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Abstract
Phytocompounds are a well-established source of drug discovery due to their unique chemical and functional diversities. In 
the area of cancer therapeutics, several phytocompounds have been used till date to design and develop new drugs. One of 
the desired interests of pharmaceutical companies and researchers globally is that new anti-cancer leads are discovered, for 
which phytocompounds can be considered a valuable source. Simultaneously, in recent years, the growth of computational 
approaches like virtual screening (VS), molecular dynamics (MD), pharmacophore modelling, Quantitative structure–activity 
relationship (QSAR), Absorption Distribution Metabolism Excretion and Toxicity (ADMET), network biology, and machine 
learning (ML) has gained importance due to their efficiency, reduced time-consuming nature, and cost-effectiveness. There-
fore, the present review amalgamates the information on plant-based molecules identified for cancer lead discovery from 
in silico approaches. The mandate of this review is to discuss studies published in the last 5–6 years that aim to identify the 
phytomolecules as leads against cancer with the help of traditional computational approaches as well as newer techniques 
like network pharmacology and ML. This review also lists the databases and webservers available in the public domain for 
phytocompounds related information that can be harnessed for drug discovery. It is expected that the present review would 
be useful to pharmacologists, medicinal chemists, molecular biologists, and other researchers involved in the development 
of natural products (NPs) into clinically effective lead molecules.
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Graphical abstract
Reviewed the niche area of phytomolecule-based anti-cancer drug discovery with respect to current trends including machine 
learning.
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Introduction

Cancer is one of the leading causes of death around the 
globe. According to the global cancer statistics 2020, cancer 
cases have risen to 19.3 million new cases and 10 million 
cancer-related deaths. It is estimated that the worldwide can-
cer burden stands to rise by an astounding 47% to 28.4 mil-
lion cases by 2040 [1]. Although a wide range of techniques 
like chemotherapy, radiation therapy, and immunotherapy 
are currently available to combat cancer, there still exists a 
need to find more diverse sources of new chemical entities 
(NCEs). While chemotherapy is currently the most reliable 
source of cancer treatment, it is known to be accompanied by 
adverse reactions, like toxic effects on non-targeted tissues, 
relapse, and drug resistance. Drugs designed from natural 
products (NPs) aim to counter several disadvantages of syn-
thetic compounds and traditional chemotherapy techniques 
[2]. Molecular scaffolds of NPs show high chemical diver-
sity making them suitable lead-like compounds for drug 
development [3]. Moreover, screening of NPs can lead to 

the addition of novel molecules to current libraries, which 
can then be checked on pharmacokinetic parameters of drug 
discovery [4–8]. Since most NPs are naturally bioactive thus, 
they have the potential to be used more effectively in the 
process of drug development. 50% of the known anti-cancer 
drugs are derived from NPs [9] among which plant-based 
NPs have been historically used [10, 11]. These compounds 
are either isolated phytomolecules or semi-synthetic mol-
ecules of natural origin [12, 13]. Also, different classes of 
plant-derived NPs have been tested against a number of can-
cer cell lines and their anti-cancer activity has been reported 
in the literature [14]. These molecules majorly belong to 
terpenoids, flavonoids, and alkaloids categories, as shown 
below (Fig. 1).

The boom in the amount of biological information gener-
ated has led to the age of biological big data [15]. Accord-
ingly, developing more and more computational resources 
to analyse the molecular features and chemical behaviour 
of NPs from an in silico perspective has gained increased 
importance. Various chemoinformatics and bioinformatics 
approaches such as structure and ligand-based techniques, 
pharmacophore modelling [16], virtual screening (VS) [17, 
18], Quantitative structure–activity relationship (QSAR) 
[19], and network pharmacology are currently being used 
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for the analysis and interpretation of these data. This has 
in turn led to the compilation of multiple libraries of NPs 
with potential lead-like properties [7, 14]. However, despite 
the availability of substantial amounts of chemicobiological 
data and traditional plant-based anti-cancer remedies, there 
remains a lacuna in the domain of plant-based anti-cancer 
drug development. Thus, to usher in a new generation of NP-
based drug discovery, machine learning (ML), deep learning 
(DL), and artificial intelligence (AI) have provided a pleth-
ora of functionalities that may play an important role in the 
drug discovery pipeline [20–23]. However, traditional drug 
discovery techniques are still more widespread compared to 
the newer generation of techniques (Fig. 2).

In the past 5 years, a number of reviews in this domain 
have been published, but they either tend to emphasise solely 
on the anti-cancer efficacy and mechanism of action of dif-
ferent phytomolecules [9, 24–26] or on the current practices 
of drug discovery and development [27–30]. The current 
review has therefore attempted to focus on studies that use 
plant-based molecules for anti-cancer drug discovery with 
the help of various in silico tools and techniques so that a 
better understanding can be achieved concerning the cur-
rent advancements and approaches available. Owing to the 
role of the current trends of data-driven drug discovery 
and development, we have added a section specifically to 
address the use of ML in NP-based drug discovery. We have 
highlighted the recent advancements in the field of cancer 
drug discovery, emphasising the use of various plant-based 
compounds that have proven anti-cancer properties as well 
as novel lead compounds that have shown positive results 
in bioactivity studies. Finally, we conclude with an over-
view of the different tools and databases currently in use that 
endorse the vast diversity of plant-derived NPs, NP-based 

applications, and their subsequent uses in NP-based drug 
discovery.

Computational approaches used for natural 
product drug discovery

In the field of computer-aided drug discovery (CADD), 
the use of structure and ligand-based approaches have 
been ongoing, depending on the availability of crystallised 
3-dimensional (3D) structure of the receptor molecule in the 
Protein Data Bank (PDB) [31]. For ease of understanding, 
we have categorised the different computational techniques 
under these two sub-categories and discussed in detail how 
they have been used to identify  the plant-derived NPs 
against different cancer targets.

Structure and ligand‑based drug discovery

In structure-based drug design, the active site of the mac-
romolecule structure, the presence of specific amino acids 
in the binding pockets, and the strength of interaction of 
the reacting species are all considered during lead identifi-
cation. Structure-based approaches like molecular docking 
and VS techniques have facilitated the fast and cost-effective 
analysis of large sets of compound databases to identify the 
potential hit molecules [17, 18, 32]. For selecting a hit com-
pound, many molecules are screened in order to identify 
the molecules having desired activity against a target with a 

Fig. 1   Different classes of phytomolecules with known anti-cancer 
evidence

Fig. 2   Current scenario of anti-cancer drug discovery
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specific set of chemical and structural features [33]. Ligand-
based drug design (LBDD), on the other hand, is used in 
the absence of relevant 3D structural information about the 
receptor molecule and is dependent on the information about 
the different small molecule ligands which are biologically 
active in a specific disease or against a drug target. QSAR 
and pharmacophore modelling are the most prominent tech-
niques used in LBDD to identify and design novel inhibitors.

Virtual screening (VS) and molecular 
dynamics (MD)

VS is a highly effective tool for discovering new active com-
pounds in drug discovery [34, 35]. MD, on the other hand, 
helps establish the strength and stability of the interactions 
in the protein–ligand complex [36, 37]. VS has been of help 
in the domain of drug development to screen libraries for 
identifying compounds that depict high binding affinities. 
This time-efficient technique not only helps in dealing with 
large datasets but also avoids late-stage drug development 
failures as it narrows down the number of compounds to be 
evaluated in biological assays. Unlike the static conforma-
tions used in classical models of drug development stud-
ies, the biomolecules in the human body are constantly in 
motion. Thus, it is necessary to develop an understanding of 
the changing molecular structures of receptors for design-
ing better approaches to drug development. MD predicts the 
molecular and structural changes of biomolecules under the 
influence of inter and intramolecular forces and therefore 
is essential for drug development studies. In the area of NP 
drug discovery, VS has been extensively used to discover 
molecules against different cancer targets. Examples of stud-
ies published in this area that uses VS and MD to identify 
the plant-based compounds as leads are listed in Table 1, a 
few of which are discussed in detail below.

Muhseen et al. [38] used VS, absorption, distribution, 
metabolism, excretion, and toxicity (ADMET) filtering and 
MD to discover potential inhibitors against Mouse double 
minute 2 homolog (MDM2) from terpenoid compounds. 
They have utilised (a) pharmacophore model-based VS and 
(b) tanimoto coefficient-based screening using co-crystal 
ligand, to identify the compounds with similar activity. 
Three terpenes, 3-trans-p-coumaroyl maslinic acid, silves-
trol, and betulonic acid, were thereafter identified as poten-
tial inhibitors of the p53–MDM2 interaction (Fig. 3A–C).

Zarezade et al. [36] screened ~ 20,000 NPs from ZINC 
[39] to identify the potential candidates for progesterone 
receptor (PR) inhibition, which is one of the key targets in 
breast cancer. The X-ray crystal structure of PR was obtained 
from PDB, and the dataset of NPs was virtually screened 
to select top 200 compounds with the best docking scores. 
After ADMET screening of these molecules, 56 drug-like 

molecules were identified and subjected to the MTiOpen-
Screen [35] web server to identify 10 compounds with the 
best estimated binding energy. These PR antagonists were 
then redocked using AutoDock v4.2 [40] and based on the 
calculated binding energy, inhibitory constant (Ki), and the 
key residues involved in the interactions, three NPs were 
identified as inhibitors (ZINC00936598, ZINC01020370, 
and ZINC00869973) (Fig. 3D–F). Among these three com-
pounds, ZINC00936598 had the highest binding energy 
and the lowest Ki. These compounds were then subjected to 
100-ns MD simulation to examine the stability of the pro-
tein–ligand complexes. H-bond analysis demonstrated that 
the lead compounds in complex with PR preserve stability 
during the simulation period. Comparative H-bond analysis 
identified that the lead compound ZINC00936598 was more 
potent than the other two molecules and was identified as the 
best PR antagonist for breast cancer treatment.

