Skip to main content

Advertisement

Log in

Recent synthetic strategies of small heterocyclic organic molecules with optoelectronic applications: a review

  • Comprehensive review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Over the past few years, there have been tremendous developments in the design and synthesis of organic optoelectronic materials with appealing applications in device fabrication of organic light-emitting diodes, superconductors, organic lasers, organic field-effect transistors, clean energy-producing organic solar cells, etc. There is an increasing demand for the synthesis of green, highly efficient organic optoelectronic materials to cope with the issue of efficiency roll-off in organic semiconductor-based devices. This review systematically summarized the recent progress in the design and synthesis of small organic molecules having promising optoelectronic properties for their potential applications in optoelectronic devices during the last 10-year range (2010–early 2021).

Graphical abstract

There is a surge of interest in small organic molecules with optoelectronic properties due to various advantages over other organic semiconductors. The novel synthesized materials advance the field of optoelectronics by fabrication of high-efficiency devices, such as optical biosensors, OLEDs, Solar cells, lasers, and optic fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Fig. 1
Fig. 2
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Fig. 3

Similar content being viewed by others

References

  1. Jacob MV (2014) Organic semiconductors: past, present, and future. Electronics 3:594–597. https://doi.org/10.3390/electronics3040594

    Article  Google Scholar 

  2. Chai Z, Wang C, Wang J, Liu F, Xie Y, Zhang YZ, Li Z (2017) Abnormal room temperature phosphorescence of purely organic boron containing compounds: the relationship between the emissive behavior and the molecular packing, and the potential related applications. Chem Comm 8:8336–8344. https://doi.org/10.1039/C7SC04098A

    Article  CAS  Google Scholar 

  3. Wang Z, Yu F, Xie J, Zhao J, Zou Y, Wang Z, Zhang Q (2020) Insights into the control of optoelectronic properties in mixedstacking charge-transfer complexes. Chem Eur J 26:3578–3585. https://doi.org/10.1002/chem.201904901

    Article  PubMed  CAS  Google Scholar 

  4. Zhao YS, Fu H, Peng A, Ma Y, Xiao D, Yao J (2008) Low-dimensional nanomaterials based on small organic molecules: preparation and optoelectronic properties. Adv Mater 20:2859–2876. https://doi.org/10.1155/2017/7350491

    Article  CAS  Google Scholar 

  5. Facchetti A (2013) Polymer donor–polymer acceptor (all-polymer) solar cells. Mater Today 16:123–132. https://doi.org/10.1016/j.mattod.2013.04.005

    Article  CAS  Google Scholar 

  6. Kira A, Shibano Y, Kang S, Hayashi H, Umeyama T, Matano Y, Imahori H (2010) Effects of Π-elongation and the fused position of quinoxaline-fused porphyrins as sensitizers in dye-sensitized solar cells on optical, electrochemical, and photovoltaic properties. Chem Lett 39:448–450. https://doi.org/10.1021/jp1004049

    Article  CAS  Google Scholar 

  7. Matano Y (2015) Synthesis and structure–property relationships of phosphole-based Π systems and their applications in organic solar cells. Chem Rec 15:636–650. https://doi.org/10.1002/tcr.201402101

    Article  PubMed  CAS  Google Scholar 

  8. Chen Z, Brown J, Drees M, Seger M, Hu Y, Xia Y, Facchetti A (2016) Benzo[d][1,2,3]thiadiazole (isoBT): synthesis, structural analysis, and implementation in semiconducting polymers. Chem Mater 28:6390–6400. https://doi.org/10.1021/acs.chemmater.6b02813

    Article  CAS  Google Scholar 

  9. Zaumseil J, Sirringhaus H (2007) Electron and ambipolar transport in organic field-effect transistors. Chem Rev 107:1296–1323. https://doi.org/10.1021/cr0501543

    Article  PubMed  CAS  Google Scholar 

  10. Ostroverkhova O (2016) Organic optoelectronic materials: mechanisms and applications. Chem Rev 116:13279–13412. https://doi.org/10.1021/cr0501543

    Article  PubMed  CAS  Google Scholar 

  11. Iqbal MS, Nazir MS, Ali Z, Iftikhar R, Hussain M, Imran SM (2022) Reduced graphene oxide coated poly-methyl methacrylate beads based thermoplastic polyurethane nanocomposites for gas sensing applications. Polymer. https://doi.org/10.1080/25740881.2022.2150864

    Article  Google Scholar 

  12. Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lüssem B, Leo K (2009) White organic light-emitting diodes with fluorescent tube efficiency. Nature 459:234–238. https://doi.org/10.1038/nature08003

    Article  PubMed  ADS  CAS  Google Scholar 

  13. Lv Q, Wang XD (2022) Low-dimensional organic structures with hierarchical components for advanced photonics. Sci Bull 67:991–994. https://doi.org/10.1016/j.scib.2022.04.005

    Article  CAS  Google Scholar 

  14. Forrest SR, Thompson ME (2007) Introduction: organic electronics and optoelectronics. Chem Rev 107:923–925. https://doi.org/10.1021/cr0501590

    Article  CAS  Google Scholar 

  15. Huang KT, Chueh CC, Chen WC (2021) Recent advance in renewable materials and green processes for optoelectronic applications. Mater Today Sustain 11:100057. https://doi.org/10.1016/j.mtsust.2020.100057

    Article  Google Scholar 

  16. Nielsen CB, Holliday S, Chen HY, Cryer SJ, McCulloch I (2015) Non-fullerene electron acceptors for use in organic solar cells. Acc Chem Res 48:2803–2812. https://doi.org/10.1021/acs.accounts.5b00199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wadsworth A, Moser M, Marks A, Little MS, Gasparini N, Brabec CJ, McCulloch I (2019) Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells. Chem Soc Rev 48:1596–1625. https://doi.org/10.1039/C7CS00892A

    Article  PubMed  CAS  Google Scholar 

  18. Lee CP, Lin RYY, Lin LY, Li CT, Chu TC, Sun SS, Ho KC (2015) Recent progress in organic sensitizers for dye-sensitized solar cells. RSC Adv 5:23810–23825. https://doi.org/10.1039/C4RA16493H

    Article  ADS  CAS  Google Scholar 

  19. Huskinson B, Marshak MP, Suh C, Er S, Gerhardt MR, Galvin CJ, Aziz MJ (2014) A metal-free organic–inorganic aqueous flow battery. Nature 505:195–198. https://doi.org/10.1038/nature12909

    Article  PubMed  ADS  CAS  Google Scholar 

  20. Zhang C, Lu C, Zhang F, Qiu F, Zhuang X, Feng X (2018) Two-dimensional organic cathode materials for alkali-metal-ion batteries. J Energy Chem 27:86–98. https://doi.org/10.1016/j.jechem.2017.11.008

