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Abstract
Burkholderia cepacia complex (BCC) is a group of gram-negative bacteria composed of at least 20 different species that cause 
diseases in plants, animals as well as humans (cystic fibrosis and airway infection). Here, we analyzed the proteomic data of 
47 BCC strains by classifying them in three groups. Phylogenetic analyses were performed followed by individual core region 
identification for each group. Comparative analysis of the three individual core protein fractions resulted in 1766 ortholog/
proteins. Non-human homologous proteins from the core region gave 1680 proteins. Essential protein analyses reduced the 
target list to 37 proteins, which were further compared to a closely related out-group, Burkholderia gladioli ATCC 10,248 
strain, resulting in 21 proteins. 3D structure modeling, validation, and druggability step gave six targets that were subjected 
to further target prioritization parameters which ultimately resulted in two BCC targets. A library of 12,000 ZINC drug-like 
compounds was screened, where only the top hits were selected for docking orientations. These included ZINC01405842 
(against Chorismate synthase aroC) and ZINC06055530 (against Bifunctional N-acetylglucosamine-1-phosphate uridyl-
transferase/Glucosamine-1-phosphate acetyltransferase glmU). Finally, dynamics simulation (200 ns) was performed for 
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each ligand–receptor complex, followed by ADMET profiling. Of these targets, details of their applicability as drug targets 
have not yet been elucidated experimentally, hence making our predictions novel and it is suggested that further wet-lab 
experimentations should be conducted to test the identified BCC targets and ZINC scaffolds to inhibit them.
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Introduction

Burkholderia cepacia complex (BCC) represents a group of 
aerobic gram-negative bacillus of Betaproteobacteria, pos-
ing a serious threat not only to the humans, but also to the 
plant and animal population [1]. In humans, BCC is regarded 
as challenging opportunistic pathogens especially in immu-
nocompromised individuals and in patients with genetic 
disorders like cystic fibrosis (CF). A group of 20 + closely 
related bacterial species form BCC group with up to 78% 
identical genomes whose size ranges from 7 to 9 MB. The 
genes are typically arranged in three chromosomes and mul-
tiple plasmids, which enables more flexibility in gene gain/
loss to support its disease virulence and biology [2]. BCC 
species form biofilms in vitro and in vivo in the lungs of 
patients with CF, protecting them from antibiotic drugs, and 
sustaining continual infection. Compared to planktonic sam-
ples, the minimum inhibitory concentrations (MIC) of most 
β-lactam agents are significantly higher toward BBC due to 
the protective effect of their biofilm. Other factors include 
(i) the putative expression of virulent genes regulated by 
quorum sensing, (ii) the production of exopolysaccharide 
associated to mucous phenotypes that promote the escape 
of host response, and (iii) the production of lipopolysac-
charide that contributes to tissue damage [3]. Infection dif-
fusion from person to person has been reported; thereby, 
many hospitals, clinics, and campuses have adopted severe 
isolation measures to counter the onsets caused by BCC. 
Infected individuals are often treated in area separated from 
non-infected patients to limit disease spread, as BCC infec-
tion can lead to a rapid decline in pulmonary function and 
cause mortality. The pathogenicity of BBC in patients with 
chronic granulomatous disease appears to be dependent on 
their ability to resist the killing of non-oxidative neutro-
phils and the neutrophil necrosis induction [2–4]. BCC also 
causes prolonged respiratory infection among individuals 
with CF, and may cause pneumonia, septicemia, and soft 
tissue eruptions among individuals with chronic granu-
lomatous disease [5]. Resistance to β-lactam agents is most 
often promoted by inducible chromosomal β- lactamases or 
efflux pumps. The capacity of novel β-lactamase inhibitors 
to reestablish the in vitro action of ceftazidime suggests a 
cumulative effect of β-lactamase and efflux pumps in clini-
cal BCC samples [6, 7]. Less commonly, resistance is due 
to plasmid-mediated β-lactamases of the TEM class (ceph-
alosporinases) or modifications in the penicillin-binding 
proteins. Intrinsic resistance of BBC strains to aminoglyco-
sides and polymyxin results from the decreased site-specific 
binding of these cationic drugs to lipopolysaccharide, which 
has the effect to reduce outer membrane permeability, and 
efflux pump activation. One specific species B. vietnamien-
sis, is susceptible to aminoglycosides, yet resistant to other 

polycationic antimicrobials. In CF patients with pulmonary 
infection induced by B. vietnamiensis, the resistance to ami-
noglycoside or azithromycin treatment has been connected 
with the emergence of aminoglycoside elimination by means 
of induction of active drug efflux [8].