A primary reason for metastasis is the degradation of 
basement membrane mediated by Matrix Metalloproteinase 
(MMP9). Biswas et al. [41] used ~ 14,000 NPs from ZINC 
to identify the potential intercalating agents that inhibit 
the interaction between tumour necrosis factor receptor-
associated factor 6 (TRAF6) and Basigin (BSG) in order to 
control MMP9 overexpression. The BSG–TRAF6 complex 
was prepared using Zdock [42] protocol, following which 
the natural compound dataset was virtually screened using 
Genetic Optimisation for Ligand Docking (GOLD) software 
[43]. The top 20 compounds identified by GOLD score and 
Chemscore were then checked for their ADMET proper-
ties using various parameters and the best 3 molecules were 
selected. These 3 molecules were thereafter redocked (blind 
docking) using PatchDock [44] to validate their interaction 
with the target molecule complex. To further elucidate the 
effect of binding of these molecules and check the dynamic 
flexibility of the BSG-TRAF6 complex, a 60-ns MD sim-
ulation was performed. This led to the identification of 
ZINC02578057 (Fig. 3G) as the best inhibitor of the TRAF6 
complex. Therefore, the authors proposed this molecule as 
a potential inhibitor of the BSG-TRAF6 complex to control 
the overexpression of MMP9 in melanoma.

In another study, Jairajpuri et al. [17] performed VS of 
a set of ~ 33,000 ADMET-filtered NPs from ZINC data-
base against Sphingosine kinase 1 (SphK1). A list of ten hit 
compounds were identified based on their binding affini-
ties to SphK1. They were then further subjected to docking 
analysis to observe all possible docked conformers of the 
complexes. Finally, two compounds ZINC05434006 and 
ZINC04260971 (Fig. 3H, I) were proposed as inhibitors 
based on their interactions with the substrate binding site 
of SphK1.

Raj et al. [32] studied flavonoid-based molecules to find 
novel inhibitors for the Bromodomain-containing protein 
4 (BRD4). The active site was identified using literature 



905Molecular Diversity (2024) 28:901–925	

1 3

Ta
bl

e 
1  

S
tu

di
es

 li
sti

ng
 d

iff
er

en
t d

ru
g 

di
sc

ov
er

y 
te

ch
ni

qu
es

 u
se

d 
fo

r t
he

 id
en

tifi
ca

tio
n 

of
 N

P-
ba

se
d 

an
ti-

ca
nc

er
 m

ol
ec

ul
es

N
o.

 o
f n

at
ur

al
 c

om
po

un
d 

(s
)

N
P 

so
ur

ce
Ta

rg
et

 m
ol

ec
ul

e 
(s

)
C

an
ce

r
D

V
S

Q
M

M
D

PM
Q

A
D

B
es

t p
re

di
ct

ed
 c

om
po

un
d 

(s
)

Re
fe

re
nc

es

13
30

M
ul

tip
le

 N
P 

da
ta

ba
se

s
A

ro
m

at
as

e
C

er
vi

ca
l

Y
Y

–
Y

Y
–

–
Fo

rs
ko

lin
[6

9]
50

0
Te

rp
en

es
M

D
M

2
M

ul
tip

le
Y

Y
–

Y
Y

–
Y

3-
Tr

an
s-

p-
co

um
ar

oy
l 

m
as

lin
ic

 a
ci

d,
 si

lv
es

tro
l, 

be
tu

lo
ni

c 
ac

id

[3
8]

59
,6

19
In

te
rB

io
Sc

re
en

D
D

X
3

M
ul

tip
le

Y
Y

–
Y

Y
Y

C
ur

cu
m

in
[1

6]
22

N
an

di
na

 d
om

es
tic

a
CA

SP
6,

 M
A

PK
1,

 T
P5

3,
 

A
K

T1
M

ul
tip

le
Y

–
–

–
–

–
Y

Is
oq

ue
rc

itr
in

, q
ue

rc
itr

in
, 

be
rb

er
in

e,
 c

hl
or

og
en

ic
 

ac
id

, c
aff

ei
c 

ac
id

[7
0]

50
0 

Fl
av

on
oi

ds
 a

nd
 4

00
0 

ex
te

nd
ed

 fl
av

on
oi

ds
Ti

m
Te

c
B

R
D

s
M

ul
tip

le
Y

Y
–

Y
–

–
Y

2-
(3

,4
-D

ih
yd

ro
xy

ph
en

yl
)-

3,
7-

di
hy

dr
ox

y-
4H

-
ch

ro
m

en
-4

-o
ne

[3
2]

21
–

SI
RT

s
Tr

ip
le

-n
eg

at
iv

e 
B

re
as

t
Y

–
–

Y
–

–
Y

Su
lfo

ra
ph

an
e,

 k
ae

m
pf

er
ol

, 
ap

ig
en

in
, g

en
ist

ei
n,

 
be

rb
er

in
e,

 re
sv

er
at

ro
l, 

ho
no

ki
ol

[7
1]

14
5,

62
8

12
 N

P 
da

ta
ba

se
s

EG
FR

N
on

-s
m

al
l-c

el
l l

un
g 

ca
rc

in
om

a
Y

Y
–

Y
Y

Y
Y

ZI
N

C
03

93
54

85
, 

ZI
N

C
05

01
30

91
, 

ZI
N

C
35

46
59

64

[3
7]

Se
sa

m
in

 a
nd

 o
th

er
 st

ru
c-

tu
ra

lly
 re

la
te

d 
lig

na
ns

–
C

TN
N

B
1

C
ol

or
ec

ta
l

Y
–

–
Y

–
–

–
Se

sa
m

in
[7

2]

40
–

EG
FR

,
H

ER
2

B
re

as
t

Y
–

–
Y

–
–

Y
Pa

na
xa

di
ol

[7
3]

 ~
 90

,0
00

ZI
N

C
 N

P 
ca

ta
lo

gu
e

SP
H

K
1

M
ul

tip
le

Y
Y

–
Y

–
–

Y
ZI

N
C

05
43

40
06

, 
ZI

N
C

04
26

09
71

[1
7]

D
ie

ta
ry

 p
hy

to
ch

em
ic

al
s

–
SP

H
K

1
M

ul
tip

le
Y

–
–

Y
–

–
–

Q
ue

rc
et

in
, c

ap
sa

ic
in

[7
4]

59
3

M
as

lin
ic

 a
ci

d 
an

d 
an

al
og

s
B

re
as

t
Y

–
–

–
Y

Y
Y

P-
90

2
[6

1]
 ~

 90
,0

00
ZI

N
C

 N
P 

ca
ta

lo
gu

e
SG

K
1

M
ul

tip
le

Y
Y

–
Y

–
–

Y
ZI

N
C

00
31

90
00

[7
5]

16
8,

68
6

Pu
bC

he
m

D
N

M
T1

B
re

as
t

Y
Y

–
–

Y
–

Y
C

-7
75

6,
 C

-5
76

9,
 C

-1
72

3,
 

C
-2

12
9,

 C
-2

14
0

[1
8]

20
,0

00
ZI

N
C

PG
R

B
re

as
t

Y
Y

–
Y

–
–

Y
ZI

N
C

00
93

65
98

, 
ZI

N
C

00
86

99
73

, 
ZI

N
C

01
02

03
70

[3
6]

N
A

Sa
lv

ia
 la

ch
no

ca
ly

x
To

po
is

om
er

as
e 

I, 
To

po
i-

so
m

er
as

e 
II

a,
 T

op
oi

-
so

m
er

as
e 

II
b

M
ul

tip
le

Y
––

–
Y

–
–

–
G

er
an

yl
 fa

rn
es

ol
, s

ah
an

-
di

no
ne

, 4
-d

eh
yd

ro
sa

lv
il-

im
bi

no
l

[7
6]

45
Ve

rn
on

ia
 c

in
er

ea
EG

FR
N

on
-s

m
al

l-c
el

l l
un

g 
ca

rc
in

om
a

Y
Y

–
Y

–
–

–
Lu

te
ol

in
-7

-g
lu

co
si

de
, 

ep
ic

at
ec

hi
n 

ga
lla

te
[7

7]

57
,5

78
ZI

N
C

, S
up

er
N

at
ur

al
 II

, 
Ex

iM
ed

, I
nt

er
B

io
Sc

re
en

C
D

K
7

M
ul

tip
le

Y
Y

–
Y

Y
–

Y
ZI

N
C

20
39

24
30

, 
SN

00
11

21
75

, 
SN

00
00

47
18

, 
SN

00
26

22
61

[5
6]



906	 Molecular Diversity (2024) 28:901–925

1 3

Ta
bl

e 
1  

(c
on

tin
ue

d)

N
o.

 o
f n

at
ur

al
 c

om
po

un
d 

(s
)

N
P 

so
ur

ce
Ta

rg
et

 m
ol

ec
ul

e 
(s

)
C

an
ce

r
D

V
S

Q
M

M
D

PM
Q

A
D

B
es

t p
re

di
ct

ed
 c

om
po

un
d 

(s
)

Re
fe

re
nc

es

5
G

ly
cy

rr
he

tin
ic

 a
ci

d 
de

riv
a-

tiv
es

–
Tr

ip
le

-n
eg

at
iv

e 
B

re
as

t
Y

–
–

–
–

Y
–

G
A

-1
, G

A
-2

, G
A

-3
, G

A
-4

[6
6]

