
Vol.:(0123456789)1 3

Molecular Diversity 
https://doi.org/10.1007/s11030-023-10604-y

ORIGINAL ARTICLE 

Therapeutic target mapping from the genome of Kingella negevensis 
and biophysical inhibition assessment through PNP synthase binding 
with traditional medicinal compounds

Zarrin Basharat1 · Zainab Murtaza2 · Aisha Siddiqa1 · Sulaiman Mohammed Alnasser3 · Alotaibi Meshal4

Received: 2 November 2022 / Accepted: 10 January 2023 
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023

Abstract
Kingella negevensis belongs to the Neisseriaceae family. It is implied that it has significant virulence potential due to RTX 
toxin production, which can cause hemolysis. It usually colonizes the orophayrynx of pediatric population, along with 
Kingella kingae but has also been isolated from vagina. Todate no report on its drug targets is present, therefore putative 
therapeutic targets were identified from its genomic sequence data. Traditional Chinese (n > 36,000) and Indian medicinal 
compounds (n > 2000) were then screened against its pyridoxine 5'-phosphate synthase, a vital therapeutic target. Prior-
itized TCM compounds included ZINC02525131, ZINC33833737 and ZINC85486932, and Cadiyenol, 9,11,13-Octade-
catrienoic acid and 6-Gingerol from Indian medicinal library. Molecular dynamics simulation of top compounds revealed 
ZINC02525131 as having best stability for 100 ns, compared to Cadiyenol. ADMET profiling was then done, along with 
physiologically based pharmacokinetic simulation of these compounds in a population of 200 individuals, for 12 h to see 
fate of the ingested compound. Additionally, the impact of these compounds in a population with cirrhosis and renal impair-
ment was also simulated. We imply in light of all the studied parameters of safety and bioavailability, etc., that 6-Gingerol 
from Zingiber officinalis rhizome must be proceeded further for in vitro and in vivo testing for inhibition of K. negevensis.
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Introduction

Kingella negevensis is a gram-negative bacterium and pro-
duces RTX toxin associated hemolysis [1]. Its colonization 
is known in respiratory tract and oropharynx, with carriage 
and colonization resembling K. kingae [2, 3]. Its occur-
rence is known to increase from 6 to 24 month children and 
decrease thereafter [4]. Its role in the septic arthritis of an 
infant [2, 4, 5], endocarditis, pediatric osteomyelitis and bac-
teremia has been implicated [1], while the bacterial spread 
is through person to person contact [4].

Its genome has been sequenced, with genome size around 
2 MB [6]. This bacterium has been reported to show hetero-
geneity in genetic makeup in different strains [4]. Among 
several key virulence factors, human epithelial binding 
through elements such as an exopolysaccharide, a polysac-
charide capsule, an adhesin autotransporter, and a pili (type 
IV) are shared between K. negevensis and K. kingae [7]. Its 
integrative and conjugative elements (ICE) also resemble 
the Neisseria gonorrhea [8], with high homology between 
type IV secretion system protein virB4, involved in human 
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endothelial cell subversion. Apart from this, type IV cou-
pling protein T4CP, DNA transesterase enzyme relaxase 
and integrase are also exceptionally conserved. DNA uptake 
sequences with ICE sequences, match that of Neisseria gon-
orrhea and Neisseria meningitides [8].

Genome sequence availability is a boon for bioinfor-
matics based studies, where algorithms and softwares can 
be used to mine therapeutic targets and explore druggable 
potential of a bacteria [9]. This approach has previously 
been implemented for identifying therapeutic targets in drug 
resistant Salmonella typhi [10], Enterobacteriacea family 
[11], Bacillus sp. [12], Chlamydia pneumoniae [13] etc. 
Main principle is application of the ‘essentiality & selectiv-
ity criteria’, where a gene product presence should be nec-
essary for the bacterial survival and lacking in host. This 
guarantees that drug molecules targeted against the patho-
gen will not disrupt the host system [14]. The capability 
to discern molecules having a robust modulatory activity 
against a pathogen, using softwares (via lock and key fit 
contrivance) is a blessing for drug discovery. A large num-
ber of molecules with selectivity for an enzyme target can 
be screened in a small time. Molecular docking estimates 
the best binding through a regression or classification based 
scoring and thus, prioritizes hits in a library [15]. However, 
the hits should be subjected  to several filters as decoys, 
toxic, less bioavailable and non-active molecules are of lit-
tle use in real scenario. For this purpose, the absorption, 
distribution, metabolism, and excretion (ADME) properties, 
along with physiologically based pharmacokinetic (PBPK) 
profiling  helps confirm drug efficacy and tolerability [16]. 
In the past, poor PK properties (e.g., small bioavailability) 
have led to the failure of a large fraction of lead compounds 
[17]. This is why, good PK properties can be of motivation 
to further explore molecule as a drug. It can also shed light 
on dosing [18] and explicit adaptations of the regimen in 
different ethnicities [19], as well as health conditions.