The vulnerability testing to antimicrobial drug combina-
tions of BCC strains isolated from CF patients that devel-
oped resistance to single drug therapy has been extensively 
performed although evidence of clinical efficacy is still lack-
ing. MIC testing using combinations of two drugs seems to 
have limited efficacy in blind treatment for CF patients with 
broad resistance to BCC. The combinations of epsilometer 
tests or e-test strips as well as the breakpoint combination 
vulnerability testing are simpler and faster approaches that 
are considered for screening the efficacy of two-drug com-
binations against BCC. Though they have good association, 
they still have clinical limitations [9–11]. Recently, com-
bination of three drugs, i.e., tobramycin, meropenem, with 
a third mediator being either piperacillin–tazobactam, cef-
tazidime, trimethoprim–sulfamethoxazole, or amikacin, was 
effective in vitro against half of 47 multidrug-resistant BCC 
isolates producing biofilms. Improvement of new agents 
with in vitro and in vivo activity against BCC for patient 
therapy is still challenging [12–15].

Reverse vaccinology includes bioinformatics and struc-
tural biology methods that were developed after the revo-
lution of next-generation genome sequencing technologies 
(NGS) for rapid identification of novel therapeutics by min-
ing the enormous quantity of prokaryotic genome data. Other 
approaches like subtractive microbial genomics and differ-
ential genome analysis were also implemented for the iden-
tification of molecular targets in different human pathogens 
like M. tuberculosis, Burkholderia pseudomallei, Helicobac-
ter pylori, Pseudomonas aeruginosa, Neisseria gonorrhea 
Corynebacterium pseudotuberculosis, and Salmonella typhi, 
among others [16–18]. The main idea is to find therapeutic 
targets that are keys for the pathogen survival and that do 
not possess any homologous pair in the host, i.e., specific to 
the pathogen. As a consequence, the drug inhibitors specific 
for these protein targets are expect to carry main benefits to 
patient by maximizing therapy effectiveness and minimizing 
collateral toxicity due to off-target activity. Some pathogen 
proteins might show a certain degree of homology to their 
respective host proteome, yet they might be assigned as 
potential targets for structure-based specific inhibitor devel-
opment given site-specific differences in active site amino 
acid residues in the pathogen protein or other druggable 
pockets. For such studies, a prerequisite is the availability of 
completely sequenced genomes of target pathogens for data 
screening. The Burkholderia genome database (www. burkh 
older ia. com) includes all updates concerning BCC genome 
annotations, curation, and comparison, thereby, providing a 
great asset for the CF research community [19, 20].

http://www.burkholderia.com
http://www.burkholderia.com
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In this report, the genomic data of multiple BCC strains 
were mined for novel broad-spectrum druggable protein 
targets together with the identification of novel drug-like 
inhibitors from the ZINC15 database (http:// www. zinc15. 
docki ng. org), with a goal to encompass the BCC pathogen-
esis. Additionally, it might open new insights for finding 
novel therapeutics against cystic fibrosis.

Materials and methods

Retrieval of proteome datasets

BCC strains (n = 47) were randomly included in this study 
at the time this project was performed, and their complete 
genomes/proteomes (referred hereafter interchangeably) 
were retrieved from the ftp server of NCBI (ftp:// ftp. ncbi. 