    Article  Google Scholar 

  21. Wang Y, Deng Y, Qu Q, Zheng X, Zhang J, Liu G, Zheng H (2017) Ultrahigh-capacity organic anode with high-rate capability and long cycle life for lithium-ion batteries. ACS Energy Lett 2:2140–2148. https://doi.org/10.1021/acsenergylett.7b00622

    Article  CAS  Google Scholar 

  22. Deng W, Shen Y, Qian J, Cao Y, Yang H (2015) A perylene diimide crystal with high capacity and stable cyclability for Na-ion batteries. ACS Appl Mater Interfaces 7:21095–21099. https://doi.org/10.1021/acsami.5b04325

    Article  PubMed  CAS  Google Scholar 

  23. Russ B, Glaudell A, Urban JJ, Chabinyc ML, Segalman RA (2016) Organic thermoelectric materials for energy harvesting and temperature control. Nat Rev Mater 1:1–14. https://doi.org/10.1038/natrevmats.2016.50

    Article  CAS  Google Scholar 

  24. Cowen LM, Atoyo J, Carnie MJ, Baran D, Schroeder BC (2017) Organic materials for thermoelectric energy generation. ECS J Solid State Sci Technol 6:N3080. https://doi.org/10.1149/2.0121703jss

    Article  CAS  Google Scholar 

  25. Romero NA, Nicewicz DA (2016) Organic photoredox catalysis. Chem Rev 116:10075–10166. https://doi.org/10.1021/acs.chemrev.6b00057

    Article  PubMed  CAS  Google Scholar 

  26. Iftikhar R, Parveen I, Mazhar A, Iqbal MS, Kamal GM, Hafeez F, Pang AL, Ahmadipour M (2022) Small organic molecules as fluorescent sensors for the detection of highly toxic heavy metal cations in portable water. J Environ Chem Eng 11:109030. https://doi.org/10.1016/j.jece.2022.109030

    Article  CAS  Google Scholar 

  27. Sun X, Wang Y, Lei Y (2015) Fluorescence based explosive detection: from mechanisms to sensory materials. Chem Soc Rev 44:8019–8061. https://doi.org/10.1039/C5CS00496A

    Article  PubMed  CAS  Google Scholar 

  28. Iftikhar R, Kamran M, Iftikhar A, Parveen S, Naeem N, Jamil N (2022) Recent advances in the green synthesis of Betti bases and their applications: a review. Mol Diver 2022:1–27. https://doi.org/10.1007/s11030-022-10427-3

    Article  CAS  Google Scholar 

  29. Duan L, Qiao J, Sun Y, Qiu Y (2011) Strategies to design bipolar small molecules for OLEDs: donor–acceptor structure and non-donor–acceptor structure. Adv Mater 23:1137–1144. https://doi.org/10.1002/adma.201003816

    Article  PubMed  CAS  Google Scholar 

  30. Subeesh MS, Shanmugasundaram K, Sunesh CD, Chitumalla RK, Jang J, Choe Y (2016) Host–dopant system to generate bright electroluminescence from small organic molecule functionalized light-emitting electrochemical cell. J Phys Chem C 120:12207–12217. https://doi.org/10.1021/acs.jpcc.6b03710

    Article  CAS  Google Scholar 

  31. Xiao J, Yang H, Yin Z, Guo J, Boey F, Zhang H, Zhang Q (2011) Preparation, characterization, and photoswitching/light-emitting behaviors of coronene nanowires. J Mater Chem 21:1423–1427. https://doi.org/10.1039/C0JM02350G

    Article  CAS  Google Scholar 

  32. Zhuo MP, Su Y, Qu YK, Chen S, He GP, Yuan Y, Liao LS (2021) Hierarchical self-assembly of organic core/multi-shell microwires for trichromatic white-light sources. Adv Mater 33:2102719. https://doi.org/10.1002/adma.202102719

    Article  CAS  Google Scholar 

  33. Wu JJ, Wang XD, Liao LS (2019) Near-infrared solid-state lasers based on small organic molecules. ACS Photon 6:2590–2599. https://doi.org/10.1021/acsphotonics.9b01187

    Article  CAS  Google Scholar 

  34. Zhang W, Yao J, Zhao YS (2016) Organic micro/nanoscale lasers. Acc Chem Res 49:1691–1700. https://doi.org/10.1021/acs.accounts.6b00209

    Article  PubMed  CAS  Google Scholar 

  35. Wu Y, Yin Z, Xiao J, Liu Y, Wei F, Tan KJ, Zhang Q (2012) Crystal structure and phototransistor behavior of N-substituted heptacence. ACS Appl Mater Interfaces 4:1883–1886. https://doi.org/10.1021/am3003389

    Article  PubMed  CAS  Google Scholar 

  36. Paterson AF, Singh S, Fallon KJ, Hodsden T, Han Y, Schroeder BC, Anthopoulos TD (2018) Recent progress in high-mobility organic transistors: a reality check. Adv Mater 30:1801079. https://doi.org/10.1002/adma.201801079

    Article  CAS  Google Scholar 

  37. Mas-Torrent M, Rovira C (2008) Novel small molecules for organic field-effect transistors: towards processability and high performance. Chem Soc Rev 37:827–838. https://doi.org/10.1039/B614393H

    Article  PubMed  CAS  Google Scholar 

  38. Wilbraham L, Smajli D, Heath-Apostolopoulos I, Zwijnenburg MA (2020) Mapping the optoelectronic property space of small aromatic molecules. Commun Chem 3:1–9. https://doi.org/10.1038/s42004-020-0256-7

    Article  CAS  Google Scholar 

  39. Roncali J, Leriche P, Blanchard P (2014) Molecular materials for organic photovoltaics: small is beautiful. Adv Mater 26:3821–3838. https://doi.org/10.1002/adma.201305999

    Article  PubMed  CAS  Google Scholar 

  40. Lin Y, Li Y, Zhan X (2012) Small molecule semiconductors for high-efficiency organic photovoltaics. Chem Soc Rev 41:4245–4272. https://doi.org/10.1039/C2CS15313K

    Article  PubMed  CAS  Google Scholar 

  41. Zhang G, Zhang K, Yin Q, Jiang XF, Wang Z, Xin J, Cao Y (2017) High-performance ternary organic solar cell enabled by a thick active layer containing a liquid crystalline small molecule donor. J Am Chem Soc 139:2387–2395. https://doi.org/10.1021/jacs.6b11991

    Article  PubMed  CAS  Google Scholar 

  42. Li MG, Xia R, Li F, Liu X, Yang H, Feng W, Chen Y (2017) Solution-processed organic tandem solar cells with power conversion efficiencies > 12%. Nat Photon 11:85–90. https://doi.org/10.1038/nphoton.2016.240