Natural products have gained a lot of importance in 
drug design against pathogens and around half of the FDA 
approved drugs (USFDA, 1981–2019) are sourced or based 
on natural compounds [20]. Their large chemical space [21] 
as well as already established medicinal properties as tra-
ditional remedy against ailments makes them an important 
treasure trove for screening against pathogenic bacteria. 
Traditional Indian (Ayurvedic) and Traditional Chinese 
Medicine (TCM), have a deep-rooted history in the phar-
macopeia of respective areas. Drugs derived from these 
medicinal systems have been implicated in diseases like 
cancer [22–28], COVID-19 [28, 29]. Although traditional 
medicine comprises single or multi-component preparation, 
computational screening has lent a quick evaluation strat-
egy for single compound assessment. Therapeutic efficacy 
of compounds screened from these sources is not disease but 
rather structure based.

In this study, we inferred therapeutic targets and carried 
out virtual screening of two natural product libraries of 
Indian and Chinese origin, against pdxJ gene product of K. 
nevegensis. ADMET and PBPK properties were also studied 
for prioritized compounds of our selected natural product 
libraries. To the best of authors knowledge, this is the first 
report of therapeutic target map of K. nevegensis and screen-
ing of natural product inhibitors against it.

Material and methods

Data acquisition

Genome data of the Kingella negevensis strain Sch538, with 
accession CCNJ00000000, was obtained from NCBI. Cod-
ing DNA sequences and proteome was also procured.

Subtractive genomics

The data were subjected to subtractive genomics for thera-
peutic target identification using previously described pipe-
line [30]. Core i7 (7th generation) machine was used for 
analysis, with 8 GB RAM. Paralogous sequences with more 
than 60% similarity were removed and genomic data were 
converted to protein dataset. Data for DEG [31] and CEG 
[32]database, human proteome, gut microbiota (n = 84 bac-
teria), were obtained from UniProt (https:// www. unipr ot. 
org), NCBI (https:// www. ncbi. nlm. nih. gov), DEG (http:// 
www. essen tialg ene. org) and CEG website (http:// cefg. uestc. 
cn/ ceg), respectively. Homologous or non-homologous sets 
of proteins were filtered in the same order, against these 
datasets using standalone BLAST 2.2.31. One protein 
pyridoxine 5'-phosphate (PNP) synthase (Accession no: 
WP_032137481.1), involved in vitamin B6 synthesis, was 
chosen from obtained therapeutic targets for downstream 
analysis.

Structure modeling and virtual screening

PNP synthase was subjected to 3D structural modeling using 
I-Tasser [33], with LOMETS multi-threading algorithm at 
the back-end. Since LOMETS picks lots of templates from 
the PDB library, I-TASSER sifts out significant ones and 
retains top ten based on Z-score. Top template was a crystal 
structure of PNP synthase from Escherichia coli, with bound 
1-deoxy-d-xylulose phosphate (PDB ID: 1m5w), while ten 
structures in all were used for threading based structure 
modeling. Alignment of these structures were obtained using 
several softwares i.e. SPARKS-X, HHSEARCH, FFAS-3D, 
Neff-PPAS, pGenTHREADER, wdPPAS, PROSPECT2 and 
SP3. Generated decoys were clustered and top one picked 
by SPICKER program. C-score was used for final ranking 

https://www.uniprot.org
https://www.uniprot.org
https://www.ncbi.nlm.nih.gov
http://www.essentialgene.org
http://www.essentialgene.org
http://cefg.uestc.cn/ceg
http://cefg.uestc.cn/ceg
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of structures in top cluster. Pro-motif was used to study sec-
ondary structure while co-factor and COACH were used to 
predict ligand binding site residues. Ramachandran analysis 
was done for structure validation (https:// zlab. umass med. 
edu/ bu/ rama/ index. pl).