Fig. 1  Workflow of Bioinfor-
matics/computational steps 
for putative essential, core, 
non-host homologous proteins) 
identification for B. cepacia 
complex
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http://www.zinc15.docking.org
http://www.zinc15.docking.org
ftp://ftp.ncbi.nih.gov/genomes/Bacteria
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nih. gov/ genom es/ Bacte ria) [21]. All strains were classified 
in three groups based on their sample collection source: 
(a) strains isolated from human sources; (b) strains from 
plant sources; and (c) strains from environmental sources. 
The data from NCBI were cross-checked with the Genome 
OnLine Database—GOLD (www. gold. jgi. doe. gov) [22]. 
Figure  1 describes the hierarchical steps followed for 
subtractive genome analyses to rank putative novel drug 
and vaccine targets. All redundant genomes and protein 
sequences were removed, and only genome representing 
each strain was retained. Also, draft and incomplete genomes 
were excluded to ensure analysis standardization. Tables 1, 
2, 3, and 4 give elementary genome information regarding 
bacterial strains, bioproject ID, replicons, genome size, pre-
dicted proteins, chromosome/plasmid accession numbers, 
GC content (%), total genes and pseudogenes, tRNA, rRNA, 
and disease data.

Phylogenetic analyses

Phylogenetic analyses for BCC could be performed using 
multiple genes including 16S rRNA, recA, gyrB, rpoB, 
acdS, atpD, gltB, and lepA genes, employing both maxi-
mum likelihood and neighbor-joining (NJ) approaches [23], 
for convenience, we selected the housekeeping gene 16S 
rRNA. To find a phylogeny inference, i.e., a hypothetical 
chart representation and not definitive facts of evolutionary 
relationships among organisms, multi-fasta files containing 
sequences of 16S rRNA gene [(cytosine967-C5)-methyl-
transferase (WP_027788851.1)] from all forty-seven strains 
(combined and individual tree construction for each environ-
mental, plants, human groups), were prepared and subjected 
to the Molecular Evolutionary Genetics Analysis software 
(MEGA7) (www. megas oftwa re. net) [24, 25]. The pattern of 
branching reflects how species are evolved from a series of 
ordinary ancestors. MEGA7 creates a multiple alignment file 
(fasta.txt) and forwards it to a multiple sequence alignment 
tool (ClustalW) for phylogeny inference. The NJ trees were 
constructed based on Tamura–Nei distances, using 1000 
bootstrap replicates [26].

BCC core genome and non‑host homology

To find the core genome of a specific species individually 
or as whole for all of the three BCC groups, EDGAR soft-
ware was used. EDGAR is an Efficient Database frame-
work for comparative Genome Analyses that uses BLAST 
score Ratios and is freely available (https:// www. uni- giess 
en. de/ fbz/ fb08/ Inst/ bioin forma tik/ softw are/ EDGAR) [27, 
28]. This framework aims at high-throughput compara-
tive genomics analyses of large groups of related genomes 
by clustering orthologous genes and then classify these 
genes as core genes or singletons. PATRIC, Pathosystem 

Resource Integration Center (https:// www. patri cbrc. org) 
was employed for circular genome comparison that has 
integrated data analysis tools performing a wide range of 
bioinformatics analyses related to biomedical research on 
bacterial infectious diseases [29]. Furthermore, the identified 
core genomes/proteomes of human, plant, and environmen-
tal BCC groups were compared with each other using the 
NCBI-BLASTp program (www. ncbi. nlm. nih. gov) (default 
threshold) to acquire a single-core region for all of the 47 
strains. The core file was cross-checked with Burkholderia 
cenocepacia HI2424 (human host) to verify the core pro-
teome data using BLASTp (all-against-all, e-value ≤ 0.0001, 
bit score ≥ 200) [16, 30].

Next, the NCBI-BLASTp was re-employed to compare 
the BCC representative core proteomes with the human 
RefSeq proteome for non-homology analyses to avoid off-
targeting using the default parameters (e-value ≤ 0.0001, bit 
score 200, and identity ≥ 25%) [17]. For non-host homol-
ogy analyses, only the human host proteome was considered 
because of the complexity and unavailability of plant and 
environmental host genomes in the public databases.