    Article  ADS  CAS  Google Scholar 

  43. Deng D, Zhang Y, Zhang J, Wang Z, Zhu L, Fang J, Wei Z (2016) Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells. Nat Commun 7:13740–13749. https://doi.org/10.1038/ncomms13740

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  44. Kan B, Li M, Zhang Q, Liu F, Wan X, Wang Y, Chen Y (2015) A series of simple oligomer-like small molecules based on oligothiophenes for solution-processed solar cells with high efficiency. J Am Chem Soc 137:3886–3893. https://doi.org/10.1021/jacs.5b00305

    Article  PubMed  CAS  Google Scholar 

  45. Li Q, Li Z (2020) Molecular packing: another key point for the performance of organic and polymeric optoelectronic materials. Acc Chem Res 53:962–973. https://doi.org/10.1021/acs.accounts.0c00060

    Article  PubMed  CAS  Google Scholar 

  46. Ran NA, Roland S, Love JA, Savikhin V, Takacs CJ, Fu YT, Nguyen TQ (2017) Impact of interfacial molecular orientation on radiative recombination and charge generation efficiency. Nat Commun 8:1–9. https://doi.org/10.1038/s41467-017-00107-4

    Article  CAS  Google Scholar 

  47. Yokoyama D (2011) Molecular orientation in small-molecule organic light-emitting diodes. J Mater Chem 21:19187–19202. https://doi.org/10.1039/C1JM13417E

    Article  CAS  Google Scholar 

  48. Sutton C, Risko C, Bredas JL (2016) Noncovalent intermolecular interactions in organic electronic materials: implications for the molecular packing vs electronic properties of acenes. Chem Mater 28:3–16. https://doi.org/10.1021/acs.chemmater.5b03266

    Article  CAS  Google Scholar 

  49. Kumari T, Lee SM, Kang SH, Chen S, Yang C (2017) Ternary solar cells with a mixed face-on and edge-on orientation enable an unprecedented efficiency of 12.1%. Energy Environ Sci 10:258–265. https://doi.org/10.1039/C6EE02851A

    Article  CAS  Google Scholar 

  50. Li Q, Li Z (2017) The strong light-emission materials in the aggregated state: what happens from a single molecule to the collective group. Adv Sci 4:1600484. https://doi.org/10.1002/advs.201600484

    Article  CAS  Google Scholar 

  51. Li Q, Li Z (2020) Miracles of molecular uniting. Sci China Mater 63:177–184. https://doi.org/10.1007/s40843-019-1172-2

    Article  Google Scholar 

  52. Dou L, Liu Y, Hong Z, Li G, Yang Y (2015) Low-bandgap near-IR conjugated polymers/molecules for organic electronics. Chem Rev 23:12633–12665. https://doi.org/10.1021/acs.chemrev.5b00165

    Article  CAS  Google Scholar 

  53. Arias AC, MacKenzie JD, McCulloch I, Rivnay J, Salleo A (2010) Materials and applications for large area electronics: solution-based approaches. Chem Rev 110:3–24. https://doi.org/10.1021/cr900150b

    Article  PubMed  CAS  Google Scholar 

  54. Meng L (2018) Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 361:1094–1098. https://doi.org/10.1126/science.aat2612

    Article  PubMed  ADS  CAS  Google Scholar 

  55. Wang C, Zhang X, Hu W (2020) Organic photodiodes and phototransistors toward infrared detection: materials, devices, and applications. Chem Soc Rev 49:653–670. https://doi.org/10.1039/C9CS00431A

    Article  PubMed  CAS  Google Scholar 

  56. Zhang Q, Sun Y, Xu W, Zhu D (2014) Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently. Adv Mater 26:6829–6851. https://doi.org/10.1002/adma.201305371

    Article  PubMed  CAS  Google Scholar 

  57. Sun Z, Ye Q, Chi C, Wu J (2012) Low band gap polycyclic hydrocarbons: from closed-shell near infrared dyes and semiconductors to open-shell radicals. Chem Soc Rev 41:7857–7889. https://doi.org/10.1039/C2CS35211G

    Article  PubMed  CAS  Google Scholar 

  58. Chen Z, Li W, Sabuj MA, Li Y, Zhu W, Zeng M, Huang F (2021) Evolution of the electronic structure in open-shell donor–acceptor organic semiconductors. Nat Commun 12:1–10. https://doi.org/10.1038/s41467-021-26173-3

    Article  CAS  Google Scholar 

  59. Ren F, Zhang Y, Gong D, He X, Shi J, Zhang Q, Tu G (2020) Novel swivel-cruciform 5,5′-bibenzothiadiazole based small molecule donors for efficient organic solar cells. Org Electron 77:1566–1199. https://doi.org/10.1016/j.orgel.2019.105521

    Article  CAS  Google Scholar 

  60. Collins SK, Vachon MP (2006) Unlocking the potential of thiaheterohelicenes: chemical synthesis as the key. Org Biomol Chem 4:2518–2524. https://doi.org/10.1039/B603305A

    Article  PubMed  CAS  Google Scholar 

  61. Moussa S, Aloui F, Hassine BB (2011) Synthesis and optoelectronic properties of some new thiahelicenes. Synth Commun 41:1006–1016. https://doi.org/10.1080/00397911003707220

    Article  CAS  Google Scholar 

  62. Chen W, Li X, Long G, Li Y, Ganguly R, Zhang M, Zhang Q (2018) Pyrene-containing twistarene: twelve benzene rings fused in a row. Angew Chem 130:13743–13747. https://doi.org/10.1002/anie.201808779

    Article  ADS  CAS  Google Scholar 

  63. Cheng F, Yin Y, Zhang G, Wang Y, Deng W, Wu F (2017) Optoelectronic and thermal properties of highly fluorescence emissive 2,2′-distyryl- [3,3′]-bithiophenes. Dyes Pigm 140:222–228. https://doi.org/10.1016/j.dyepig.2017.01.042

    Article  CAS  Google Scholar 

  64. Zhao J, Yang X, Cheng M, Li S, Sun L (2013) Molecular design and performance of hydroxylpyridium sensitizers for dye-sensitized solar cells. ACS Appl Mater Interfaces 5:5227–5231. https://doi.org/10.1021/am4010545

    Article  PubMed  CAS  Google Scholar 

  65. Pei K, Zhou H, Yin Y, Zhang G, Pan W, Zhang Q, Guo H (2020) Highly fluorescence emissive 5,50-distyryl-3,30-bithiophenes: synthesis, crystal structure, optoelectronic and thermal properties. Dyes Pigm 179:108396–108404. https://doi.org/10.1016/j.dyepig.2020.108396

    Article  CAS  Google Scholar 

  66. Xiao J, Liu S, Liu Y, Ji L, Liu X, Zhang H, Zhang Q (2012) Synthesis, structure, and physical properties of 5,7,14,16-tetraphenyl-8:9,12:13-bisbenzo-hexatwistacene. Chem Asian J 7:561–564. https://doi.org/10.1002/asia.201100733