Docking based screening was carried out using Molecu-
lar Operating Environment (MOE) software version 2019.1. 
TCM consisted of 36,000 compounds while Ayurvedic 
library consisted of 2002 molecules. Triangle placement 
method was used for initial round of hit prioritization and 
forcefield based refinement was carried out for further 

improvement of hits screening. Three complexes with least 
energy values were saved from each library and ligand inter-
action diagrams were also drawn for 2D visualization. Top 
scoring compounds were subjected to dynamics simulation 
of 100 ns using Desmond, according to previously described 
parameters [34].

ADMET and PBPK evaluation

These compounds were subjected to ADMET using machine 
learning based pkCSM (https:// biosig. lab. uq. edu. au/ pkcsm/) 
platform. It is centered on a graph-based technique, where 
distance between atoms is used for training predictive 
regression and classification models, that calculate ADMET 
properties. Absorption variables include water solubility, 
intestinal absorption, Caco-2 and skin permeability, whereas 
distribution lists blood brain barrier and central nervous sys-
tem permeability. Metabolism of cytochrome enzymes is 
available, alongside clearance as excretion parameter. Tox-
icity is determined by quantity tolerated in rat, minnow, T. 
pyriformis, hepatoxicity, Ames toxicity and skin sensitiza-
tion [35].

PBPK modeling is based on a chain of differential 
equations and has been executed in GastroPlus software 
(SimulationsPlus LLC). Compound-specific parameters 
like weight, pKa values are input and plasma concentra-
tion is profiled after chosen route of administration. Sta-
tistically, oral route has been the most efficacious [36], so 
it was chosen. GastroPlus includes distribution factors for 
Pgp, PepT1, HPT1, OCTN1, LAT2 and OATP1A2 trans-
porters. Vmax is adjusted for each compartment, based on 
the values from these transporters. Health conditions were 
taken as (a) normal, (b) cirrhosis, (c) renal impairment. 
Quantity was taken as 100 mg, with intake in fasting state 
in the humans (population of 200). pH-dependent dissolu-
tion model was selected, with pH = 7.2. Diffusion coefficient 
values were taken as 0.5–1.5 × 10–5  cm2/sec, transit time 
value for the stomach = 0.25 h, transit time value for cae-
cum = 4.5 h, transit time value for colon = 13.5 h and drug 
particle density = 1.2 g/mL. Lengths of compartments, radii, 
transit times and pH values were adjusted in population, with 
respect to weights of individuals. Simulation time was 12 h 
and Advanced Compartmental and Transit (ACAT) Model 
was implemented.

Results and discussion

Therapeutic candidate mapping

After paralog removal, 2037 hits were obtained from the 
total 2104 CDSs. DEG similar sequences were 944 and 
CEG similar sequences were 814. Common sequences to 

Fig. 1  A 3D structure of the modeled PNP synthase of K. negeven-
sis, with active site residues indicated by dotted spheres and central 
gorge visible as a tunnel in the surface representation of the ribbon 
structure. B Ramachandran plot showing particularly good observa-
tions (95.87%) in GREEN Crosses, followed by slightly less favored 
in brown triangles (2.2%) and questionable ones in red circles (1.8%). 
Black and gray regions are for preferred conformations, with delta 
values ≥ 2

https://zlab.umassmed.edu/bu/rama/index.pl
https://zlab.umassmed.edu/bu/rama/index.pl
https://biosig.lab.uq.edu.au/pkcsm/
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both DEG and CEG proteome were only 798. These were 
compared to the human proteome and 386 non-similar pro-
teins were obtained, with 157 among these dissimilar to 
the human gut microbiota proteome. These were compared 
to the DrugBank and 41 druggable proteins were obtained 
(Supplementary Table 1).

Among the druggable proteins, PNP synthase was 
selected for further analysis as it is an essential part of path-
ways involved in amino acid synthesis in prokaryotes but 
absent in humans [37]. This protein is a product of pdxJ 
gene and the active form of vitamin B6 contrived by this 
enzyme serves as a co-enzyme for metabolism of several 
amino acid, lipid and glucose pathways. This enzyme is vital 
to many processes in the bacterium, including deamination, 
transamination, decarboxylation, and racemization. [26]. 
This enzyme family exists as a small but necessary fraction 
of prokaryotic genome (~ 1.5% of genome) [38]. Nearly 4% 
of reactions propelled by enzymes are linked with this fam-
ily of enzymes, as catalogued in the Enzyme Commission 
database, but approved drugs against this class of enzymes 
is scanty. We aimed to explore this enzyme as a drug target 
against K. negevensis and screen traditional medicinal com-
pounds against it. For this, first of all structure was modeled 
as no experimental model was present for this specie in the 
Protein databank.