Gene essentiality, subcellular localization, 
and virulence analyses

The minimal set of genes that are essential to support cel-
lular life are called essential genes. DEG datasets are now 
accessible in the literature and comprises all essential genes 
for bacteria, archaea, and eukaryotes. To identify essential 
genes in BCC, the core non-host homologous proteins were 
considered as query data versus the subject data of DEG 
essential genes in the BLASTp (e-value ≤ 0.0001 and iden-
tity ≥ 25%) (28). The non-redundant and non-homologous 
proteins were further investigated for subcellular location 
to check the exoproteome and secretome of the BCC using 
PsortB (www. psort. org/ psortb/) [31] and Cello2GO (www. 
cello. life. nctu. edu. tw. cello 2go/) [32], both of these tools are 
based on vector machine and suffix tree algorithm features. 
The exoproteome and secretome are viewed as source of 
vaccine candidates because of their continuous contact with 
biotic and abiotic elements in the extracellular environment. 
Subcellular localization of proteins was performed. Both 
tools predicted same number of proteins from outer mem-
brane and extracellular locations and were further evalu-
ated for their involvement in virulence [31, 33]. Virulent 
factors are proteins involved in disease intensity, which are 
associated to microbial pathogenesis. This step is important 
because antigenic/virulent proteins could serve worthy vac-
cine candidates since they intervene serious flagging path-
ways in the host cells and might potentially activate host 
immune system in contrast to non-virulent proteins. Addi-
tionally, the mixtures of virulent proteins from a pathogen 

ftp://ftp.ncbi.nih.gov/genomes/Bacteria
http://www.gold.jgi.doe.gov
http://www.megasoftware.net
https://www.uni-giessen.de/fbz/fb08/Inst/bioinformatik/software/EDGAR
https://www.uni-giessen.de/fbz/fb08/Inst/bioinformatik/software/EDGAR
https://www.patricbrc.org
http://www.ncbi.nlm.nih.gov
http://www.psort.org/psortb/
http://www.cello.life.nctu.edu.tw.cello2go/
http://www.cello.life.nctu.edu.tw.cello2go/
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induce improved host protection when challenged with the 
respective microbial infection. Extracellular and surface 
membrane proteins retrieved from the previous screening 
step were compared to the Virulent Factor Database-VFDB 
(www. mgc. ac. cn/ VFs/) to extract informational index of 
active proteins. Proteins having bit score ≥ 100 and identity 
of ≥ 50% were considered as potential virulent proteins, 40% 
and 60% sequence identity values are normally sufficient for 
functional transfer, whereas at domain level it ranges from 
50 to 70% and sometimes even 80% [34, 35].

3D structure prediction and targets prioritization

For a putative protein to be an attractive druggable target, 
several prioritization parameters are considered as patho-
genic markers essential for the microbe such as subcellu-
lar localization, protein–protein interaction (ppi), molecu-
lar weight, and druggability analyses. Those fulfilling 
the required criteria were considered as drug targets. For 
modeling 3D structures, core proteins were submitted to 
the MHOLline suite (www. mholl ine. lncc. br) as adapted by 
Hassan et al. [16] that integrates HMMTOP (a tool for pre-
diction of transmembrane helices and proteins topology), 
BLAST, (BATS) Blast Automatic Targeting for Structures), 
MODELLER (comparative homology modeling tool for 
protein 3D structure prediction), and PROCHECK (checks 
the stereochemical quality of a protein structure by analyz-
ing residue-by-residue the geometry and overall protein 
structure), among others. From the MHOLline summary 
file, only G2 group sequences (including very high- and 
high-quality sequences) were selected for 3D structure pre-
diction, for cross-checking these were further subjected to 
the Swiss-Model database (www. swiss model. expasy. org/) 
that uses the query sequence against the SWISS-MODEL 
template library using BLAST and HHBlits searches [36]. 
The structure qualities, Q-mean values, and Ramachandran 
scores were evaluated via PROCHECK [37] and, PyMOL 
(v2.3) (https:// pymol. org/2/) [38] and UCSF Chimera [39] 
were used for visualization. The molecular weights (MW) of 
potential targets were calculated using ExPASy (https:// web. 
expasy. org/ compu te_ pi/) [40] and were classified accord-
ingly. The STRING protein–protein interaction network and 
function enrichment analyses tool (https:// string- db. org) was 
used to identify the interactome of target proteins [41]. For 
druggable pockets, a well-established fact is that the drug-
gability of a protein 3D structure determines their efficiency 
to bind a drug-like molecule/ligand. To this end, the core 
essential non-homologous target proteins were submitted to 
the DoGSiteScorer (https:// prote ins. plus) [42]. The DoG-
SiteScorer is a pocket recognition and examination tool to 
compute the druggability of protein cavities. The drugga-
bility score ranges from 0 to 1, a standard value closer to 1 
designate a highly druggable protein cavity, i.e., the cavities Ta
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that are expected to bind ligands with high affinity. For fur-
ther validation, the list of final targets was then subjected 
to the Target-Pathogen Database (http:// target. sbg. qb. fcen. 
uba. ar) to prioritize drug targets in pathogens. This Database 
also focuses on the structural druggability, essentiality, and 
metabolic role of proteins.