68
Fi

cu
s c

ar
ic

a 
L

C
D

K
2,

 C
D

K
6,

 T
op

oi
-

so
m

er
as

e 
I, 

To
po

is
om

er
-

as
e 

II
, B

C
L2

, V
EG

FR
2

M
ul

tip
le

Y
Y

–
Y

–
–

Y
β–

B
ou

rb
on

en
e

[7
8]

29
U

rs
ol

ic
 a

ci
d 

de
riv

at
iv

es
D

iff
er

en
t t

ar
ge

ts
 o

f N
F-

kB
 

pa
th

w
ay

B
la

dd
er

Y
–

–
–

–
Y

Y
T9

, B
42

[1
9]

68
D

r. 
D

uk
es

 P
hy

to
ch

em
i-

ca
l a

nd
 E

th
no

bo
ta

ni
ca

l 
da

ta
ba

se

C
TL

A
4,

 C
D

K
8,

 E
G

FR
, 

m
TO

R
, p

53
R

2,
 P

R
B

re
as

t
Y

Y
–

–
–

–
Y

U
rs

ol
ic

 a
ci

d,
 e

nt
er

ol
-

ac
to

ne
, p

ar
th

en
ol

id
e,

 
be

rb
er

in
e,

 b
er

be
ra

sti
ne

[7
9]

14
,5

09
ZI

N
C

TR
A

F6
-B

SG
 c

om
pl

ex
M

el
an

om
a

Y
Y

–
Y

–
–

Y
ZI

N
C

49
04

80
33

, 
ZI

N
C

02
58

05
7,

 
ZI

N
C

72
32

02
40

[4
1]

D
 d

oc
ki

ng
, V

S 
vi

rtu
al

 s
cr

ee
ni

ng
, Q

M
 q

ua
nt

um
 m

ec
ha

ni
cs

/m
ol

ec
ul

ar
 m

ec
ha

ni
cs

, M
D

 m
ol

ec
ul

ar
 d

yn
am

ic
s, 

PM
 p

ha
rm

ac
op

ho
re

 m
od

el
lin

g,
 Q

 Q
SA

R
, A

D
 A

D
M

ET
, M

D
M

2:
 M

ou
se

 D
ou

bl
e 

M
in

ut
e 

2;
 D

D
X

3:
 D

EA
D

-B
ox

 H
el

ic
as

e 
3;

 C
A

SP
6:

 C
as

pa
se

 6
; M

A
PK

1:
 M

ito
ge

n-
A

ct
iv

at
ed

 P
ro

te
in

 K
in

as
e 

1;
 T

P5
3:

 T
um

ou
r 

Pr
ot

ei
n 

P5
3;

 A
K

T1
: A

K
T 

Se
rin

e/
Th

re
on

in
e 

K
in

as
e 

1;
 B

R
D

s:
 

B
ro

m
od

om
ai

n-
co

nt
ai

ni
ng

 g
en

es
; S

IR
Ts

: S
irt

ui
n 

ge
ne

s;
 E

G
FR

: E
pi

de
rm

al
 G

ro
w

th
 F

ac
to

r R
ec

ep
to

r; 
C

TN
N

B
1:

 C
at

en
in

 B
et

a 
1;

 H
ER

2:
 H

um
an

 E
pi

de
rm

al
 G

ro
w

th
 F

ac
to

r 
Re

ce
pt

or
 2

; S
PH

K
1:

 
Sp

hi
ng

os
in

e 
K

in
as

e 
1;

 S
G

K
1:

 S
er

um
/G

lu
co

co
rti

co
id

 R
eg

ul
at

ed
 K

in
as

e 
1;

 D
N

M
T1

: D
N

A
 M

et
hy

ltr
an

sf
er

as
e 

1;
 P

G
R

: P
ro

ge
ste

ro
ne

 R
ec

ep
to

r; 
C

D
K

2:
 C

yc
lin

-D
ep

en
de

nt
 K

in
as

e 
2;

 C
D

K
6:

 C
yc

-
lin

-D
ep

en
de

nt
 K

in
as

e 
6;

 B
C

L2
: B

C
L2

 A
po

pt
os

is
 R

eg
ul

at
or

; V
EG

FR
2:

 V
as

cu
la

r 
En

do
th

el
ia

l G
ro

w
th

 F
ac

to
r 

Re
ce

pt
or

 2
; N

F-
kB

: N
uc

le
ar

 F
ac

to
r 

ka
pp

a 
B

; C
TL

A
4:

 C
yt

ot
ox

ic
 T

-L
ym

ph
oc

yt
e 

A
ss

oc
ia

te
d 

Pr
ot

ei
n 

4;
 C

D
K

7:
 C

yc
lin

-D
ep

en
de

nt
 K

in
as

e 
7;

 C
D

K
8:

 C
yc

lin
-D

ep
en

de
nt

 K
in

as
e 

8;
 m

TO
R

: m
am

m
al

ia
n 

Ta
rg

et
 O

f R
ap

am
yc

in
; p

53
R

2:
 p

53
-in

du
ci

bl
e 

rib
on

uc
le

ot
id

e 
re

du
ct

as
e 

ge
ne

; 
PR

: P
ro

ge
ste

ro
ne

 R
ec

ep
to

r; 
TR

A
F6

: T
N

F 
Re

ce
pt

or
-A

ss
oc

ia
te

d 
Fa

ct
or

 6
; B

SG
: B

as
ig

in



907Molecular Diversity (2024) 28:901–925	

1 3

evidence as well as SiteMap [45]. VS was performed for 
500 Flavonoids and 4000 extended flavonoids obtained 
from TimTec database (https://​www.​timtec.​net/) and several 
known inhibitors like Ms435, Bromosporine, and CPI203 
were also docked as reference. A three-tier docking approach 
was taken using the HTVS, SP, XP features of Glide [46] 
where at each stage the top 10% of the compounds were 
taken further. Finally, the top-ranked flavonoid compound 

was identified as ST055650 (Fig. 3J) which had high scores 
in both Glide and AutoDock docking analyses. Subsequently, 
the ADMET and drug-likeness of this molecule were also 
checked and a 50-ns MD simulation was performed to vali-
date the stability of the ligand molecule in complex with the 
target protein. All subsequent analyses of MD trajectory and 
interactions highlighted ST055650 as a potential candidate 
for BRD4 inhibition.

The double mutated Epidermal Growth Factor Recep-
tor (EGFR) is an important and well-known target in lung 
cancer that demonstrates resistance to the existing drugs. 
Therefore, Agarwal et al. [37] addressed this clinical prob-
lem using an integration of ADMET, ML, VS, and MD to 
identify the new NP inhibitors for the mutant protein. A total 
of 1,52,056 naturally occurring small molecules from 12 dif-
ferent NP databases were retrieved and their drug-likeness 
were evaluated using Lipinski’s rule of 5 and Ghose filter 
[47]. The 74,673 molecules that passed ADMET filtering 
were thereafter subjected to a random forest-based binary 
ML classification model (NPred) [20] to evaluate their anti-
cancer potential. 4681 potential anti-cancerous molecules 
with NPred score > 0.7 were then subjected to VS against 
the EGFR mutant crystal structure (PDB ID: 5EDQ) using 
FLEXX-PHARM [48]. As a result of the constraint docking 
approach, 1339 molecules were docked and finally 3 mole-
cules having lowest binding free energy were identified. 100-
ns MD simulations of the top 3 ligands (ZINC03935485, 
ZINC05013091, ZINC35465964) (Fig. 3K–M) showed that 
all the three inhibitors interact with Gln791 and Met793 in 
a conserved manner, similar to the co-crystal ligand. The 
study concluded with the identification of three naturally 
occurring molecules as potent inhibitors of the double 
mutated EGFR protein.

Pharmacophore modelling

The pharmacophore modelling technique is important for 
core/scaffold hopping and hit or lead optimisation. The vali-
dated pharmacophore models are used to search for bioac-
tive molecules from compound databases, containing a large 
number of structures. Some of the highly used pharmacoph-
oric features are, hydrogen bond acceptor (HBA), hydrogen 
bond donor (HBD), hydrophobic (HY), ring aromatic (RA), 
and others such as positive ionisable and negative ionisable 
structures. One of the key features of using pharmacophore-
based techniques is that it is effective both in the presence 
and absence of receptor structure. By generating pharmaco-
phores, it is possible to identify the specific interacting spe-
cies of a molecule that are crucial for either eliciting any bio-
logical response or blocking it [49]. Along with the chemical 
features of any bioactive compound, their biological features 
are also highlighted by pharmacophores. Based on the type 

Fig. 3   Structures of A 3-trans-p-coumaroyl maslinic acid, B Sil-
vestrol C Betulonic acid, D ZINC00936598, E ZINC01020370, 
F ZINC00869973, G ZINC02578057, H ZINC03935485, I 
ZINC05013091, J ST055650, K ZINC03935485, L ZINC05013091, 
M ZINC35465964

https://www.timtec.net/
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of molecule used to generate the pharmacophore, the entire 
process can be classified into two subtypes: ligand-based and 
structure-based pharmacophore modelling. In the ligand-
based methods, the knowledge of known active compounds 
is used for pharmacophore generation. The structure-based 
approach on the other hand requires a bound receptor–ligand 
complex to elucidate the underlying interactions of the bind-
ing pocket that can be used to generate the pharmacophores 
[50]. The details of a few studies published in this area in the 
last five years have been compiled and provided in Table 1. 
These studies highlight the use of pharmacophore-based 
approaches for the identification of phytomolecules having 
potential anti-cancer activities. A few of these case studies 
have also been discussed below.