3D structure modeling of PNP synthase

Structure of the PNP synthase (EC 2.6.99.2) was threaded 
using 10 templates by I-TASSER. Overall ERRAT qual-
ity factor was 97%. Top templates with identity of more 
than 50% with the aligned region as well as whole protein 

sequence were PNP synthase from Escherichia coli (PDB 
ID: 1M5W), pyridoxal phosphate biosynthetic protein from 
Burkholderia pseudomallei (PDB ID: 3GK0), and PNP syn-
thase from Pseudomonas aeruginosa (PDB ID: 5DLC). The 
obtained model was composed of 1 sheet, 6 beta-alpha–beta 
motif units (with some residues in loops and some in heli-
ces), 1 parallel wide type beta bulge, 8 parallel strands with 
topology 7X -1X -1X -1X -1X -1X -1X, 13 helices, 17 helix-
helix interacs, 8 beta turns, 2 gamma turns (Fig. 1A). Non-
glycine and non-proline residues were 218 while glycine 
and proline residues were 23. Normally, this enzyme depicts 
TIM-barrel or alpha/beta construction with eight helices and 
parallel beta strands. However, inner core is hydrophilic and 
three additional helices are present [37].

Five binding sites were identified by COACH and co-
factor. The crystal structure of PNP synthase from tem-
plate of Escherichia coli consisted of eight binding sites, 
and predicted active site residues by I-TASSER based on 
chosen templates consisted of Asn6, His9, Thr12, His42, 
Arg44, Glu69, Val91, Glu93, Gly102, Phe130, His152, 
Gly191, Thr193, Gly212, Ile216 residues. Binding site 
residue prioritization based on all hits via I-TASSER pre-
dicted highest bonding capability of Asn6, Glu150, Gly189, 
His190, Asn210, Ile211, Gly212, His213. Ramachandran 
plot showed 95% residues in the most favored and 5% in 
additional allowed region. Only 1.8% (four residues) were 
in the disallowed region (Fig. 1B).

Docking based screening

Structure modeling was followed by docking with TCM 
and Ayurvedic medicinal compounds. ZINC02525131, 

Table 1  Prioritized compounds with their binding score (S values) and MM/PBSA values

The MM/PBSA value for the enzyme was − 17.47 kcal/mol

Library Compound IUPAC name S value MM/PBSA 
value of com-
pound

MM/PBSA value 
of docked complex

TCM ZINC02525131/β- Hydroxy-
isovalerylshikonin

[(1R)-1-(5,8-dihydroxy-1,4-dioxonaphthalen-2-yl)-
4-methylpent-3-enyl] 3-hydroxy-3-methylbu-
tanoate

 − 7.61  − 0.04  − 17.21

ZINC33833737 (E,6R)-2-methyl-6-[(8R,9R,10R,13R,14S,17R)-
4,13,14-trimethyl-3,11-dioxo-
2,6,7,8,9,10,12,15,16,17-decahydro-1H-
cyclopenta[a]phenanthren-17-yl]hept-2-enoic acid

 − 7.44  − 0.10  − 17.19

ZINC85486932 (2R,3R,4S,5S,6R)-2-[[(1R,2R,4R,5R,6R)-5-butyl-6-
hydroxy-1,7,7-trimethyl-2-bicyclo[2.2.1]heptanyl]
oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

 − 7.34 0.02  − 17.17

Ayurvedic Cadiyenol methyl 5-[(9E)-6,15-dihydroxy-8-methoxyhepta-
deca-9,16-dien-11,13-diyn-7-yl]oxypentanoate