Virtual screening

A ZINC library of 12,000 drug-like compounds was 
retrieved from the ZINC database (www. zinc. docki ng. org) 
and employed in virtual screening against the final set of 
predicted putative BCC targets using Molecular Operating 
Environment (MOE v2016.11) [43, 44]. MOE performs 
accurate prediction of binding affinities through a predefined 
algorithm and scoring to classify best docking orientations 
between receptor and ligand in a ligand–receptor interaction 
analysis. In MOE, docking and visualization were performed 
according to a slightly modified protocol by Basharat et al. 
[20], the parameters used were as follows: placement = tri-
angle matcher, rescoring 1 = London dG, refinement = force-
field, rescoring 2 = affinity dG. All docked ZINC compounds 
were arranged in ascending order according to their bind-
ing energies and those with least energy of ligand–receptor 
complex was considered as top conformation. Compounds 
that were able to pass Lipinski’s drug-like test and had mini-
mum energy were selected as suitable inhibitors. Top two 
ligands for each target protein were selected among the 20 
best ranked compounds. Each top ligand was among those 
having the maximum number of hydrogen bonds (H-bonds) 
and the lowest ligand–receptor energy S scores.

ADMET and MD simulation studies and binding free 
energy calculations

Among the top 10 hits that had minimum energy and were 
able to pass Lipinski’s drug-like test were selected as suit-
able inhibitors. ADME/Tox analysis and skin permeation/
other physicochemical values were calculated using ADMET 

prediction server (http:// lmmd. ecust. edu. cn/ admet sar2) and 
Swiss ADME (http:// www. swiss adme. ch/), respectively [45, 
46] to validate the parameters for suitable drug/binding can-
didates. The structure of each ligand was optimized before 
docking analyses by calculating charges, structure correction 
if required, applying force field (MMFF94x) and minimiz-
ing energy.

Molecular dynamics simulation (MD) was done consid-
ering the top best drug complexed with the predicted tar-
get protein and was subjected to NAMD package (v2.14 
GPU36) using the CHARMM36m force field [47–49]. The 
particle mesh Ewald (PME) method evaluated long-range 
Coulombic interactions. The integration time step was set to 
2 fs (femto seconds). The production simulations were per-
formed in the NPT ensemble (constant number of particles, 
pressure, and temperature) (p = 1.01325 bar and T = 300 K), 
using the Langevin dynamics.  Na+ and  Cl− ions, correspond-
ing to a physiological concentration of 150 mM, were placed 
in the simulation box to set the ionic strength and neutralize 
the systems. After 10,000 steps (20 ps) of minimization, 
the complexes were equilibrated for 135,000 steps (270 ps). 
The production simulations last 200 ns and the trajectories 
from MD were analyzed using MD analysis software [47, 
48], while interactions were calculated with PLIP (v2.1.6) 
software [49].