Complex-based pharmacophore generation techniques 
were used by Babu et al. [51] for studying natural compound 
derived inhibitors against seven therapeutic targets of gastric 
cancer. The three flavonoids 5-hydroxy-7,4′-dimethoxy-6,8-
di-C-methylflavone, kaempferol-3-O-β-d-glucopyranoside 
(Fig.  4A) and kaempferol-3-O-α-l-rhamnopyranoside 
(Fig. 4B) from the fruits of the medicinal plant Syzygium 
alternifolium were isolated and their anti-gastric cancer 
activity was checked against the AGS cell line. Using molec-
ular docking studies, it was found that Human Epidermal 
Growth Factor Receptor 2 (HER2) showed maximum affin-
ity with these ligands. Thus, the docking poses of these 3 
compounds in the active site of HER2 were utilised to gen-
erate pharmacophore models. The pharmacophore model 
generated for the best complex (selected based on cytotoxic 
profile and docking score) was used as a query in the ZINC 
database to identify the compounds with 90% similarity to 
the best compound. After subsequent docking and MD stud-
ies, the three isolated compounds as well as ZINC67903192 
(Fig. 4C) were identified as promising HER2 inhibitors 
against gastric cancer.

Bommu et al. [34] had used ligand-based pharmacoph-
ore techniques to identify the potential inhibitors for EGFR, 
which is an important target in non-small cell lung cancer 
(NSCLC). The authors have used the plant-based NP querce-
tin as a template for ligand-based VS and identified 100 ana-
logs with similar pharmacological properties to quercetin 
(Fig. 4D). Molecular docking of the 100 quercetin analogs 
in the binding pocket of EGFR led to the identification of 
10 molecules based on their binding affinities. Pharmacoph-
ore modelling of these 10 lead molecules was followed by 
the generation of a merged pharmacophore to identify the 

Fig. 4   Structures of A Kaempferol-3-O-β-d-glucopyranoside, B 
Kaempferol-3-O-α-l-rhamnopyranoside, C ZINC67903192, D 
Quercetin, E Curcumin, F ZINC85643856, G ZINC85646292, 
H ZINC96221218, I ZINC00241889, J ZINC11866307, K 
ZINC38143676, L SR84, M SR300, N SR413, O SR823, P SR530, 
Q ZINC20392430, R SN00112175, S SN00004718, T SN00262261

▸
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important features that contribute towards the better binding 
efficiency of these molecules. Further analysis of the drug-
likeness and ADMET properties of these molecules revealed 
that the molecules follow ADMET properties and therefore 
can be considered for drug development.

In a few studies, different types of pharmacophore models 
are often used in conjunction, like the common feature and 
receptor-based pharmacophore models generated by Ram-
pogu et al. [16] for the DEAD box protein 3 (DDX3). DDX3 
is overexpressed in a variety of cancers like breast, colorec-
tal, liver, lung and oral cancers as it plays important role 
in cancer progression, proliferation and transformation. VS 
of the above two pharmacophore models against ADMET 
screened compounds of InterBioScreen (https://​www.​ibscr​
een.​com/) led to the identification of 17 compounds that 
were common to both these pharmacophore models. Using 
binding affinity information derived from molecular docking 
of these 17 compounds, curcumin (Fig. 4E) was identified as 
the best lead molecule against DDX3 based on binding affin-
ity as well as key residue interactions and MD simulation.

Singh et al. [52] performed pharmacophore-guided activ-
ity profiling of NPs from the ZINC database for five dif-
ferent tyrosine kinase receptor targets of lung cancer i.e. 
EGFR, tyrosine-protein kinase Met (cMET), erb-b2 receptor 
tyrosine kinase 2 (ErbB2), Fibroblast Growth Factor Recep-
tor (FGFR) and Anaplastic Lymphoma Kinase (ALK). For 
these five tyrosine kinases, an exhaustive literature search 
was performed to identify the appropriate molecular data-
sets which were then used for the generation of ligand-based 
pharmacophore models. The Catalyst module of Discovery 
studio was then used to create hypogen-based 3D phar-
macophores which were verified using the parameters of 
sensitivity, specificity, and receiver operating characteristic 
(ROC) curve. The ZINC, NP catalogue was then screened 
by using the pharmacophore models of these 5 targets. 
Cross-selection and sorting was done based on fitness 
score which resulted in the identification of 10 molecules 
against the respective target proteins. These 10 molecules 
were then docked to the crystal structures of the 5 target 
proteins using CDOCKER. Finally, MD simulation of eight 
NPs (ZINC85643856, ZINC85646292, ZINC96221218, 
ZINC00241889, ZINC98365505, ZINC98364461, 
ZINC11866307, ZINC38143676) (Fig. 4F–K) with different 
proteins were performed and it was found that these ligands 
show several important interactions necessary for the inhibi-
tion of their respective protein targets.

Alamri et al. [53], had identified a potential novel sigma-2 
inhibitor using pharmacophore and structure-based VS of a 
database consisting of natural and natural-like compounds. 
The key structural features of known ligands of the sigma-2 
receptor were used to develop the pharmacophore model. 
The target sigma-2 protein was modelled by homology mod-
elling through Iterative Threading ASSEmbly Refinement 

(I-TASSER) webserver [54]. The ligand-based pharmacoph-
ore was created using 19 diverse ligands having high binding 
affinity, obtained from Sigma-2 receptor selective Ligands 
Database (S2RSLDB) [55]. The pharmacophore model hav-
ing the highest score was selected after quantitatively vali-
dating it with 100 actives and 425 decoys. The database of 
compounds was then screened by docking-based VS using 
Glide XP and the top 20 compounds were selected based 
on the binding energy score. Five lead compounds (SR84, 
SR300, SR413, SR823, SR530) (Fig. 4L–P) were selected 
afterwards and compared with the reference compound, 
CM366. Thereafter, ADMET properties and MD simula-
tion for 50 ns was undertaken to validate five compounds as 
inhibitors of sigma-2 protein.

The cyclin-dependent kinase 7 (CDK7) is one of the most 
important members of the CDK family of genes/proteins 
which regulates cell cycle events. Several cancers, like hepa-
tocellular, gastric, oral, breast, ovarian, pancreatic, and colo-
rectal cancer, have reported overexpression of CDK7 which 
in turn has been linked with aggressive clinicopathological 
features and poor prognosis. Therefore, Kumar et al. [56] 
had implemented a ligand-based pharmacophore approach 
wherein a small set of selective inhibitors downloaded from 
PubChem [57] were used as the training set for hypothesis 
creation. These molecules were then used for generating 
ten pharmacophore models using the Hip-Hop algorithm. 
Thereafter, a structure-based pharmacophore model was also 
generated using CDK7 structure bound with THZ1 (PDB 
ID: 6XD3). Both the ligand and structure-based pharmaco-
phore models were validated using the ROC curve and the 
Güner–Henry (GH) approach. Thereafter, 57,578 ADMET-
filtered NPs from four databases (ZINC, SuperNatural II 
[58], ExiMed [https://​exime​dlab.​com/], and InterBioScreen) 
were screened using the validated pharmacophore models. 
197 compounds were selected based on both the pharmaco-
phore models which were subjected to molecular docking 
using GOLD. 24 potential inhibitors had displayed better 
binding scores than the two reference molecules (CT7001 
and THZ1) and were thus taken for 50-ns MD simulation 
studies. The results of the MD were analysed to select four 
NPs (ZINC20392430, SN00112175, SN00004718, and 
SN00262261) (Fig. 4Q–T) that demonstrated better binding 
affinity than known inhibitors as well as increased stability 
in their docked poses.

QSAR

The QSAR technique comes under the ligand-based drug 
designing method and involves the building of mathematical 
models to find statistically significant correlations between 
chemical structures and biological properties like half-max-
imal inhibitory concentration (IC50), half-maximal effective 

https://www.ibscreen.com/
https://www.ibscreen.com/
https://eximedlab.com/
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concentration (EC50), and Ki [59]. A lot of advancements 
have been made in the field of QSAR in the last decade 
which has hugely increased the dimensionality of molecular 
descriptors (from 1D to nD) [60] and even with respect to 
extraction of co-relation between chemical structures and 
biological properties. QSAR-based techniques have been 
used in the identification of potential lead compounds for 
a wide variety of cancers. A few examples of how QSAR-
based techniques have been used to identify the plant-based 
NPs against different cancers have been shown in Table 1 as 
well as some are discussed in detail below.

Alam and Khan [61] developed field-based 3D-QSAR 
models on the MCF7 breast cancer cell line to identify the 
anti-cancer effects of the natural triterpene maslinic acid 
and its analogs. The important features like average shape, 
hydrophobic regions, and electrostatic patterns of active 
compounds were extracted and mapped to virtually screen 
potential analogs. Field points-based descriptors were used 
in order to generate the 3D-QSAR model by aligning known 
active compounds onto identified pharmacophore templates. 
Ultimately a compound (P-902) (Fig. 5A) was then identi-
fied as the best for different breast cancer targets like Aldo-
Keto Reductase family 1 member B10 (AKR1B10), Nuclear 
Receptor subfamily 3 group C member 1 (NR3C1), Pros-
taglandin-endoperoxide Synthase 2 (PTGS2), and HER2.