    Article  PubMed  CAS  Google Scholar 

  67. Wang Y, Liu B, Koh CW, Zhou X, Sun H, Yu J, Guo X (2019) Facile synthesis of polycyclic aromatic hydrocarbon (PAH)–based acceptors with fine-tuned optoelectronic properties: toward efficient additive-free nonfullerene organic solar cells. Adv Energy Mater 9:3328–3337. https://doi.org/10.1002/aenm.201803976

    Article  CAS  Google Scholar 

  68. Chen W, Yu F, Xu Q, Zhou G, Zhang Q (2020) Recent progress in high linearly fused polycyclic conjugated hydrocarbons (PCHS, n> 6) with well-defined structures. Adv Sci 7:1903766. https://doi.org/10.1002/advs.201903766

    Article  CAS  Google Scholar 

  69. Liu S, Li C, Xu Y, Li Z, Huang H, Fu N, Huang W (2020) Optoelectronic properties and aggregation effects on the performance of planar versus contorted pyrene-cored perylenediimide dimers for organic solar cells. Dyes Pigm 173:107976. https://doi.org/10.1016/j.dyepig.2019.107976

    Article  CAS  Google Scholar 

  70. Zhan C, Jiang YY, Yang MY, Lu LH, Xiao SQ (2014) Synthesis and optoelectronic properties of a novel molecular semiconductor of dithieno [5,6-b:11,12-b′] coronene-2, 3, 8, 9-tetracarboxylic tetraester. Chin Chem Lett 25:65–68. https://doi.org/10.1016/j.cclet.2013.09.006

    Article  CAS  Google Scholar 

  71. Farag AAM, Ammar AH, Gouda MA, Roushdy N (2019) Optical absorption and dispersion properties of 2-aminoanthracene-9,10-dione thin films for photodetector applications. Opt Mater 97:109398–109409. https://doi.org/10.1016/j.optmat.2019.109398

    Article  CAS  Google Scholar 

  72. Ammar AH, Farag AAM, Gouda MA, Roushdy N (2020) Performance of novel nanostructured thin films of 2-cyano-N-(9,10-dioxo-9,10-dihydro-anthracene-2-yl)-2-(2-phenylhydrazono)acetamide: synthesis and optoelectronic characteristics. Optik 226:165967. https://doi.org/10.1016/j.ijleo.2020.165967

    Article  ADS  CAS  Google Scholar 

  73. Rakhi R, Suresh CH (2020) Optoelectronic properties of polycyclic aromatic hydrocarbons of various sizes and shapes: a DFT study. Beilstein Arch 2020:119–153. https://doi.org/10.1002/slct.202004320

    Article  CAS  Google Scholar 

  74. Irfan A, Al-Sehemi AG, Assiri MA, Mumtaz MW (2019) Exploring the electronic, optical and charge transfer properties of acene-based organic semiconductor materials. Bull Mater Sci 42:145–151. https://doi.org/10.1007/s12034-019-1838-9

    Article  CAS  Google Scholar 

  75. Kitamura C (2012) Tuning the solid-state optical properties of tetracene derivatives by modification of the alkyl side-chains: crystallochromy and the highest fluorescence quantum yield in acenes larger than anthracene. Chem Rec 12:506–514. https://doi.org/10.1002/tcr.201200003

    Article  PubMed  CAS  Google Scholar 

  76. Miao Q (2014) Ten years of N-heteropentacenes as semiconductors for organic thin-film transistors. Adv Mater 26:5541–5549. https://doi.org/10.1002/adma.201305497

    Article  PubMed  CAS  Google Scholar 

  77. Gu PY, Wang Z, Liu G, Yao H, Wang Z, Li Y, Zhang Q (2017) Synthesis, full characterization, and field effect transistor behavior of a stable pyrene-fused N-heteroacene with twelve linearly annulated six-membered rings. Chem Mater 29:4172–4175. https://doi.org/10.1021/acs.chemmater.7b01318

    Article  CAS  Google Scholar 

  78. Li J, Zhang Q (2013) Mono-and oligocyclic aromatic ynes and diynes as building blocks to approach larger acenes, heteroacenes, and twistacenes. Synlett 24:686–696. https://doi.org/10.1055/s-0032-1318157

    Article  CAS  Google Scholar 

  79. Zhang Z, Zhang Q (2020) Recent progress in well-defined higher azaacenes (n≥ 6): synthesis, molecular packing, and applications. Mater Chem Front 4:3419–3432. https://doi.org/10.1039/C9QM00656G

    Article  CAS  Google Scholar 

  80. Wu W, Liu Y, Zhu D (2010) Π-Conjugated molecules with fused rings for organic field-effect transistors: design, synthesis and applications. Chem Soc Rev 39:1489–1502. https://doi.org/10.1039/B813123F

    Article  PubMed  CAS  Google Scholar 

  81. Anthony JE (2006) Functionalized acenes and heteroacenes for organic electronics. Chem Rev 106:5028–5048. https://doi.org/10.1021/cr050966z

    Article  PubMed  CAS  Google Scholar 

  82. Huang H, Chen D, Li F, Xing Z, Zhao J, Wu D, Xia J (2020) BN-embedded eleven-ring fused heteroaromatics: Synthesis, optoelectronic properties and fluoride susceptibility. Dyes Pigm 177:108271. https://doi.org/10.1016/j.dyepig.2020.108271

    Article  CAS  Google Scholar 

  83. Al-horaibi SA, Asiri AM, El-Shishtawy RM, Gaikwad ST, Rajbhoj ASJ (2019) Indoline and benzothiazole-based squaraine dye-sensitized solar cells containing bis-pendent sulfonate groups: synthesis, characterization and solar cell performance. Mol Struct 1195:591–597. https://doi.org/10.1016/j.molstruc.2019.05.068

    Article  ADS  CAS  Google Scholar 

  84. Jędrzejewska B, Kabatc J, Pietrzak M, Pa̧czkowski J (2003) Hemicyanine dyes: synthesis, structure and photophysical properties. Dyes Pigm 58:47–58. https://doi.org/10.1016/S0143-7208(03)00035-4

    Article  CAS  Google Scholar 

  85. Fadadu KB, Vaghasiya JV, Choudhury S, Soni SS (2015) Sulphonate anchored hemicyanine dyes for dye solar cell: A study on dipole moment and polarity. J Renew Sustain Energy 7:023114. https://doi.org/10.1063/1.4915519

    Article  CAS  Google Scholar 

  86. Al-horaibi SA, Alrabie AA, Alghamdi MT, Al-Ostoot FH, Garoon EM, Rajbhoj AS (2021) Novel hemicyanine sensitizers based on benzothiazole-indole for dyesensitized solar cells: synthesis, optoelectrical characterization and efficiency of solar cell. J Mol Struct 1224:128836. https://doi.org/10.1016/j.molstruc.2020.128836