The MM/PBSA method (molecular mechanics pois-
son–boltzmann surface area) is one of the most widely 
adopted approaches for calculating binding free energies 
(ΔGbind) of ligands bound to biomolecule receptors after 
molecular docking or dynamics. MM/PBSA was employed 
for binding free energy calculations that are performed in 
three steps, Molecular Mechanics (MM), Poisson–Boltz-
mann (PB) (or generalized Born (GB), and Surface Area 
solvation (SA) before the summation is used to estimate 
the binding energy [50]. ΔGbind were done using the MM/
PBSA as implemented in the CaFE package, a plugin of 
VMD software [51, 52].

Table 4  MHOL line quality characterization of G2 subgroups for Target BCC proteins

S. No Accession numbers Protein name/gene name (symbols) Identity (%)

Very high-quality protein sequences (G2)
1 BCEN2424_RS01725 30S ribosomal protein S10/rpsJ; nusE  > 75
2 BCEN2424_RS01805 50S ribosomal protein L6/ Same as above
3 BCEN2424_RS03735 Aminodeoxychorismate synthase component I Same as above
High-quality protein sequences (G)
1 BCEN2424_RS01790 50S ribosomal protein L5  > 50 and ≤ 75
2 BCEN2424_RS14895 Bifunctional-N-acetylglucosamine-1-phosphateuridyl-trans-

ferase/glucosamine-1-phosphate acetyltransferase
Same as above

3 BCEN2424_RS07230 Chorismate synthase Same as above

http://target.sbg.qb.fcen.uba.ar
http://target.sbg.qb.fcen.uba.ar
http://www.zinc.docking.org
http://lmmd.ecust.edu.cn/admetsar2
http://www.swissadme.ch/
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Results

Overview of B. cepacia complex and genome 
statistics

The genomic data of BCC obtained from NCBI were 
tabulated in three different groups (G) including the envi-
ronment samples (Table 1), the plant samples (Table 2), 
and human samples (Table 3). In the environmental sam-
ples, the number of proteins/genes comprises 5515/5629 
to 7396/7590 and %GC content from 65.73 to 67.68%. 
The Burkholderia vietnamiensis G4 ATCC 53,617, the 
only strain in this group has five plasmids, while the 
Burkholderia pseudomultivorans SUB-INT23-BP2 have 
only one plasmid. In the plant samples, the number of 
proteins/genes are from 6449/5908 to 7354/7524 and 
the %GC content are 66.60–67.09%. Five out of seven in 
plant group had a single plasmid. On the other hand, in 
human group, the number of proteins/genes was between 
5561/5717 and 7425/7898 with a %GC content between 
66.31% and 67.31% and only 8 strains have 1 plasmid. The 
table includes information regarding the disease type, their 
prospective hosts, source of sample isolation, and country 
information emphasizing the global prevalence of BCC 
pathogenesis and their broad-spectrum host diversity.

Phylogenetic analyses of BCC

Phylogenetic tree is a graph display of the evolutionary 
relationship among taxa under comparison. The basic 
assumption of a phylogenetic investigation is that all taxa 
(leaves of the tree) are related among them through homol-
ogous relationships with hypothetical ancestors that com-
pose the internal vertices of the tree. Here, we compared 
the phylogenetic relationships between BCC species or 
strains based on the nucleotide sequences of the 16S rRNA 
 (cytosine967-C5)-methyltransferase gene, though, as afore-
mentioned, many other genic combinations have also been 
used, other studies also describe the cluster and distinct 
lineages formation in detail based on NJ as well as ML 
phylogeny analyses [23]. Through MEGA7, multiple phy-
logenetic trees were constructed, where all the 47 strains 
are split in two clusters (Fig. 2A–D), where interestingly 
BCC strains from all sources are mixed in the two clusters. 
Inside MEGA7, one can download the sequences into the 
Alignment Explorer and retrieve the unaligned sequences 
in FASTA format by selecting Export Alignment from the 
Data menu. The multiple alignment could be followed as 
per study requirement using tools like Muscle, T-coffee, 
and Clustal Omega available at EBBL-EBI (https:// www. 
ebi. ac. uk/ Tools/ msa/) and their output files could be used 

as input files in the MEGA program (41). MEGA7 uses 
ClustalW together with the neighbor-joining (NJ) method 
and a focus was made to elucidate the ancestral relation-
ship in Genus Burkholderia of all different strains iso-
lated from diverse sources and locations worldwide. It 
is assumed that a more closely or distinctly relatedness 
among various BCC strains could aid in designing future 
projects, where a genus size could vary by the addition of 
new variants and, hence, would give an insight into their 
pan and core genomes as well as therapeutic targets iden-
tification for a broad spectrum of BCC pathogens.