Lung cancer is the leading cause of cancer-related 
deaths worldwide and has been the focus of drug discovery 
research. Using 3D-QSAR, docking, flow cytometry, and 
gene expression, Chen et al. [62] studied the anti-cancer 
activity of the natural chalcone lonchocarpin (Fig. 5B). The 
authors found hydrophobic interactions to be the most influ-
ential factor for the anti-tumour efficacy of lonchocarpin. 
Subsequent molecular docking studies also showed that 
lonchocarpin binds stably to the BH3-binding groove of 
the anti-apoptotic protein BCL2. Using several in silico 
techniques including QSAR, it was demonstrated that lon-
chocarpin is a potentially useful natural agent for cancer 
treatment.

The natural compound group withanolide present in roots 
and leaves of Withania somnifera (Indian ginseng/Ashwa-
gandha) was explored by Yadav et al. [63] for developing 
QSAR models. The models utilised information about the 
anti-proliferative activity of withanolide analogs against dif-
ferent human breast cancer cell lines (SK-Br-3 and MCF7/
BUS). The model for the SK-Br-3 cell line showed a 93% 
correlation between activity and chemical descriptors 
in the training sets, while the model for MCF7/BUS cell 
line showed a 91% correlation. The cross-validation coef-
ficient indicated 90% and 85% prediction accuracy of both 
models, respectively. The two highly active compounds 
(CID_301751 and CID_3372729) (Fig. 5C, D) identified 
showed higher anti-proliferative activity than the reference 
compounds 5-fluorouracil (5-FU) and camptothecin (CPT). 

Therefore, these compounds were subjected to molecular 
docking using Surflex-Dock [64] module of SYBYL-X 2.1 
on the biological target, β-tubulin which showed favourable 
binding affinity, bioavailability and ADME properties.

Ursolic acid (UA) is a natural pentacyclic terpene that 
has promising anti-cancer properties. Thus, Yadav et al. [19] 
developed 3D QSAR models from 29 UA derivatives that 
can inhibit the T24 bladder cancer cell line. The 3D QSAR-
based CoMFA models were developed using SYBYL-X 2.1 
and used for the prediction of the bioavailability and bio-
activity of different compounds. The screened compounds 
were subjected to pharmacokinetic evaluation equivalent to 
the standard anti-cancer drug doxorubicin. In order to under-
stand the underlying molecular mechanism of action, molec-
ular docking was also performed. The two predicted active 
compounds T9 and B42 (Fig. 5E, F) satisfied all standard 
screening protocols like Lipinski’s rule of 5 [65], PK/PD 
and toxicity parameters. Thus, T9 and B42 were proposed 
as promising leads against bladder cancer.

The bioactive triterpenoid glycyrrhizic acid (GA) can be 
obtained from the Indian medicinal herb Glycyrrhiza glabra. 
Shukla et al. [66] performed a QSAR study to observe the 

Fig. 5   Structures of A P-902, B Lonchocarpin, C CID_301751, D 
CID_3372729, E T9, F B42, G GA-1, H Cardenolide
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biological effects of GA and its derivatives against metastatic 
Triple-Negative Breast Cancer (TNBC) cell lines. Using a 
regression-based QSAR model, five novel GA derivatives 
were designed, synthesised and screened for in vitro activ-
ity in metastatic breast cancer cell line MDA-MB-231. The 
results highlighted novel derivative GA-1 (Fig. 5G) having 
a cytotoxic activity greater than that of its parent compound 
GA. Further, atomic property field (APF)-based 3D QSAR 
and subsequent molecular docking studies revealed that the 
C-30 carboxylic group of the novel derivative GA-1 was the 
most important factor for its anti-cancer activity.

Cardenolides (Fig. 5H) are a class of cardiac glycosides 
that have long been used as potent inhibitors of the Na+/K+-
ATPase transmembrane protein, which is overexpressed in 
a variety of cancers like skin, kidney, and lung. Therefore, 
Meneses-Sagrero et al. [67] developed SAR/QSAR models 
using 58 cardenolides having anti-proliferative effects on 
the lung cancer cell line A549. For these 58 molecules, their 
structures were generated using ChemBioDraw Ultra and 
molecular descriptors were calculated using PaDEL [68]. 
Using linear regression, the dimensionality of the physico-
chemical descriptors was reduced and ultimately 62 descrip-
tors were used to generate the mathematical models. The 
QSAR models developed were thereafter validated using 
random cross-validation and models with R2 > 0.7 were 
taken for external validation. As a result, the authors con-
cluded that the addition of a sugar moiety at the C3 position 
of cardenolides positively affects its anti-proliferative effect 
on lung cancer cells.

ADMET screening

In recent years, several in silico techniques have been devel-
oped that allow rapid assessment of molecules for their 
ADMET properties. Through these techniques, drug effi-
cacy and toxicity are monitored by taking into consideration 
the pharmacokinetics and pharmacodynamics of potential 
drug-like molecules [80]. It is important to take into con-
sideration the ADMET properties of the molecules under 
investigation a priori so that late-stage failures in clinical 
trials may be avoided. Therefore, the prediction of ADMET 
properties through in silico/computational techniques has 
become the cornerstone for “good” drug discovery practices. 
Some databases are also available that provide the ADMET 
processed compounds directly for VS [5, 7, 8]. Studies exist 
that analyse the pharmacokinetic properties of plant-derived 
NPs [6] in diseases other than cancer and therefore have not 
been discussed in this review. The studies discussed below 
are all focused on the ADMET analyses of plant-based mol-
ecules with anti-cancer effects.

In silico prediction of ADMET properties of molecules 
has become significant in current times since these methods 

can lower the probability of late-stage drug development 
failure and enable the use of only few promising mole-
cules for wet lab experimentation. Thus, there are several 
resources (databases and software) available for computing 
and estimating different ADMET properties of molecules, 
like QikProp, pkCSM [81], and DataWarrior [82]. Fatima 
et al. [8] utilised these tools to evaluate the pharmacokinetic 
potential of ~ 3000 phytomolecules from a wide variety of 
geographically diverse databases like Phytochemica [83], 
SerpentinaDB [84], SANCDB [85], NuBBEDB [86], respec-
tively. After ADMET profiling of these compounds, their 
anti-cancer potential was also evaluated using literature-
based experimental evidence and their activity against dif-
ferent cancer cell lines and protein targets was documented. 
Finally, 24 compounds were identified which showed the 
best ADMET behaviour that belonged to NuBBEDB, Phy-
tochemica, and SANCDB databases. Additionally, a user-
friendly database ADMET-BIS was also created wherein 
users can find details about the ADMET behaviour of these 
phytochemicals from Brazil, India, and South Africa.

In order to identify the drug-like anti-cancer compounds 
from the medicinal plants used in African Traditional Medi-
cine (ATM), Ntie-Kang et al. [7] had examined the phar-
macokinetic properties of ~ 400 anti-cancer compounds 
discovered from African flora (AfroCancer) and compared 
it with ~ 1500 anti-cancer compounds from Naturally Occur-
ring Plant-based Anti-cancer Compound-Activity-Target 
(NPACT) [14]. Lipinski’s Rule of 5 [65] which is used for 
determining the physicochemical properties of drug-like 
molecules showed that no Lipinski violations were present 
in approximately 200 compounds in the AfroCancer dataset. 
A comparison of the ADMET properties of these datasets 
based on the star parameter of QikProp revealed that around 
232 and 630 compounds of AfroCancer and NPACT, respec-
tively, fall within the accepted range of 95% known drugs. 
The overall study demonstrates the pharmacokinetic poten-
tial of African anti-cancer plant molecules that can be taken 
forward for further experimental validation.

Sharma et  al. [5] collected ~ 5000 anti-cancer phyto-
molecules from three open-access databases NPACT, Can-
cerHSP [87], and TaxKB [88], which were then checked for 
their ADMET properties. The ADMET profiling of these 
compounds was done using QikProp with 13 parameters 
(namely Lipinski's Rule of 5, Jorgensen's Rule of 3, polar 
surface area, number of rotatable bonds, octanol–water 
partition coefficient [logP], affinity to plasma protein [log-
KHSA], number of likely metabolic reactions, number 
of reactive functional groups, number of amides, number 
of amines, number of acids, IC50 for blockage across K+ 
channels [loghERG] and transport across blood–brain bar-
rier [logBB]). It was observed that 63% of the tested com-
pounds were orally absorbable, 52% were distributable, 45% 
could be metabolised and excreted, and 28% were found to 
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be non‐toxic for cardiotoxicity and central nervous system 
(CNS) activity. The authors have developed an interactive 
database, ADMETCan, which can be used to access the 
ADMET profile of these studied compounds. This resource 
provides information about plant-based molecules that have 
a higher chance of being properly eliminated from the body.

Selaginella repanda is an important ethnomedicinal plant 
used by certain Indian tribal communities for treating a wide 
variety of diseases and health conditions. Therefore, Adnan 
et al. [89] have tried to assess the anti-cancer properties of 
the S. repanda phytoconstituents. The crude extract of S. 
repanda was tested against the MCF7, HCT116 and A549 
cell lines where it exhibited significant anti-proliferative 
activity against three cell lines. Subsequently, High-reso-
lution liquid chromatography–mass spectrometry (HR-LC-
MS) was performed on the above-mentioned crude extract 
of S. repanda and 54 phytochemicals from different classes 
like fatty acids, alcohols, sugars, flavonoids, alkaloids, 
terpenoids, coumarins, and phenolics were identified. For 
these molecules, the ADMET properties were computed 
using SwissADME, and it was found that all of them obey 
Lipinski’s rule of 5. Additionally, most of these molecules 
exhibited good bioavailability scores, moderate to good skin 
permeability and moderate to potent Caco-2 permeability. 
This allowed the identification of phytoconstituents of S. 
repanda that have anti-proliferative activity against different 
cancers and are adherent to ADMET parameters.