    Article  CAS  Google Scholar 

  87. Lorente A, Pingel P, Liaptsis G, Krüger H, Janietz S (2017) Modulation of ambipolar charge transport characteristics in side chain polystyrenes as host materials for solution processed OLEDs. Org Electron 41:91–99. https://doi.org/10.1016/j.orgel.2016.11.036

    Article  CAS  Google Scholar 

  88. Jin R (2015) Theoretical study of the optical and charge transport properties of star-shaped molecules with 1,3,5-triazine-core derivatives as organic light-emitting and organic solar cells materials. Chim 18:954–959. https://doi.org/10.1016/j.crci.2015.05.021

    Article  CAS  Google Scholar 

  89. Chen HF, Yang SJ, Tsai ZH, Hung WY, Wang TC, Wong KT (2009) 1,3,5-Triazine derivatives as new electron transport–type host materials for highly efficient green phosphorescent OLEDs. Mater Chem 19:8112–8118. https://doi.org/10.1039/B913423A

    Article  CAS  Google Scholar 

  90. Vidya VM, Pola S, Chetti P (2021) Optoelectronic and charge transport properties of D-n-A type 1,3,5-triazine derivatives: a combined experimental and DFT study. Spectrochimica Acta Part A 245:118940. https://doi.org/10.1016/j.saa.2020.118940

    Article  CAS  Google Scholar 

  91. Wang H, Wang X, Fan P, Yang X, Yu J (2015) Enhanced power conversion efficiency of P3HT: PC71BM bulk heterojunction polymer solar cells by doping a high-mobility small organic molecule. Int J Photoenergy 2015:982064. https://doi.org/10.1155/2015/982064

    Article  CAS  Google Scholar 

  92. Guo X, Cui C, Zhang M, Huo L, Huang Y, Hou J, Li Y (2012) High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene C70 bisadduct with solvent additive. Energy Environ Sci 5:7943–7949. https://doi.org/10.1039/C2EE21481D

    Article  CAS  Google Scholar 

  93. Xiao B, Zhang Q, Li G, Du M, Geng Y, Sun X, Zhou E (2020) Side chain engineering of quinoxaline-based small molecular nonfullerene acceptors for high-performance poly(3-hexylthiophene)-based organic solar cells. Sci China Chem 63:254. https://doi.org/10.1007/s11426-019-9618-7

    Article  CAS  Google Scholar 

  94. Wu K, Wang Z, Zhan L, Zhong C, Gong S, Xie G, Yang C (2018) Realizing highly efficient solution-processed homojunction-like sky-blue OLEDs by using thermally activated delayed fluorescent emitters featuring an aggregation-induced emission property. J Phys Chem Lett 9:1547–1553. https://doi.org/10.1021/acs.jpclett.8b00344

    Article  PubMed  CAS  Google Scholar 

  95. Hüttner S, Sommer M, Steiner U, Thelakkat M (2010) Organic field effect transistors from triarylamine side-chain polymers. Appl Phys Lett 96:073503. https://doi.org/10.1063/1.3300464

    Article  ADS  CAS  Google Scholar 

  96. Meli A, Ebenhoch B, Kutonova K, Bihlmeier A, Feyrer A, Deck E, Bräse S (2019) Star-shaped triarylamines–one-step metal-free synthesis and optoelectronic properties. Synth Met 256:116138. https://doi.org/10.1016/j.synthmet.2019.116138

    Article  CAS  Google Scholar 

  97. Fernandes SS, Aires-de-Sousa J, Belsley M, Raposo MMM (2018) Synthesis of pyridazine derivatives by suzuki-miyaura cross-coupling reaction and evaluation of their optical and electronic properties through experimental and theoretical studies. Molecules 23:3014–3026. https://doi.org/10.3390/molecules23113014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Dhas SSJ, Das SJ, Dhas SMB (2013) Linear and nonlinear optical studies on 3,6-bis (2 pyridyl)pyridazine. Optik 124:5968–5971. https://doi.org/10.1016/j.ijleo.2013.04.091

    Article  ADS  CAS  Google Scholar 

  99. Klikar M, Le Poul P, Ruzicka A, Pytela O, Barsella A, Dorkenoo KD, Guen RR, Bures F, Achelle S (2017) Dipolar NLO chromophores bearing diazine rings as Π-conjugated linkers. J Org Chem 82:9435–9451. https://doi.org/10.1021/acs.joc.7b01442

    Article  PubMed  CAS  Google Scholar 

  100. Liu S, Zhang X, Ou C, Wang S, Yang X, Zhou X, Gao Z (2017) Structure–property Study on two new D-A type materials comprising pyridazine moiety and the OLED application as host. ACS Appl Mater Interfaces 9:26242–26251. https://doi.org/10.1021/acsami.7b04859

    Article  PubMed  CAS  Google Scholar 

  101. Misra R, Jadhav T, Dhokale B, Mobin SM (2014) Reversible mechanochromism and enhanced AIE in tetraphenylethene substituted phenanthroimidazoles. Chem Commun 50:9076–9078. https://doi.org/10.1039/C4CC02824D

    Article  CAS  Google Scholar 

  102. Chou HH, Chen YH, Hsu HP, Chang WH, Chen YH, Cheng CH (2012) Synthesis of diimidazolylstilbenes as n-type blue fluorophores: alternative dopant materials for highly efficient electroluminescent devices. Adv Mater 24:5867–6587. https://doi.org/10.1039/C6TC01975G

    Article  PubMed  CAS  Google Scholar 

  103. Li C, Wei J, Song X, Ye K, Zhang H, Zhang J, Wang Y (2016) Non-doped luminescent materials based organic light-emitting devices displaying high brightness under very low driving voltage. J Mater Chem C 4:7013–7019. https://doi.org/10.1002/adma.201202222

    Article  CAS  Google Scholar 

  104. Iliopoulos K, Krupka O, Gindre D, Sallé M (2010) Reversible two-photon optical data storage in coumarin-based copolymers. J Am Chem Soc 132:14343–14345. https://doi.org/10.1021/ja1047285

    Article  PubMed  CAS  Google Scholar 

  105. Liu X, Cole JM, Waddell PG, Lin TC, Radia J, Zeidler A (2012) Molecular origins of optoelectronic properties in coumarin dyes: toward designer solar cell and laser applications. J Phys Chem A 116:727–737. https://doi.org/10.1021/jp209925y

    Article  PubMed  CAS  Google Scholar 

  106. Pramod AG, Renuka CG, Nadaf YF, Rajaramakrishna R (2019) Impact of solvents on energy gap, photophysical, photometric properties for a new class of 4-HCM coumarin derivative: nonlinear optical studies and optoelectronic applications. J Mol Liq 292:111383. https://doi.org/10.1016/j.molliq.2019.111383