Prediction of intraspecies core genome with EDGAR 
and PATRIC

EDGAR comparative genomics workflow was employed to 
identify core genomes of BCC strains isolated from human 
and plant samples. At this stage, the plant core genome was 
identified but excluded to avoid complications with host 
homology analyses to be performed in the forthcoming 
step. The individual core files comprised of 2495 and 2371 
proteins for plant and human isolates, respectively, sowing 
a close comparison of the BCC strains isolated from com-
pletely different sources. Furthermore, PATRIC resulted 
bidirectional BLASTp genome comparison in circular 
graphs for representative human isolates (Fig. 3). PATRIC 
has the limitation that it can analyze only 10 genomes at a 
time; hence the dataset of nineteen genomes isolated from 
humans was divided into two sets, whereas plant isolates 
were analyzed separately. The proteome comparison tool of 
the PARIC workflow readily identified insertions and dele-
tions in up to ten genomes among a user-selected reference 
genome and other nine as target genomes. The reference 
genome can possibly be (a) a user-private genome in PAT-
RIC, (b) an annotated genome outside the PATRIC, (c) any 
genome that is publicly available in PATRIC, or (d) possibly 
a genome feature group containing a set of proteins saved 
in PATRIC. The tool performing the proteome comparison 
follows the basic principle of RAST tool that is based on 
the sequence-based comparison, coloring each gene based 
on protein similarity after using BLASTp [53]. Later, each 
of the gene is marked as either a unique, a unidirectional or 
bidirectional best hit after comparing to the selected refer-
ence genome. The output file includes a whole-genome sche-
matic circular view that is colored after running BLASTp 

Fig. 2  A Phylogenetic tree of 47 BCC species and strains based on 
the 16S rRNA  (cytosine967-C5)-methyltransferase gene. B Phyloge-
netic tree of 19 BCC strains isolated from human sources based on 
the 16S rRNA  (cytosine967-C5)-methyltransferase gene. C Phylo-
genetic tree of seven BCC strains isolated from plant sources based 
on the 16S rRNA  (cytosine967-C5)-methyltransferase gene. D Phylo-
genetic tree of 21 BCC strains isolated from environmental sources 
based on the 16S rRNA  (cytosine967-C5)-methyltransferase gene

◂

https://www.ebi.ac.uk/Tools/msa/
https://www.ebi.ac.uk/Tools/msa/
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Fig. 2  (continued)
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Fig. 2  (continued)

Percent protein sequence identity

List of tracks from outside to inside

1. Burkholderia cenocepacia

2. B. cenocepacia J2315 (216591.5)

3. B. cenocepacia J2315 (216591.78)

4. B. cenocepacia ST32 (95486.74)

5. B. cenocepacia 842 (95486.85)

6. B. cenocepacia 842 (95486.335)

7. B. cenocepacia 895 (95486.336)

8. B. cenocepacia 895 (95486.86)

9. B. cenocepacia MC0-3 (406425.4)

10. B. cenocepacia H111 (1055524.3)

Fig. 3  Circular genome representation of human BCC strains via PATRIC server
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and provides an insight into the circular interactive graphical 
representation of the alignment of genes and other genomic 
data. All the tracks on the genome viewer are shown as con-
centric rings that are arranged from outermost to innermost 
including position, contigs/chromosomes, CDS forward and 
reverse, non-CDS features, GC content, and GC skew, along 
with other details given in the PATRIC user manual avail-
able at PATRIC homepage. In, general, the conserved and 
missing genomic regions among different BCC strains are 
prominent for viewing.