Next‑generation drug discovery techniques

Alongside the traditional chemoinformatics-based 
approaches described earlier, the newer generation of drug 
discovery pipelines are utilising concepts like network phar-
macology and ML in the drug discovery process [21, 90, 
91]. AI has progressed from mostly theoretical studies to 
more real-world applications in recent years, including dif-
ferent stages of drug research and development. Here we 
have focused on how these techniques of ML and network 
biology have been utilised for the identification of NCEs 
and potential lead-like compounds from plant-based natural 
sources.

Network pharmacology‑based approaches

The traditional approaches to drug development continue 
to provide reliable results, but they tend to follow the ‘one 
drug one target’ approach. As diseases like cancer are mul-
tifactorial, it has led to the development of the interdisci-
plinary field of network pharmacology, which falls at the 
intersection of network biology and polypharmacology [92]. 
Network pharmacology follows a system-based thinking 

wherein a complex network of biological pathways is broken 
into smaller, more understandable pieces, which can then be 
easily studied for further analysis. It relies on the concept 
of finding multi-targeted drugs, acting on multiple biologi-
cal targets and pathways, thus yielding better therapeutic 
results [92]. Examples of studies that demonstrate how net-
work pharmacology is being used to identify the important 
phytomolecules against different cancer targets are given in 
Table 2. A few of them are discussed in detail below.

Shang et al. [90], had conducted a study on tetrandrine 
(Fig. 6A), a bis-benzylisoquinoline alkaloid extracted from 
Stephania tetrandra, a traditional Chinese medicine, to pre-
dict its molecular mechanisms against endometrial cancer. 
Seven key target genes were identified using protein–protein 
interaction (PPI) network analysis which were then found 
to be distributed in the PI3K/Akt signalling pathway using 
Kyoto Encyclopedia of Genes and Genomes (KEGG) [93]. 
Molecular docking and in vitro assays revealed that tetran-
drine acted as a tumour suppressor by repressing BCL2 and 
promoting the activity of BCL2 associated X, apoptosis 
regulator (BAX) at the mRNA level. In most cancers, aber-
rant apoptotic signalling, notably the inactivation of apop-
totic systems, enables cancer cells to evade programmed 
cell death, resulting in uncontrolled proliferation, tumour 
survival, treatment resistance, and cancer recurrence. There-
fore, in the current study tetrandrine-induced apoptosis in 
endometrial cancer cells was established through BCL2 
family proteins.

Fruits of Nandina domestica have been used as a tradi-
tional remedy for treating cancer in different countries. Taha 
et al. [70] analysed the extracts of this plant using Ultra-
high performance liquid chromatography-MS/MS (UPLC-
MS/MS). Subsequently, compound-target and compound-
target-pathway networks were derived from the Search Tool 
for Interactions of Chemicals (STITCH) [94], Database 
for Annotation, Visualisation, and Integrated Discovery 
(DAVID) [95], KEGG, and Search Tool for the Retrieval of 
Interacting Genes/Proteins (STRING) [96]. The computed 
data were then verified via in vitro experiments. Enrich-
ment analyses, performed on the 22 compounds that passed 
UPLC-MS/MS, revealed the presence of 5 anti-cancer com-
pounds (isoquercitrin, quercetin, berberine, chlorogenic acid, 
and caffeic acid) (Fig. 6B-F), and 4 molecular targets (AKT 
serine/threonine kinase 1 [AKT1], Caspase 3 [CASP3], 
Mitogen-Activated Protein Kinase 1 [MAPK1], and Tumour 
Protein p53 [TP53]). The authors further analysed the data 
to identify 15 cancer-related pathways for colorectal, endo-
metrial, and non-small cell lung cancers. The results of the 
current study revealed that the above-mentioned five phyto-
compounds exhibit high synergistic interactions with impor-
tant cancer-related targets and pathways.

The NP emodin (Fig.  6G), extracted from the plant 
Rheum palmatum has traditionally been used to treat cancer 
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of the lungs, liver, and pancreas. Thus, Zhang et al. stud-
ied the therapeutic effects of this NP on the MCF7 cancer 
cells [97]. The targets of the compound were identified 
using PharmMapper [98], SwissTargetPrediction [99], and 
the Traditional Chinese Medicine Systems Pharmacology 
database and analysis platform (TCMSP) [100]. The authors 
then used this information to extract genomic information 
from the UniProt Knowledge database. A protein-target PPI 
network was thereafter generated using the STRING data-
base, after which Gene Ontology (GO), and KEGG Pathway 
enrichment analyses were performed and visualised using 
the R software. It was elucidated that emodin exhibits anti-
tumour activity by activating the AhR/CYP1A1 pathway and 
can be further exploited as a potential lead compound for the 
treatment of breast cancer.

Deng et  al. [101] used the active components of the 
Platycodon grandiflorum (PG) roots to generate a “Drug-
Ingredients-Targets-Pathways-Disease” (DITPD) network. 
This was done to explore the potential molecular mechanism 
used by PG against different cancers. Various triterpenoid 
saponins, steroidal saponins, flavonoids, phenolic acids, 
organic acids, and other compounds were identified from PG 
which were then screened for ADMET properties. Finally, 

apigenin, caffeic acid, kaempferol, linoleic acid, methyl lin-
oleic acid, and ferulic acid (Fig. 6F, H–L) were identified 
as core compounds. The targets of these active components 
were obtained using the SwissTargetPrediction, PharmMap-
per, and TCMSP databases. Previously known disease tar-
gets for lung cancer were obtained and a PPI network was 
generated for these targets using STRING. Degree centrality 
(DC) was then calculated for this network by CentiScaPe to 
filter the top 20 targets with the highest DC value. Subse-
quent enrichment analysis was performed which revealed 
that these targets are closely related to different cancer 
pathways like the TNF, MAPK and PI3K-AKT signalling 
pathways. The top 10 annotated pathways were then used to 
construct a DITPD network in Cytoscape [102]. A network 
of 40 nodes (1 drug, 8 core component, 20 core targets, 10 
pathways and one disease) was obtained, in which targets of 
the core ingredients of PG were found to be distributed in 
these pathways. Finally, a molecular docking study verified 
the interactions between the core components of PG (api-
genin, caffeic acid, kaempferol, linoleic acid, methyl linoleic 
acid and ferulic acid) and the target molecules indicating a 
consistent relationship between NPs and the targets.

Breast cancer is the leading cause of death in women 
worldwide and therefore, Jha et al. [79] identified ADMET 
adherent phytomolecules against six of the most important 
breast cancer targets viz., PR (PDB ID: 4OAR), EGFR 
(PDB ID: 2J6M), mTOR (PDB ID: 4DRH), p53R2 (PDB 
ID: 3HF1), CTLA4 (PDB ID: 1DQT), and CDK8 (PDB ID: 
6T41). The authors used Dr. Dukes Phytochemical and Eth-
nobotanical Database (https://​phyto​chem.​nal.​usda.​gov/​phyto​
chem/​search) to acquire a list of 68 phytochemicals with 
established anti-cancer activities which were then evalu-
ated for their Drug-likelihood using SwissADME [103] and 
ADMETlab 2.0 [104]. The CASTp server [105] was used to 
identify the active sites of each of the proteins after which 38 
of the ADMET-filtered ligands were docked to these proteins 
using AutoDock Vina [106]. Molecular docking revealed 
that ursolic acid, enterolactone, parthenolide, and berberine 
(Fig. 6D, M–O) show increased binding affinity in compari-
son to the known drugs and therefore can be used to inhibit 
the breast cancer targets.

Among the members of the genus Ficus, the significance 
of Ficus carica L. is widespread because of the medicinal 
value of its leaves and roots. Gurung et al. [78] performed an 
extensive literature review and identified 68 bioactive com-
pounds present in the leaves, roots and barks of F. carica. 
The physicochemical features of these NPs were checked in 
DataWarrior v4.6.1, which revealed that 13 of the 68 NPs 
were safe for use. Thereafter, 3D structures of six impor-
tant protein targets of various cancers viz., CDK2 (PDB ID: 
1DI8), CDK6 (PDB ID: 1XO2), Topoisomerase I (PDB ID: 
1T8I), Topoisomerase II (PDB ID: 1ZXM), BCL2 (PDB ID: 
2O2F), and VEGFR2 (PDB ID: 2OH4) were downloaded 

Fig. 6   Structures of A tetrandrine, B isoquercitrin, C quercetin, D 
berberine, E chlorogenic acid, F caffeic acid, G emodin, H apigenin, 
I kaempferol, J linoleic acid, K methyl linoleic acid, L ferulic acid, 
M ursolic acid, N enterolactone, O parthenolide, P β-bourbonene

https://phytochem.nal.usda.gov/phytochem/search
https://phytochem.nal.usda.gov/phytochem/search
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from PDB, prepared and taken for molecular docking using 
AutoDock v4.2. For each of the six proteins, the best bound 
NPs were studied using MD simulations in LARMD [107] 
and ultimately identified β-bourbonene (Fig.  6P) which 
exhibited strong binding with most of the cancer targets.