    Article  CAS  Google Scholar 

  107. Yu Y, Shi Q, Li Y, Liu T, Zhang L, Shuai Z, Li Y (2012) Solid supramolecular architecture of a perylene diimide derivative for fluorescent enhancement. Chem Asian J 7:2904–2911. https://doi.org/10.1002/asia.201200659

    Article  PubMed  CAS  Google Scholar 

  108. Duan J, Gu PY, Xiao J, Shen X, Liu X, Yi Y, Zhang Q (2017) Synthesis, physical properties and memory device application of a twelve-ring fused twistheteroacene. Chem Asian J 12:638–642. https://doi.org/10.1002/asia.201700048

    Article  PubMed  CAS  Google Scholar 

  109. Zhang Z, Wang Z, Aratani N, Zhu X, Zhang Q (2022) Seeing is believing: a wavy n-heteroarene with 20 six-membered rings linearly annulated in a row. CCS Chem. https://doi.org/10.31635/ccschem.022.202202013

    Article  PubMed  PubMed Central  Google Scholar 

  110. Tasior M, Gryko DT (2016) Synthesis and properties of ladder-type BN-heteroacenes and diazabenzoindoles built on a pyrrolopyrrole scaffold. J Org Chem 81:6580–6586. https://doi.org/10.1021/acs.joc.6b01209

    Article  PubMed  CAS  Google Scholar 

  111. Song T, Li Y, Liu X, Zhang C, Zhao X, Xiao J (2018) Synthesis, optoelectric property, and electroluminescent behavior of annulated dioxin derivative containing thirteen six-membered rings. Asian J Org Chem 7:2315–2319. https://doi.org/10.1002/ajoc.201800409

    Article  CAS  Google Scholar 

  112. Song S, Ju D, Li J, Li D, Wei Y, Dong C, Shuang S (2009) Synthesis and spectral characteristics of two novel intramolecular charge transfer fluorescent dyes. Talanta 77:1707–1714. https://doi.org/10.1016/j.talanta.2008.10.008

    Article  PubMed  CAS  Google Scholar 

  113. Bai G, Li J, Li D, Dong C, Han X, Lin P (2007) Synthesis and spectrum characteristic of four new organic fluorescent dyes of pyrazoline compounds. Dyes Pigm 75:93–98. https://doi.org/10.1016/j.dyepig.2006.04.017

    Article  CAS  Google Scholar 

  114. Shi HP, Dai JX, Zhang XF, Xu L, Wang L, Shi W, Fang L (2011) Experimental and theoretical study of two new pyrazoline derivatives based on dibenzofuran. Spectrochim Acta A 83:242–249. https://doi.org/10.1016/j.saa.2011.08.026

    Article  ADS  CAS  Google Scholar 

  115. Ramkumar V, Kannan P (2015) Highly fluorescent semiconducting pyrazoline materials for optoelectronics. Opt Mater 46:605–613. https://doi.org/10.1016/j.optmat.2015.05.045

    Article  ADS  CAS  Google Scholar 

  116. Zhan X, Zhang J, Tang S, Lin Y, Zhao M, Yang J, Li Z (2015) Pyrene fused perylene diimides: synthesis, characterization and applications in organic field-effect transistors and optical limiting with high performance. Chem Commun 51:7156–7159. https://doi.org/10.1039/C5CC00966A

    Article  CAS  Google Scholar 

  117. Fan Q, Liu Y, Hao Z, Li C, Wang Y, Tan H, Cao Y (2015) Polymer light-emitting devices based on europium(III) complex with 11-bromo-dipyrido[3,2-a:2′,3′-c]phenazine. Sci China Chem 58:1152–1158. https://doi.org/10.1007/s11426-015-5404-z

    Article  CAS  Google Scholar 

  118. Gu PY, Zhao Y, He JH, Zhang J, Wang C, Xu QF, Zhang Q (2015) Synthesis, physical properties, and light-emitting diode performance of phenazine-based derivatives with three, five, and nine fused six-membered rings. J Org Chem 80:3030–3035. https://doi.org/10.1021/jo5027707

    Article  PubMed  CAS  Google Scholar 

  119. Li G, Duong HM, Zhang Z, Xiao J, Liu L, Zhao Y, Zhang Q (2012) Approaching a stable, green twisted heteroacene through “clean reaction” strategy. Chem Commun 48:5974–5976. https://doi.org/10.1039/c2cc32048g

    Article  CAS  Google Scholar 

  120. Wang XX, Tao T, Geng J, Ma BB, Peng XY, Huang W (2014) Dipyrido[3,2-a:2′,3′-c]phenazine-based donor–acceptor aromatic heterocyclic compounds with thienyl and triphenylamino chromophores at the 2,7- and/or 10,13-positions. Chem Asian J 9:514–525. https://doi.org/10.1021/jp200433e

    Article  PubMed  CAS  Google Scholar 

  121. Wang HY, Liu F, Xie LH, Tang C, Peng B, Huang W, Wei W (2011) Topological arrangement of fluorenyl-substituted carbazole triads and starbursts: synthesis and optoelectronic properties. J Phys Chem C 115:6961–6967. https://doi.org/10.1002/asia.201301284

    Article  CAS  Google Scholar 

  122. Tsai MH, Hong YH, Chang CH, Su HC, Wu CC, Matoliukstyte A, Simokaitiene J, Grigalevicius S, Grazulevicius JV, Hsu CP (2007) 3-(9-Carbazolyl)carbazoles and 3,6-Di(9-carbazolyl)carbazoles as effective host materials for efficient blue organic electrophosphorescence. Adv Mater 19:862–866. https://doi.org/10.1002/adma.200600822

    Article  CAS  Google Scholar 

  123. Rehmann N, Ulbricht C, Kohnen A, Zacharias P, Gather MC, Hertel D, Holder E, Meerholz K, Schubert US (2007) Advanced device architecture for highly efficient organic light-emitting diodes with an orange-emitting crosslinkable iridium(III) complex. Adv Mater 20:129–133. https://doi.org/10.1002/adma.200701699

    Article  CAS  Google Scholar 

  124. Yang X, Muller DC, Neher D, Meerholz K (2006) Highly efficient polymeric electrophosphorescent diodes. Adv Mater 18:948–954. https://doi.org/10.1002/adma.200501867

    Article  CAS  Google Scholar 

  125. Tao Y, Wang Q, Yang C, Zhong C, Zhang K, Qin J, Ma D (2010) Tuning the optoelectronic properties of carbazole/oxadiazole hybrids through linkage modes: hosts for highly efficient green electrophosphorescence. Adv Funct Mater 20:304–311. https://doi.org/10.1002/adfm.200901615