 − 8.73  − 0.34  − 17.19

9,11,13-Octadecatrienoic acid (9E,11E,13E)-octadeca-9,11,13-trienoic acid  − 7.55  − 0.13  − 17.24
6-gingerol (5S)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)

decan-3-one
 − 7.51 0  − 17.16
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Fig. 2  2D representation of the docked A PNP synthase and 
ZINC02525131 complex. B PNP synthase and ZINC33833737 com-
plex C PNP synthase and ZINC85486932 complex D PNP synthase 

and Cadiyenol complex E PNP synthase and 9,11,13-Octadecatrien-
oic acid complex F PNP synthase and 6-Gingerol complex. 3D depic-
tion of these representations is shown in the supplementary Fig. 1
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ZINC33833737, ZINC85486932 were mined as top inhibi-
tors from TCM, while Cadiyenol, 9,11,13-Octadecatrienoic 
acid and 6-Gingerol was prioritized from Ayurvedic library. 
Prioritized compounds (Table  1) showed bonding with 
majority of identified active site residues in all of the com-
plexes (Fig. 2). The S-values and MM/PBSA values were 
in alliance with each other, except for the 9,11,13-Octade-
catrienoic acid complex with PNP synthase, as it showed 
slightly lower value compared to Cadiyenol, which had a 
lower S-value but slightly higher MM/PBSA value.

Information for every compound was not available in lit-
erature but ZINC02525131/β-Hydroxyisovalerylshikonin, 
the top hit from TCM library, has previously been isolated 
from Lithospermum radix and known to impart chemothera-
peutic properties, conferring apoptotic cell death in human 
lung cancer DMS114 cells [39] and adenocarcinomic human 

alveolar basal epithelial A549 cells [39]. This compound has 
also been isolated from Lithospermum erythrorhizon [40]. 
It has also been reported that it has fungal properties and 
reduces mycelium formation in C. albicans [39]. Cadiye-
nol has been isolated from Centella asiatica (also known as 
Indian pennywort) [41, 42], and shown apoptotic activity in 
the murine lymphoma cells. 9,11,13-Octadecatrienoic acid, 
also called Punicic acid or ɑ-eleostearic acid, is a linoleic 
acid derivative and occurs in Momordica cochinchinensis 
and known to inhibit estrogen negative and positive breast 
cancer proliferation [43]. It also occurs in Pleurocybella por-
rigens [44], Momordica charantia [45], M. cymbalaria [46] 
Punica granatum [47] and Aleurites montana [48]. Its anti-
bacterial properties have been reported [49, 50]. 6-Gingerol 
is present in the rhizome of ginger (Zingiber officinalis) and 
the physicochemical properties of this tuber have made it a 

Fig. 3  A 100 ns MD simulation 
plot depicting PNP synthase and 
ZINC02525131 interaction. B 
Details of four type of interac-
tions shown by PNP synthase 
residues with ZINC02525131
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timeless traditional medicinal plant against several ailments 
[51]. Gingerol is a phenolic constituent and previously, 
6-Gingerol has been attributed to reduce allergic rhinitis by 
suppression of T-cells [52]. Extract with high content of 
6-Gingerol has acted as an antioxidant and anti-inflamma-
tory agent in murine models subjected to organophosphate 
pesticide chlorpyrifos, that causes oxidative damage [53]. 
It has also shown anti-proliferative effect in prostate cancer 
cells [54]. Here, we have predicted anti-bacterial property 
of all the compounds mentioned in Table 1.

Dynamics simulation

Dynamics simulation of two top complexes, PNP synthase 
with ZINC02525131 and Cadiyenol was conducted. The 
average RMSD for ZINC02525131 did not exceed 3 Å 

throughout the whole simulation, depicting the complex 
as stable (Fig. 3A). Protein ligand interaction (Fig. 3B) 
showed that Ser214 and Gly191played a significant role 
in ligand binding through hydrogen bonding, with a robust 
impact on metabolization, specificity and adsorption of 
ZINC02525131. Compared to these residues, Asn6, Asp8, 
His42, Arg44, Thr193, Gly212, His213 made small or tran-
sitory contact with ligand through hydrogen bonds. Hydro-
gen-bonded interactions arbitrated by a water molecule, also 
known as water bridges were made by Asn6, Asp8, His9, 
His42, Arg44, His190, Gly191, Thr193, His213. Transitory 
ionic interactions mediated by the protein backbone were 
displayed by just two residues, His42 and Glu69, while 
hydrophobic interaction by just Ile211. Arg44, His213, 
Ser214 and Gly191 retained interactions for more than 30% 
of the simulation time.