As cervical cancer is a major concern for developing 
nations, therefore Aarthy et al. [108] adopted a systems 
pharmacology-based multi-omics approach wherein they 
exploited the curative potential of plant-based NPs against 
Human Papilloma Virus (HPV) mediated cervical cancer. 
Firstly, the authors used the ArrayExpress database [109] 
(https://​www.​ebi.​ac.​uk/​array​expre​ss/) to retrieve human 
transcriptome datasets of cervical cancer patients. After 
manual curation of the data using Microsoft Excel, it was 
imported to Network Analyst 3.0 [110] (https://​www.​netwo​
rkana​lyst.​ca/) wherein differential gene expression analysis 
was performed, and 384 immune-related genes were iden-
tified using the Limma statistical model with adjusted p 
value < 0.05. Additionally, network analyst was also used 
to perform over-representation analysis, functional enrich-
ment and identify tissue-specific interactions. Secondly, 87 
pharmacologically active constituents of the Indian plants 
Mangifera indica, Nigella sativa, Zingiber officinale, Cit-
rus grandis, Ziziphus jujube, Ziziphus mauritiana and Cin-
namomum cassia were identified from literature and web 
resources. The immune response related protein targets of 
the 87 NPs were thereafter retrieved from SwissTargetPre-
diction (http://​swiss​targe​tpred​iction.​ch/​index.​php) which 
highlighted that 79 of the 87 NPs were significantly target-
ing 35 of the 384 differentially expressed genes (DEGs). 
Thirdly, Compound target networks (CTNs) were con-
structed for these 79 NPs and 35 DEGs using Cytoscape 
v3.8.0 in order to identify the key multi-target qualities of 
the identified phytocompounds. Additionally, Gene ontol-
ogy, enrichment and molecular interactome analysis were 
also performed using GOnet [111] (https://​tools.​dice-​datab​
ase.​org/​GOnet/), Metascape (https://​metas​cape.​org/​gp/​index.​
html#/​main/​step1) and STRING Viruses v10.5 [112] (http://​
virus​es.​string-​db.​org/). The above-mentioned integrative 
approach thus highlighted the multi-targeted approach of 
plant-based NPs from the Indian subcontinent that are capa-
ble of tackling HPV-mediated cervical cancer.

Machine learning‑based approaches and NP 
applications

ML techniques and algorithms are now extensively used for 
different aspects of the drug discovery and development pro-
cess [128]. Large amounts of data and different algorithms 
are used to train the ML models such that they can learn 
how to perform tasks independent of manual programming. 
Depending on the learning process of algorithms, they are 

broadly categorised as either supervised or unsupervised 
learning. Supervised learning models are trained on both 
input as well as output data. The categorical or continuous 
relationships of labelled datasets are utilised for training the 
supervised ML models. The expected outcome of a model 
trained through supervised learning is the prediction of 
future outputs of known input data. However, in the case of 
unsupervised learning, no such labelled data (i.e. unlabelled) 
are given, which forces the model to identify the  intrinsic 
patterns in the input data based on which the initial data 
are then transformed into several meaningful clusters inde-
pendently (without supervision) [129]. Through the use of 
models trained on a large number of chemical compounds, 
efficient and cost-effective modules can be developed. 
These models utilise the exhaustive approaches of the ML 
algorithms to unearth the underlying relationships between 
experimental observations and chemical features of the mol-
ecule. The models are then, used to predict the experimental 
outcome using the chemical information of new molecules 
[128]. In drug discovery, the traditional approach is expen-
sive and time-consuming. Owing to this, the use of ML 
tools in this field is steadily gaining momentum as an essen-
tial approach for various purposes such as mining relevant 
chemical information, prediction of biological attributes and 
potentially active biological molecules [130], identification 
of novel targets [131], evidence extraction for target disease 
associations [132], increasing the understanding of disease 
and non-disease phenotypes [133], development of better 
biomarkers for prognosis, progression and drug efficacy 
[134], etc.

In this section, we discuss only those studies wherein ML 
algorithms have been applied to promote NP-based anti-can-
cer drug discovery and simultaneously involve the develop-
ment of applications based on ML. A brief overview of the 
web servers and softwares on ML and how they have been 
used in anti-cancer drug discovery is given below (Table 3).

CASE I

As NPs being one of the most diverse sources of lead com-
pounds for drug discovery, Chen et al. [21] developed a 
method for calculating the NP-likeness of compounds to 
guide the identification of new lead compounds for NP 
drug discovery. The authors generated a reference NP data-
set composed of 201,761 unique molecules from 18 vir-
tual and 9 physical NP libraries. For the compilation of the 
small molecule set (SM), an equal number of 201,761 com-
pounds were randomly selected from ZINC database such 
that any molecule present in the NP dataset was removed 
from the SM dataset. The NP and SM datasets were then 
merged to create a total of 403,522 compounds which were 
then randomly split into a training and test set in the ratio 
4:1. From these compounds, three different descriptor sets 

https://www.ebi.ac.uk/arrayexpress/
https://www.networkanalyst.ca/
https://www.networkanalyst.ca/
http://swisstargetprediction.ch/index.php
https://tools.dice-database.org/GOnet/
https://tools.dice-database.org/GOnet/
https://metascape.org/gp/index.html#/main/step1
https://metascape.org/gp/index.html#/main/step1
http://viruses.string-db.org/
http://viruses.string-db.org/
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(Morgan2 fingerprints, MACCS keys, and 206 two-dimen-
sional physicochemical property descriptors) were generated 
for training the random forest classifiers of the ML model. 
To measure how accurately the models were able to rank 
the NPs, the performance of the ML models was evaluated 
using Matthew’s correlation coefficient and area under the 
receiver operating characteristic curve. After validation of 
the ML models, the model based on MACCS fingerprints 
was selected for use as it had demonstrated superior clas-
sification ability for the independent test set. The ability of 
this model to properly identify NPs was also tested using an 
external validation set using the Dictionary of natural prod-
ucts (DNP) which showed that 95% of the NPs were cor-
rectly identified by the ML model developed by the authors. 
Finally, a web application was developed named “NP-Scout” 
which can be accessed at https://​nerdd.​univie.​ac.​at/​npsco​ut/.

CASE II

In order to predict the activity of unknown molecules, tra-
ditional approaches are based on structure activity rela-
tionship (SAR), however, deviating from this approach, 
Yue et al. [91] developed a ML-based approach using 
the cumulative data of both gene expression and chemi-
cal properties of NPs. To develop the NP response pre-
dictors, 17 NP drugs across a number of cell lines from 
GDSC (Genomics of Drug Sensitivity in Cancer) [145] 
were retrieved. These 17 NPs were then screened across 
an average of 495 cell lines per drug where the sensitivity 

(IC50) values for all NPs were used to classify the cell 
lines into three groups (Sensitive, Resistant and Interme-
diate) using the K-Means clustering algorithm in Waikato 
Environment for Knowledge Analysis (WEKA) [146]. 
The samples in the sensitive and resistant groups were 
used to build different ML models using decision tree, 
support vector machine, random forest, and rotation for-
est algorithms. For building the ML models, thirteen 
NPs having 6450 cancer cell line-NP interactions were 
randomly selected for the training set and the remaining 
four NPs with 1970 cancer cell line-NP interactions was 
used as the test set. Thereafter, the performance of these 
models was evaluated to identify the best algorithm suit-
able for predicting the cancer cell lines’ sensitivity to the 
NPs. It showed that all four methods demonstrated good 
results based on tenfold cross-validation of the training 
set. The second method of evaluation was also adopted by 
the authors, wherein CancerHSP database was searched 
for anti-cancer herbs used in systems pharmacology and 
NP-related studies. Two anti-tumour NPs, curcumin and 
resveratrol, were selected for evaluating the cancer cell 
sensitivity to NPs. For curcumin, six out of seven cell lines 
were correctly predicted by the model described in this 
study whereas in the case of resveratrol, five out of eight 
were correctly predicted. Thus, this study demonstrates 
that using advanced techniques like ML, predictive models 
can be trained on cancer cell line data which can identify 
the potential NPs with anti-cancer activity.

Table 3   A brief overview of the usage of ML applications in NP-based drug discovery

ML Tool Utilisation in NP research References

NP-Scout To determine the NP similarity scores of anthropogenic substances discovered using mass spectrometry, Price 
et al., 2021 had employed NP-Scout

[135]

Using NP-Scout, Grigalunas et al., 2021, determined the likelihood that a number of pseudo-NPs were indeed 
natural in nature

[136]

Chen et al., 2020 employed NP-Scout to identify which complex small molecules are likely to be NPs or 
natural product-like

[137]

NaPLeS Vaskevych et al., 2021 had utilised both Ertl’s NP-likeness Scorer and Sorokina’s NaPLeS tool to calculate the 
NP-likeness of several analogs of vasicinone alkaloids that they had developed

[138]

To determine the NP-likeness score of chemicals found using spectroscopy, Lianza et al., 2021 employed this 
approach

[139]

NPred Agarwal et al., 2022 had used this tool to screen a large number of NPs from 12 NP libraries and shortlist a 
few molecules that have a higher probability of anti-cancer activity

[37]

NP-likeness Scorer This method was utilised by Mikhnevich et al., 2021 to determine the NP-likeness of β-Lactamase inhibitors [140]
Zhou et al., 2022 determined the NP-likeness of a large number of unidentified metabolites using this method [141]
Using this method, Elend et al., 2022 estimated the NP-likeness of several compounds that they had designed 

to target the SARS-CoV-2 Main Protease
[142]

Akbarzadeh et al., 2022 had used this tool to calculate the NP-likeness of the pseudo-NPs designed against the 
RHO GDP-dissociation inhibitor1 (RHOGDI1)

[143]

Using this method, Ceballos et al., 2019 was able to determine the NP-likeness of the potential inhibitors iden-
tified against the GLUT-1 and GLUT-3 glucose transporters

[144]

https://nerdd.univie.ac.at/npscout/
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CASE III

Rayan et al. [147] developed a predictive model for identify-
ing NPs with anti-cancer activity from a set of 617 approved 
anti-cancer drugs and 2892 NPs. For developing the predic-
tive model, 617 anti-cancer drugs retrieved from the CMC 
(Comprehensive Medicinal Chemistry) database and NCI 
Drug Dictionary were used as actives. On the other hand, a 
set of 2892 phytochemicals retrieved from AnalytiCon Dis-
covery was used as the inactive set. Molecular Operating 
Environment (MOE) was used to calculate the 1D and 2D 
physicochemical properties (descriptors) of the molecules 
present in the active and inactive datasets, respectively. The 
molecules were then split into a training set comprised of 
66.7% of the dataset and a test set comprised of the remain-
ing molecules. Thereafter, the iterative stochastic elimina-
tion (ISE) algorithm was used to build a predictive model 
capable of indexing NPs for potential anti-cancer activity 
based on the distinction between active and inactive ligands. 
From the initial NP dataset taken, twelve NPs were highly 
ranked as potential anti-cancer agents by the ISE model 
and subsequent literature search demonstrated that three of 
the identified compounds i.e. neoechinulin, colchicine, and 
piperolactam (Fig. 7A–C) have established experimental 
evidence as anti-cancer agents, thereby further demonstrat-
ing the validity of this model.