    Article  CAS  Google Scholar 

  126. Palayangoda SS, Cai X, Adhikari RM, Neckers DC (2018) Carbazole-based donor–acceptor compounds: highly fluorescent organic nanoparticles. Org Lett 10:281–284. https://doi.org/10.1021/ol702666g

    Article  CAS  Google Scholar 

  127. Panthi K, Adhikari RM, Kinstle TH (2010) Aromatic fumaronitrile core-based donor-linker-acceptor-linker-donor (D–Π–A–Π–D) compounds: synthesis and photophysical properties. J Phys Chem A 114:4542–4549. https://doi.org/10.1021/jp9115589

    Article  PubMed  CAS  Google Scholar 

  128. Justin Thomas KR, Lin JT, Tao YT, Ko CW (2001) Light-emitting carbazole derivatives: potential electroluminescent materials. J Am Chem Soc 123:9404–9411. https://doi.org/10.1021/ja010819s

    Article  CAS  Google Scholar 

  129. Thayumanavan S, Barlow S, Mader SR (1997) Synthesis of unsymmetrical triarylamines for photonic applications via one-pot palladium-catalyzed aminations. Chem Mater 9:3231–3235. https://doi.org/10.1021/cm970567n

    Article  CAS  Google Scholar 

  130. Kong X, Kulkarni AP, Jenekhe SA (2003) Phenothiazine-based conjugated polymers: synthesis, electrochemistry, and light-emitting properties. Macromolecules 36:8992–8999. https://doi.org/10.1021/ma035087y

    Article  ADS  CAS  Google Scholar 

  131. Sun X, Liu Y, Xu X, Yang C, Yu G, Chen S, Zhu D (2005) Novel electroactive and photoactive molecular materials based on conjugated donor–acceptor structures for optoelectronic device applications. J Phys Chem 109:10786–10792. https://doi.org/10.1021/jp0509515

    Article  CAS  Google Scholar 

  132. Do TT, Pham HD, Manzhos S, Bell JM, Sonar P (2017) Molecular engineering strategy for high efficiency fullerene-free organic solar cells using conjugated 1,8-naphthalimide and fluorenone building blocks. ACS Appl Mater Interfaces 9:16967–16976. https://doi.org/10.1021/acsami.6b16395

    Article  PubMed  CAS  Google Scholar 

  133. Demadrille R, Firon M, Leroy J, Rannou P, Pron A (2005) Plastic solar cells based on fluorenone-containing oligomers and regioregular alternate copolymers. Adv Funct Mater 15:1547–1552. https://doi.org/10.1002/adfm.200500117

    Article  CAS  Google Scholar 

  134. Gan L, Li X, Cai X, Liu K, Li W, Su SJ (2018) D-A–D-type orange-light emitting thermally activated delayed fluorescence (TADF) materials based on a fluorenone unit: simulation, photoluminescence and electroluminescence studies. Beilstein J Org Chem 14:672–681. https://doi.org/10.3762/bjoc.14.55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Thangadurai D, Nithya I, Manjubaashini N, Bhuvanesh N, Bharathi G, Nandhakumar R, Nataraj D (2018) Fluorenone based fluorescent probe for selective “turn-on” detection of pyrophosphate and alanine. Spectrochim Acta A Mol Biomol Spectrosc 199:465–479. https://doi.org/10.1016/j.saa.2017.11.013

    Article  ADS  CAS  Google Scholar 

  136. Ju C, Li X, Yang G, Yuan C, Semin S, Feng Y, Xu J (2019) Polymorph dependent linear and nonlinear optical properties of naphthalenyl functionalized fluorenones. Dyes Pigm 166:272–282. https://doi.org/10.1016/j.dyepig.2019.03.030

    Article  CAS  Google Scholar 

  137. Bharath D, Kalainathan S (2014) Synthesis, growth, thermal and optical studies on third order nonlinear optical material (E)-2-{3-[2-(4-chlorophenyl)vinyl]-5,5-dimethylcyclohex-2-en-1-ylidene}malononitrile for optoelectronic application. Spectrochim Acta A Mol Biomol Spectrosc 120:32–39. https://doi.org/10.1016/j.saa.2013.10.001

    Article  PubMed  CAS  Google Scholar 

  138. Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3:270–274. https://doi.org/10.1038/nnano.2008.83

    Article  PubMed  CAS  Google Scholar 

  139. Mak KF (2008) Measurement of the optical conductivity of graphene. Phys Rev Lett 101:1964051–1964054. https://doi.org/10.1103/PhysRevLett.101.196405

    Article  CAS  Google Scholar 

  140. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GH, Evmenenko G, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460. https://doi.org/10.1155/2013/923403

    Article  PubMed  ADS  CAS  Google Scholar 

  141. Qin P, Kast H, Nazeeruddin MK, Zakeeruddin SM, Mishra A, Bäuerle P, Grätzel M (2014) Low band gap S, N-heteroacene-based oligothiophenes as hole-transporting and light absorbing materials for efficient perovskite-based solar cells. Energy Environ Sci 7:2981–2985. https://doi.org/10.1039/C4EE01220H

    Article  CAS  Google Scholar 

  142. Liu Y, Zhou J, Zhang X, Liu Z, Wan X, Tian J, Chen Y (2009) Synthesis, characterization and optical limiting property of covalently oligothiophene-functionalized graphene material. Carbon 47:3113–3121. https://doi.org/10.1016/j.carbon.2009.07.027

    Article  CAS  Google Scholar 

  143. Zhang Q, Divayana Y, Xiao J, Wang Z, Tiekink ER, Doung HM, Wudl F (2010) Synthesis, characterization, and bipolar transporting behavior of a new twisted polycyclic aromatic hydrocarbon:1′,4′-diphenyl-naphtho-(2′.3′:1.2)-pyrene-6′-nitro-7′-methyl Carboxylate. Chem Eur J 16:7422–7426. https://doi.org/10.1002/chem.201000026

    Article  PubMed  CAS  Google Scholar 

  144. Wang Z, Gu P, Liu G, Yao H, Wu Y, Li Y, Zhang Q (2017) A large pyrene-fused N-heteroacene: fifteen aromatic six-membered rings annulated in one row. Chem Commun 53:7772–7775. https://doi.org/10.1039/c7cc03898d

    Article  CAS  Google Scholar 

  145. Xiao J, Divayana Y, Zhang Q, Doung HM, Zhang H, Boey F, Wudl F (2010) Synthesis, structure, and optoelectronic properties of a new twistacene 1, 2, 3, 4, 6, 13-hexaphenyl-7: 8, 11: 12-bisbenzo-pentacene. J Mater Chem 20:8167–8170. https://doi.org/10.1039/c0jm01460e

    Article  CAS  Google Scholar 

  146. Li G, Wu Y, Gao J, Wang C, Li J, Zhang H, Zhang Q (2012) Synthesis and physical properties of four hexazapentacene derivatives. J Am Chem Soc 134:20298–20301. https://doi.org/10.1021/ja310131k