Fig. 4  A 100 ns MD simulation 
plot depicting PNP synthase 
and Cadiyenol interaction. B 
Details of four type of interac-
tions shown by PNP synthase 
residues with Cadiyenol
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Interaction plot with Cadiyenol (Fig. 4A) showed some 
fluctuations in the beginning of the simulation, high dis-
parity from 20 to 30 ns and later 60–80 ns. From 90 to 
100 ns, the ligand seemed to move away from the protein 
but the overall rmsd did not exceed 3 Å on the average. 
It was tightly bound with PNP synthase from 20 to 30 ns, 
60–70 ns and 80–90 ns. However, the pattern is not uniform 
so this interaction is more unstable than PNP synthase with 
ZINC02525131. This shows the discrepancy in the binding 
score value versus dynamics simulation plot, as the bind-
ing score of Cadiyenol was higher than ZINC02525131, 
but binding stability was inferred as less. Glu69, Phe130, 
and His190 retained interactions for more than 30% of the 
simulation time. Gly69 and His190 was making water bridge 
(Fig. 4B) and hydrogen bond interaction while Phe130 
depicted a hydrophobic interaction.

ADMET and pharmacokinetics

Good intestinal absorption was seen for the studied com-
pounds, except for ZINC85486932. Cadiyenol, 6-Gingerol 
and ZINC33833737 had high caco-2 permeability, mean-
ing high absorption of orally consumed drugs. Cadiyenol 
and 9,11,13-Octadecatrienoic acid were substrates and 
inhibitors of P-glycoprotein, means that they can bind but 
inhibit their transport outside of the cell. ZINC85486932 
seems to have a high tendency of being purged out of the 
cell as it did not show inhibition of any of the P-glycopro-
tein. ZINC02525131 had least tendency to cross skin, but 
overall almost all other compounds had low skin permeabil-
ity as well (values less than − 2.5). Steady state volume of 
distribution (VDss) is calculated to estimate the amount of 
dose required for uniform distribution of the drug in similar 
quantity in the plasma. The values were not too high (log 
VDss > 0.45) or too low (log VDss < − 0.15). Compounds 
did not show high blood brain barrier (BBB) permeability 
(none showed logBB > 0.3) but most poor BBB permeability 
was seen for ZINC85486932 (logBB < − 1). ZINC33833737 
showed some possibility of central nervous system pen-
etration while ZINC85486932 depicted no capability to 
cross central nervous system barrier. Compounds bind to 
cytochrome (CYP) 450 enzymes for detoxification, excre-
tion or activation. While some compounds were substrates 
of CYP3A4, none inhibited CYP1A2, CYP2C19, CYP2C9 
and CYP2D6. Only 6-Gingerol inhibited CYP3A4. Tradi-
tional Indian compounds had better clearance compared 
to TCM compounds, while no compound showed AMES 
toxicity. Highest tolerated doses were for ZINC02525131 
and 6-Gingerol. ZINC02525131 depicted hepatotoxicity 
and 9,11,13-Octadecatrienoic acid showed skin sensitiza-
tion but none of the compounds was an inhibitor of calcium 
channel hERG I/II. Inhibition of these genes causes long 
QT syndrome, further leading to ventricular arrhythmia and 

thus, should be stopped from further processing. In the past, 
many drugs have been withdrawn after showing this inhibi-
tion property.

Gastrointestinal tract absorption and kinetics of the com-
pound were also simulated. ZINC02525131 and 6-Gingerol 
had maximum bioavailability in healthy state, while Cadi-
yenol bioavailability improved from ~ 77 to 99% in liver and 
renal impairment. Absorption of all compounds remained 
equal to or increased as compared to bioavailability in 
impaired state. This may be because the transit and excre-
tion are considered as a continuous process in PBPK mod-
eling and rates of these processes deliberated as reciprocal 
values of individual compartment’s transit time. This means 
that even after completion of transit time through stomach, 
intestine and colon, a substantial quantity of drug might still 
be absorbed in the gut. During enterohepatic recirculation, 
the absorbed percentage may be more as some of the dose 
is reabsorbed after secretion in the bile. Impaired state may 
have an impact on this parameter and thus, values are higher 
compared to the healthy state. Least time was required for 
ZINC02525131 to reach highest plasma concentration, while 
highest for the 9,11,13-Octadecatrienoic acid in healthy 
state. In impaired health state, time was in slight alliance 
with healthy state, except for ZINC33833737. It showed a 
large disparity in time to reach maximum concentration in 
plasma (increased from approximately 4–5 h to 10 h & 8–9 h 
in liver and renal impairment, respectively. ZINC33833737 
also had the highest AUC till 12 h of simulation in healthy 
state, while 9,11,13-Octadecatrienoic acid had least AUC 
in liver impairment. ZINC33833737 concentration quantity 
was highest among all the compounds in healthy state, while 
ZINC85486932 showed highest concentration in impaired 
state.