CASE IV

One of the earliest and foremost applications of ML in 
the field of NP drug discovery was achieved by Ertl et al. 
[148] wherein they used a Bayesian approach that identi-
fied how closely a given molecule resembles the structural 
space occupied by NPs. The DNP was taken as the set of 
NPs and a set of 290,000 commercially available synthetic 
molecules was considered for the synthetic molecule (SM) 
set. The authors considered intricate structural elements like 
particular substructures that are characteristically present in 
NPs to construct the NP-likeness score. Substructural frag-
ments were generated for both the NP and SM set and the 

distribution between the fragments of the two groups were 
analysed. After model development, it was cross validated 
using standard statistical measures like area under the curve 
as well as enrichment plots. Additional testing of the NP-
likeness scorer using a set of novel molecules that were not 
present in the starting NP set exhibited that the system was 
able to correctly identify ~ 93% of the molecules as NPs. 
Therefore, this tool can be a part of standard VS exercises 
along with other screening parameters.

In addition to the above, the same research group [23] has 
also developed a Natural-Product-Likeness scoring system, 
that can be downloaded as a standalone java package from 
https://​sourc​eforge.​net/​proje​cts/​np-​liken​ess/. It uses Taverna 
version 2.2, and a few other open-source Java libraries to 
calculate the NP-likeness of compounds. The model has 
been trained using NPs sourced from open-access data-
bases, ChEMBL [149], and the Traditional Chinese Medi-
cine Database (TCMD) [150]. For each query molecule this 
tool assigns a signature to each molecule, which is then used 
for “Signature Scoring” and calculating the NP-likeliness of 
compounds.

The NaPLeS NP-likeness scorer is a web-based appli-
cation developed by Sorokina et. al. [22], to calculate the 
NP-likeness of compounds. This open-source application 
has been developed using a training set of 3,64,807 unique 
NPs and 4,89,780 unique synthetic compounds. The molec-
ular structures and corresponding scores are stored in the 
MySQL 5.8 Docker Image. A unique identifier is allotted to 
every sourced molecule, and the NP-likeness score is com-
puted on the parameters of heavy and total atom counts, the 
number of rings, the number of repeated fragments, and the 
number of predominant heavy atoms. The authors have also 
developed a web application using the Spring Boot frame-
work which is available for public access at http://​naples.​
natur​alpro​ducts.​net.

CASE V

Researchers have also tried to generate classification models 
of the relationship between the chemical structures of plant-
based NPs and their anti-cancerous activity using QSAR-
based ML algorithms like Naive Bayesian classifier (NB), 
sequential minimal optimisation (SMO), instance-based 
learner (IBK) and random forest (RF) [20]. Using these algo-
rithms and 881 PubChem fingerprints, the authors devel-
oped different classification models to predict the inhibi-
tory potential of plant compounds taken from the NPACT 
database. The random forest algorithm using 100 trees was 
found to be the best among various classifiers and achieved 
81.58% sensitivity, 72.44% specificity, 77.6% accuracy. A 
frequency-based feature selection method further revealed 
that the top 10 fingerprints selected by this study were also 

Fig. 7   Structures of A neoechinulin, B colchicine, and C piperolac-
tam as identified by the works of Rayan et al., 2017

https://sourceforge.net/projects/np-likeness/
http://naples.naturalproducts.net
http://naples.naturalproducts.net
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present in a wide range of natural anti-cancer drugs like 
vincristine, vinblastine, and paclitaxel.

Existing phytomolecule databases and web 
resources

NP-based drug discovery is an extensive field of study, in 
which phytomolecule-based anti-cancer drug discovery is a 
niche domain. There exists a vast amount of literature and 
experimental data regarding plant-based NPs that show 
potential activity against different diseases including can-
cer. These data are a treasure trove of unique scaffolds and 
compounds that have been accumulated and represented in 
the form of different phytomolecule databases as given in 
Table 4. Most of these databases focus on phytomolecules 
and their therapeutic potential. There exists a large num-
ber of resources that provide extensive lists of NPs used 
for drug discovery purposes [2, 9, 26, 28, 151, 152], but in 
accordance with the scope of the review, this section briefly 
discusses those resources that specifically cater to the infor-
mation and use of phytomolecules in drug discovery.

The phytomolecule databases/resources described in the 
current review (Table 4) have been classified based on their 
geographical locations, compound class, traditional medicine 
system and bioactivity (Fig. 8). For example, in the geographi-
cal location category, we observe that there exist databases that 
contain the phytomolecules native to certain specific regions of 
the world like India [83, 84, 153], Brazil [86], Africa [7], Cam-
eroon [152] and Taiwan [154]. But more specifically to the 
Indian subcontinent, we observe that there are certain highly 
specific databases like Phytochemica [83] and MedPServer 
[153] that contain information on the phytomolecules found 
in plants present in the Himalayan bioresource and the North-
Eastern region of the country (Fig. 8). Closely related to this 
group is the Traditional medicine system which is based on 
the easily and widely available flora of their native regions. 
For example, the TM-MC [155] database contains informa-
tion about the phytomolecules found in the traditional plant-
based medicines of Japan, Korea, and China while in the case 
of Traditional Chinese Medicine (TCM) a large number of 
resources are available. Further, in the case of TCM, it is seen 
that there exists a database that houses the plant-based NPs 
used by the Chinese ethnic minority communities (Fig. 8). 
Since phytomolecules are highly diverse they can be classified 
based on their structural similarities also. Therefore, a number 
of databases have been built that cater to the phytomolecules 
of specific classes like carotenoids [156], triterpenes [157], 
polyphenols [158], etc. (Fig. 8). Finally, there also exist data-
bases that report the bioactivity information of different phyto-
molecules against different cancers at the cell line and protein 
levels, e.g. NPACT (Fig. 8). Therefore, all these databases can 
be evaluated before selecting and curating a library for CADD Ta
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against any cancer target. Thus, selection of an appropriate 
library is an important step in CADD as it determines the type 
of molecules that are being studied as well as the nature of the 
selected/identified molecules at the end of the study.

We hope that the aggregated information provided in 
this section will serve as an important resource for anyone 
working in the field of phytomolecule-based anti-cancer 
drug discovery.

Gaps and future prospects

The advent of computer-aided techniques has transformed the 
entire landscape of drug discovery research. In the field of 
anti-cancer drug discovery, the use of plant-derived NPs have 
been discussed in this review, which highlights that some 
of the traditional techniques discussed here are being used 
more in comparison to, the newer techniques. For example, 
ML-based techniques were found to be extensively used in 
both anti-cancer research and NP-based research separately, 
but limited evidence exists for their use in NP derived anti-
cancer drug discovery. A reason for this may lie in the fact 
that few ML-based models have been developed for predict-
ing the anti-cancer activity of NPs, out of which only some 
are publicly available. This in turn is an area of opportunity 
for future research. More efforts need to be put in develop-
ing publicly available tools and resources regarding the use 
of ML-based techniques in drug discovery. In this review, 
we have also highlighted the various plant-derived NP-based 
tools and databases that are important for CADD. But there 
is still a gap in the resources available for NP derived anti-
cancer drug discovery, with NPACT and AfroCancer being 
the only two databases that cater to this specific genre. Thus, 
there is a need for more structured and systematised resources 
that can successfully accommodate the complexity and 

diversity of the data required for NP drug discovery. The cur-
rent landscape of plant-derived NP resources has the apparent 
disadvantage of either being very specific or very general in 
nature. Consequently, the diversity of different plant species 
is somewhat lost and even if they are very comprehensive 
in nature, they have no method to demarcate those NPs that 
are important specifically with respect to anti-cancer drug 
discovery. Therefore, this review highlights several areas of 
plant-based anti-cancer drug discovery that need more atten-
tion from the scientific community worldwide.

Conclusion

Overall, the current review discusses in detail the niche 
area of anti-cancer drug discovery from plant-based NPs. 
Efforts have been made to describe the current practices 
like molecular docking and dynamics, VS, pharmacophore 
modelling, and QSAR that are widely being used in the 
drug discovery process. Additionally, we have also high-
lighted and discussed in detail the more recent techniques 
like ML and network pharmacology that are not as widely 
used as the traditional techniques. Therefore, we hope this 
review will be of use to the scientific community not only 
to understand the tools and techniques used in traditional 
drug discovery process but also to learn and implement the 
next-generation techniques as well.
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