    Article  PubMed  CAS  Google Scholar 

  147. Li G, Wu Y, Gao J, Li J, Zhao Y, Zhang Q (2013) Synthesis, physical properties, and anion recognition of two novel larger azaacenes: benzannelated hexazaheptacene and benzannelated n, n′-dihydrohexazaheptacene. Chem Asian J 8:1574–1578. https://doi.org/10.1002/asia.201300208

    Article  PubMed  CAS  Google Scholar 

  148. Li G, Zheng K, Wang C, Leck KS, Hu F, Sun XW, Zhang Q (2013) Synthesis and nonvolatile memory behaviors of dioxatetraazapentacene derivatives. ACS Appl Mater Interfaces 5:6458–6462. https://doi.org/10.1021/am4023434

    Article  PubMed  CAS  Google Scholar 

  149. Chen X, Tan D, Yang DT (2022) Multiple-boron-nitrogen (multi-BN) doped Π-conjugated systems for optoelectronics. J Mater Chem C 37:13499–13532. https://doi.org/10.1039/D2TC01106A

    Article  Google Scholar 

  150. Li G, Xiong WW, Gu PY, Cao J, Zhu J, Ganguly R, Zhang Q (2015) 1, 5, 9-Triaza-2, 6, 10-triphenylboracoronene: BN-embedded analogue of coronene. Org lett 17:560–563. https://doi.org/10.1021/ol503575t

    Article  PubMed  CAS  Google Scholar 

  151. Li G, Zhao Y, Li J, Cao J, Zhu J, Sun XW, Zhang Q (2015) Synthesis, characterization, physical properties, and OLED application of single BN-fused perylene diimide. J Org Chem 80:196–203. https://doi.org/10.1021/jo502296z

    Article  PubMed  CAS  Google Scholar 

  152. Kousseff CJ, Halaksa R, Parr ZS, Nielsen CB (2021) Mixed ionic and electronic conduction in small-molecule semiconductors. Chem Rev 122:4397–4419. https://doi.org/10.1021/acs.chemrev.1c00314

    Article  PubMed  CAS  Google Scholar 

  153. Wu JJ, Zhuo MP, Lai R, Zou SN, Yan CC, Yuan Y, Liao LS (2021) Cascaded excited-state intramolecular proton transfer towards near-infrared organic lasers beyond 850 nm. Angew Chem 133:9196–9201. https://doi.org/10.1002/anie.202016786

    Article  ADS  CAS  Google Scholar 

  154. Yan CC, Liu YP, Yang WY, Wu JJ, Wang XD, Liao LS (2022) Excited-state intramolecular proton transfer parent core engineering for six-level system lasing toward 900 nm. Angew Chem Int Ed. https://doi.org/10.1002/anie.202210422

    Article  Google Scholar 

  155. Yang J, Ren Z, Chen B, Fang M, Zhao Z, Tang BZ, Li Z (2017) Three polymorphs of one luminogen: how the molecular packing affects the RTP and AIE properties? J Mater Chem C 5:9242–9246. https://doi.org/10.1039/C7TC03656F

    Article  CAS  Google Scholar 

  156. Wang J, Chai Z, Wang J, Wang C, Han M, Liao Q, Li Z (2019) Mechanoluminescence or room-temperature phosphorescence: molecular packing-dependent emission response. Angew Chem 131:17457–17462. https://doi.org/10.1002/anie.201911648

    Article  ADS  CAS  Google Scholar 

  157. Wang C, Xu B, Li M, Chi Z, Xie Y, Li Q, Li Z (2016) A stable tetraphenylethene derivative: aggregation-induced emission, different crystalline polymorphs, and totally different mechanoluminescence properties. Mater Horizons 3:220–225. https://doi.org/10.1039/C6MH00025H

    Article  CAS  Google Scholar 

  158. Tang R, Li Z (2017) Second-order nonlinear optical dendrimers and dendronized hyperbranched polymers. Chem Rec 17:71–89. https://doi.org/10.1002/tcr.201600065

    Article  PubMed  CAS  Google Scholar 

  159. Zhao YS, Fu H, Peng A, Ma Y, Liao Q, Yao J (2010) Construction and optoelectronic properties of organic one-dimensional nanostructures. Acc Chem Res 43:409–418. https://doi.org/10.1021/ar900219n

    Article  PubMed  CAS  Google Scholar 

  160. Giovannitti A, Maria IP, Hanifi D, Donahue MJ, Bryant D, Barth KJ, McCulloch I (2018) The role of the side chain on the performance of n-type conjugated polymers in aqueous electrolytes. Chem Mater 30:2945–2953. https://doi.org/10.1021/acs.chemmater.8b00321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Bischak CG, Flagg LQ, Yan K, Li CZ, Ginger DS (2019) Fullerene active layers for n-type organic electrochemical transistors. ACS Appl Mater Interfaces 11:28138–28144. https://doi.org/10.1021/acsami.9b11370

    Article  PubMed  CAS  Google Scholar 

  162. Parr ZS, Rashid RB, Paulsen BD, Poggi B, Tan E, Freeley M, Nielsen CB (2020) Semiconducting small molecules as active materials for p-type accumulation mode organic electrochemical transistors. Adv Electron Mater 6:2000215. https://doi.org/10.1002/aelm.202000215

    Article  CAS  Google Scholar 

  163. Naeem N, Shehzad RA, Ans M, Akhter MS, Iqbal J (2022) Dopant free triphenylamine-based hole transport materials with excellent photovoltaic properties for high-performance perovskite solar cells. Energy Technol 10:2100838. https://doi.org/10.1002/ente.202100838

    Article  CAS  Google Scholar 

  164. Naeem N, Tahir T, Ans M, Rasool A, Shehzad RA, Iqbal J (2021) Molecular engineering strategy of naphthalimide based small donor molecules for high-performance organic solar cells. Comput Theor Chem 1204:113416. https://doi.org/10.1016/j.comptc.2021.113416

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the University of New South Wales, Sydney, Australia for providing support and facilities to carry out this work. Ramsha Iftikhar would like to thank Ameer Fawad Zahoor (from Government College University Faisalabad, Faisalabad, Pakistan) for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

R. I contributed to conceptualization, data collection, writing of the original draft, and writing, reviewing, and editing of the manuscript. F. Z. K contributed to writing, reviewing, and editing of the manuscript and English proofreading. N. N contributed to writing, reviewing, and editing of the manuscript and visualization

Corresponding author

Correspondence to Ramsha Iftikhar.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iftikhar, R., Khan, F.Z. & Naeem, N. Recent synthetic strategies of small heterocyclic organic molecules with optoelectronic applications: a review. Mol Divers 28, 271–307 (2024). https://doi.org/10.1007/s11030-022-10597-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10597-0

Keywords

Navigation