibitors [106].

Drugs in clinical trial for Parkinson’s disease

The MAO-B inhibitors and therapy under clinical trial in 
past years are listed in Table 1. Rasagiline, an irreversible 
inhibitor of monoamine oxidase B, has completed a clinical 
trial in which change in the cognitive brain biomarker was 
compared over 2.5 years in 12 patients, assessed by MRI in 
Parkinson’s disease (NCT02278588). In another phase two 
trials Brain and Motor behavior changes were investigated in 
Parkinson’s disease in response to the drug (NCT02789020). 
In a different clinical trial study effect of rasagiline was 
determined on gait treatment (NCT01098396). Rasagiline’s 
effect was evaluated on cognition in the early stages of PD 
and entered in phase 4 clinical trial (NCT01382342). Com-
pleted the clinical trial for the effect of rasagiline on sleep 
disturbance in Parkinson’s disease and showed a positive 
effect on sleep disturbance by reducing nocturnal akinesia 
(NCT01442610). In another study under phase 4, rasagil-
ine as an add-on dopamine agonist in the treatment of Par-
kinson’s disease was evaluated, and it found that it is not 
optimally controlled on dopamine as compared to placebo 
(NCT01049984).

Safinamide, a reversible MAO-B inhibitor, completed 
the clinical trial for the study of the overnight switch from 

Fig. 22  Dimethoxy-halogenated chalcone derivatives as MAO-B inhibitors
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Rasagiline to Safinamide, and safety and tolerability were 
checked when there was a sudden switch from one medica-
tion to another (NCT03843944). A different study showed 
that clinical outcome assessment of Parkinson’s disease with 
XADAGO (Safinamide) in Phase 4 of the clinical trial. In this 
study, the effect of XADAGO on motor and non-motor symp-
toms in Parkinson’s disease was evaluated (NCT03944785).

Zelapar (orally disintegrating Selegiline), an irreversible 
MAO-B inhibitor, completed the clinical trial titled efficacy 
of orally disintegrating selegiline in Parkinson’s patients expe-
riencing adverse effects with dopamine agonists. This study 
was performed to evaluate the side effects of dopamine, such 
as swelling of lower limbs or feet or hallucinations during the 
addition of orally disintegrating selegiline which can reduce 
the adverse effect and maintain the symptoms of Parkinson’s 
disease (NCT00443872).

Treatment by Chinese herbal medicine as adjuvant therapy 
for the treatment of Parkinson’s disease is in Phase 2 for con-
ventional medicine and Phase 3 for Chinese herbal medicine. 
This study explores the effect of Chinese herbal medicine on 
Parkinson’s disease parameters (NCT05001217).

Apomorphine, a non-selective dopamine agonist, is in a 
Phase 3 clinical trial to determine the safety and tolerability of 
continuous subcutaneous infusion (NCT02339064).

Data from patents documents

Some patents on MAO-B inhibitors that were published 
last few years are listed in Table 2. The Data of patent 
literature focuses structure of various compounds which 
may be used for Parkinson’s disease and other neurologi-
cal disorders. Papers that were published were added to 
this review.

Conclusion

Parkinson's disease (PD) is the second most common age-
related complex, idiopathic neurological disorder. Although 
there are several treatments available, none of them are very 
successful in preventing the loss of dopaminergic neurons 
and restoring DA levels in the striatum. Thus, the develop-
ment of novel anti-parkinsonians is the requirement of the 
present era. In-depth information on the design and synthe-
sis of various MAO-B inhibitors that are currently being 
developed (as of 2018) is presented in this review. We have 
also gone through SAR analyses for these derivatives, which 

Fig. 23  Pyridazinone deriva-
tives as MAO-B inhibitors
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showed the importance of various substituents on the basic 
moieties. The coumarin derivatives showed the presence of 
hydroxy in the seventh position enhances the activity, and 
halogen-substituted heterocyclics or substituted benzoxy 
group increases the activity. The chalcone moiety-containing 
compounds showed important for the activity in which the 
A ring may be substituted by the prenyl group of the meth-
oxy group for good activity and ring B to be substituted 
by electron-withdrawing groups at ortho position for better 
MAO-B inhibitory activity. Piperazine-linked pyridazinone 

is necessary for the activity, phenyl substituted at piperazine 
enhances the MAO-B inhibitory activity, and the presence 
of halogen improves the activity. This knowledge can be 
used as a springboard for creating novel anti-parkinsonian 
drugs. A multitarget approach is more beneficial than com-
pared to single target approach for the treatment of the neu-
rodegenerative disorder. MDLTs show an effective outcome 
for the treatment of PD by targeting sigma receptors. The 
multi-target disease modification approach can be used in 
the modification of misfolded alpha-syn in the treatment of 