K. negevensis has been isolated from the oral cavity of 
children [4, 55] and vagina in vaginosis [1]. It is known 
to produce RTX toxin and thus, designated a pathogen 
[1]. The mode of action of this class of toxins (part of 
type I secretion system and acting as a virulence factor) 
is hemolysis/cytotoxicity through membrane perforation 
of the host cell [56]. Todate, no report of therapeutic tar-
gets exists in literature for K. negevensis. For this reason, 
a comprehensive subtractive genomics strategy was uti-
lized to infer the candidates that quality as druggable. 
More than 40 such proteins were inferred (Supplementary 
Table 1). Among these, one (PNP synthase) was selected 
for further analysis based on its importance, functional 
role in cell and novelty. PNP synthase is a homoocta-
meric enzyme, that carries out catalysis of the last step 
of B6 vitamer biosynthesis, via condensation of deoxyx-
ylulose-5-phosphate and aminoacetone-3-phosphate. This 
synthesis is essential to many pathways (like amino acid 
metabolism and antibiotic production) [57, 58]. Addition-
ally, owing to the exclusive occurrence of PNP synthase 
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Table 2  ADMET parameters of the studied compounds

Property Model Name Unit ZINC02525131 ZINC33833737 ZINC85486932 Cadiyenol 9,11,13-Octa-
decatrienoic 
acid

6-Gingerol

Absorption Water solubility Numeric (log 
mol/L)

 − 4.214  − 5.132  − 2.829  − 2.998  − 4.749  − 4.787

Caco2 perme-
ability

Numeric (log 
Papp in 
 10–6 cm/s)

0.699 0.918 0.111 1.156 0.591 1.434

Intestinal 
absorption 
(human)

Numeric (% 
Absorbed)

78.779 100 52.119 95.457 91.636 97.964

Skin Perme-
ability

Numeric (log 
Kp)

 − 3.562  − 2.728  − 2.825  − 2.564  − 2.628  − 2.757

P-glycoprotein 
substrate

Categorical 
(Yes/No)

No No Yes Yes Yes No

P-glycoprotein I 
inhibitor

Categorical 
(Yes/No)

Yes No No Yes Yes Yes

P-glycoprotein II 
inhibitor

Categorical 
(Yes/No)

No Yes No Yes Yes No

Distribution VDss (human) Numeric (log 
L/kg)

 − 0.493  − 0.63  − 0.563  − 0.449  − 0.645  − 0.069

Drug fraction 
unbound 
(human)

Numeric (Fu) 0.216 0 0.386 0.273 0.126 0.092

BBB perme-
ability

Numeric (log 
BB)

 − 0.77  − 0.056  − 1.357  − 0.617  − 0.463  − 0.276

CNS perme-
ability

Numeric (log 
PS)

 − 2.991  − 1.916  − 4.507  − 2.926  − 2.995  − 2.721

Metabolism CYP2D6 sub-
strate

Categorical 
(Yes/No)

No No No No No No

CYP3A4 sub-
strate

Categorical 
(Yes/No)

Yes Yes No No Yes Yes

CYP1A2 inhi-
bitior

Categorical 
(Yes/No)

No No No No No No

CYP2C19 inhi-
bitior

Categorical 
(Yes/No)

No No No No No No

CYP2C9 inhi-
bitior

Categorical 
(Yes/No)

No No No No No No

CYP2D6 inhi-
bitior

Categorical 
(Yes/No)

No No No No No No

CYP3A4 inhi-
bitior

Categorical 
(Yes/No)

No No No No No Yes

Excretion Total Clearance Numeric (log 
ml/min/kg)

0.978 0.543 1.192 2.294 2.175 1.647

Renal OCT2 
substrate

Categorical 
(Yes/No)

No No No No No No
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in some bacteria and not in humans, as well as the vitality 
for bacterial survival, this enzyme is an encouraging tar-
get for screening antibacterial compounds. The structure 
of this enzyme in K. negevensis is not known yet and 
necessary for docking, so it was modeled using bioinfor-
matics approach of threading. Full-length PNP synthase 
model was constructed using iterative procedure, with 
similar structural fragments cut out from template pro-
tein structures and simulated for our sequence. Second-
ary structure and B-factor values complemented the 3D 
coordinate information, indicating that the residues with 
helix or sheet architecture and flexible or rigid. Helices 
comprised major portion of the protein, followed by coils 
and strands. The residues were flexible mostly in coil 
regions, with most flexibility at C and N terminal regions. 
Active site residues were predicted and used for screening 
natural product inhibitors (see Table 2).