Table 1  Drugs under clinical trial for the treatment of Parkinson’s disease

S.no Drug Study Last entry Phase Clinical trial number References

1 Safinamide
 

Overnight switch from Rasagiline to 
Safinamide

2022 Phase 4 NCT03843944 [107]

Clinical outcome assessment of Par-
kinson's disease patients treated with 
XADAGO (Safinamide)

2021 Completed NCT03944785 [108]

2 Apomorphine
 

Infusion of Apomorphine: Long-term 
safety study

2020 Phase 3 NCT02339064 [109]

3 Chinese herbal medicine Chinese herbal medicine treatment 
based on subgroups differentiation 
as an adjunct therapy for Parkinson’s 
disease: a pilot adds on randomized, 
controlled, Pragmatic clinical trial

2021 Phase2
Drug con-

ventional 
medicine

NCT05001217 [110]

4 Rasagiline
 

Image Parkinson’s disease progression 
study

2021 Phase 2 NCT02789020 [111]

Effect of 2.5 years of Rasagiline 
therapy on progression of cogni-
tive biomarkers assessed by MRI in 
Parkinson’s disease

2019 Completed NCT02278588 [112]

Effect of Rasagiline on sleep distur-
bance in Parkinson’s disease

2016 Phase 4 NCT01442610 [113]

Rasagiline as add on to dopamine 
agonist in the treatment of Parkin-
son’s disease

2015 Phase 4 NCT01049984 [114]

The effect of Rasagiline on cognition 
in Parkinson’s disease

Phase 4 NCT01382342 [115]

Rasagiline for Gait treatment 2010 Unknown NCT01098396 [116]
5 Zelapar

 
Efficacy of orally disintegrating 

selegiline in Parkinson’s Patients 
experiencing adverse effects with 
dopamine agonist

2014 Phase 4 NCT00443872 [117]
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Table 2  Patent documents surveyed in this review

S.
no

Patent number Applicant Priority 
date

Publication date Markush claim References

1 US 11,332,463 B2 Merck Sharp & Dohme 
Corp., Rahway, NJ (US)

29 April 
2019

17 May 2022

 

[118]

2 US 10,870,630 B2 Merck Sharp & Dohme 
Corp., Rahway, NJ (US)

30 October 
2017

22 December 
2020

 

[119]

3 US 9,738,640 B2 “NTZ LAB” Ltd., Sofia 
(BG)

11 July 
2014

22 August 2017

 

[120]

4 US 11,479,542 B2 CERECOR, INC., Rockvill, 
MD (US); MERCK 
SHARP & DOHME 
CORP., Rahway, NJ (US)

27 May 
2020

25 October

 

[121]

5 US 9,643,930 B2 NTZ LAB.,Sofia (BG) 5 June 2013 9 May 2017

 

[122]

6 US 10,253,000 B2 UNIVERSIDADE DE, 
Vigo (Pontevedra)(ES); 
UNIVERSIDADE DE 
SANTIAGO DE COM-
POSTELA, Santiago de 
Compostela (La Coruna) 
(ES)

3 March 
2015

9 April 2019

 

[123]

7 US 11,225,460 B2 SUNHINE LAKE 
PHARMA CO., LTD., 
Guangdong (CN)

7 March 
2019

18 January 
2022

 

[124]

8 EP 2,964,219 B1 "NTZ Lab" Ltd
1618 Sofia (BG)

14 January 
2013

13 January 
2016

 

[125]

9 EP 2991986 B1 "NTZ Lab" Ltd
1618 Sofia (BG)

29 January 
2013

3 March 2016

 

[126]

10 EP 3202759 B1 Megabiowood Co., Ltd. 
Jeollanam-do, 58141 
(KR)

18 Septem-
ber 2015

9 August 2017

 

[127]
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PD. The multi-target approach is very effective to predict the 
effectiveness of MAO-B inhibitors. For the treatment of PD, 
deep brain stimulation by the multi-target approach is very 
beneficial. Dual- acetylcholinesterase inhibitors and mono-
amine oxidase can be used as a multi-target approach for the 
treatment of PD. The monoaminergic and histaminergic sys-
tems both can also be targeted by the multi-target approach 
for PD. Therefore, a multi-target approach can be used for 
the potential treatment of PD. This review also highlights 
that drug in the early or late stages of clinical trials for Par-
kinson’s disease. This review provides useful information for 
developing new drugs with minimum side effects and better 
effectiveness for treatment of Parkinson’s disease.
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