Virtual screening of natural products is a swift strategy 
which involves interaction modeling of drug and protein, 
with favored pose having least  energy and showing sta-
ble configuration. Therefore, this strategy was adapted 
and natural products of traditional Indian and Chinese 
medicine origin, having a large structural as well as phys-
icochemical variety were screened. Docking revealed 

the binding conformations for the PNP synthase and 
natural product compounds. Usage of natural products 
derived from Ayurveda and traditional Chinese medici-
nal plants dates back to old times and is still utilized in 
some places of the world [59]. Their revitalization has 
occurred in cheminformatics based drug mining literature, 
with new studies looking for natural product based inhibi-
tors against pathogens [30, 60–62]. Structure docking was 
done on hits from TCM and Ayurvedic compounds against 
PNP synthase to identify potent inhibitors. Previously 
Ahmad et al. have reported a compound 2-acetyl-3-(2-
heptanamidoethyl)-1H-indol-6-yl heptanoate inhibitor of 
this enzyme through computational screening, with high 
affinity in Yersinia enterocolitica [63]. We prioritized six 
compounds from traditional medicinal plants/herbs, based 
on scoring functions of software’s where ADMET profil-
ing revealed 6-Gingerol as most readily bioavailable and 
safe. Its medicinal properties have been demonstrated pre-
viously as well [52, 53]. Some scientists date the usage of 
Zingiber officinale to more than 2000 years ago [64] as 
food condiment. Its use has been implied in both Indian 
and Chinese medicine [65]. This tuber is “generally rec-
ognized as safe” by the Food and Drug Administration, 
so the constituents of this condiment are nontoxic for 

Table 2  (continued)

Property Model Name Unit ZINC02525131 ZINC33833737 ZINC85486932 Cadiyenol 9,11,13-Octa-
decatrienoic 
acid

6-Gingerol

Toxicity AMES toxicity Categorical 
(Yes/No)

No No No No No No

Max. tolerated 
dose (human)

Numeric (log 
mg/kg/day)

0.375  − 0.226  − 0.043  − 0.241  − 0.857 1.156

hERG I inhibitor Categorical 
(Yes/No)

No No No No No No

hERG II inhibi-
tor

Categorical 
(Yes/No)

No No No No No No

Oral Rat Acute 
Toxicity 
(LD50)

Numeric (mol/
kg)

1.794 2.144 3.442 2.614 3.709 1.911

Oral Rat Chronic 
Toxicity 
(LOAEL)

Numeric (log 
mg/kg_bw/
day)

1.614 1.717 3.455 1.888 2.443 2.075

Hepatotoxicity Categorical 
(Yes/No)

Yes No No No No No

Skin Sensitiza-
tion

Categorical 
(Yes/No)

No No No No Yes No

T.pyriformis tox-
icity

Numeric (log 
ug/L)

0.781 0.463 0.285 0.343 0.841 0.907

Minnow toxicity Numeric (log 
mM)

1.104  − 0.72 4.431 0.39 0.528  − 1.178
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consumption [66]. Its antibacterial properties have been 
demonstrated previously and is an encouraging substitute 
of synthetic antimicrobials [67–69]. We suggest that the 
6-Gingerol be tested further in lab on cell lines and in 
mouse models, for targeted antibacterial action against K. 
negevensis (see Table 3).

Conclusion

K. negevensis possesses a small sized genome (~ 2 MB) 
but hosts several virulence factors and causes diseases in 
children. A case of vaginosis in adult patient has also been 
reported. The bacterium is currently understudied and sim-
ilarity as well as co-occurrence with K. kingae in many 
cases makes it additionally difficult to separately study 
and link causation with symptoms of the resultant disease. 
This is why few data is available in literature regarding 
this bacterium. Only three genome sequences are present 
in the public NCBI database. In this study, therapeutic 
targets were mined from the bacterium isolated from phar-
ynx of a child and using biophysical approach, structure 
modeling and virtual screening of a key drug target PNP 
synthase was done. We propose on the basis of PBPK and 
ADMET analysis that 6-Gingerol should be pursued fur-
ther as an antibacterial compound against K. negevensis.
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