Core proteome, host non‑homology, and essential 
genes identification

The core genome files from plant and human isolates were 
compared with BLASTp (e-value ≤ 0.0001) to find the 
conserved genome between the BCC species that parasite 
both phyla, which resulted in a single-core genome file 
containing 1766 genes (Fig. 4). This file was, then, com-
pared by BLASTp (e-value ≤ 0.0001, bit score = 100 and 
identity ≥ 25%) to the human proteome (host for potential 
therapy against BCC) to filter out potential homologous pro-
tein with humans from the core BCC. Through this step, we 
identified 1680 proteins specific of the core BCC that did not 
show significant homology with humans. This step aimed to 
minimize unwanted toxic effect of drugs for humans result-
ing from cross-reactivity between BCC protein targets and 
the human proteome.

To find pathogen essential genes out of 1680 core file, 
the amino acid data files of prokaryotes, eukaryotes, and 
archaea were retrieved from the DEG database followed 
by a comparison with the set of BCC core proteins using 
BLASTp (e-value ≤ 0.0001 and identity ≥ 25%). Essen-
tial genes/proteins comprise of a minimal set of genes/
proteins that are essential for survival of living cell in 
their environment. The essential genes among the BCC 
core (1680 genes) were found to be only 37, which we 

considered as putative therapeutic targets. To improve the 
reliability of these proteins as potential broad-spectrum 
therapeutic targets, we compared the file of 37 BCC pro-
teins with Burkholderia gladioli ATCC 10,248 (BLASTp, 
e-value ≤ 0.0001), another closely related BCC species. 
This filtering further drop downed the BCC core, essential 
, and non-host homologous target proteins to 21.

Comparative subcellular localization

The 21 putative therapeutic targets of BCC were shared 
among the Burkholderia genus, we further anticipated 
the comparative subcellular localization of these proteins 
using Cello2GO and were cross-checked using PSORTb 
tool. The tool represents a number of analytical modules 
for the prediction of target protein localization based on 
localization scores. These scores represent the confidence 
values for each of the localization sites, a site having a 
score > 7.5, that site and its score are returned as predicted 
localization. Occasionally, more than one site returns high 
scores that means that the protein under study may have 
multiple localization sites. This step is important to iden-
tify the exact location of targeted proteins and classify 
them as secreted, cytoplasmic, putative surface exposed 
(PSE), and transmembrane proteins (according to signal 
peptides, retention signals, and transmembrane helices 
in accordance to the biological role they play during cell 
growth, replication, and host interaction).

3D structure prediction via high‑throughput 
comparative homology modeling

The 21 proteins submitted to MHOLline yielded an out-
put file of different groups of target protein sequences 
comprising G0, G1, G2, and G3 groups where only the 
G2 group could be proceeded for further analyses. The 

Fig. 4  Distribution of intra/
interspecies orthologs in BCC 
human and plant isolates. Venn 
diagram representation showing 
the individual intraspecies core 
genome/proteome of BCC iso-
lates from human sources (left) 
and from plant sources (right), 
whereas the central part of the 
diagram represents the interspe-
cies core genome/proteome 
of BCC genus (only selected 
species in this work)
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MHOLline generates these four groups depending on 
alignment quality parameters of input sequences for find-
ing template structures in the PDB database using inte-
grated BLASTp and BATS tools. Based on initial align-
ment, the grouping of input sequences in G2 follow strict 
parameters; e-value ≤ 10 −5, identity ≥ 25%, and Length 
Variation Index (LVI) ≤ 0.7 (the coverage scores in the 
MHOLline, i.e., LVI ≤ 0.1 is equivalent to ≥ 90%, an iden-
tity coverage between query and target protein) thus G2 is 
the only group that comply with MHOLline criterion and 
was used for further analyses. The G2 group comprises 
further seven subgroups (BATS analyses) where only the 
first four groups (good, medium to good, high, and very 
high-quality sequences) were included in this study. In 
subgroups, only 13 distinct quality model sequences were 
found, for 12 sequences the 3D homology structures were 
effectively predicted by MHOLline via integrated MOD-
ELLER software. The output summary file summarizes 
information regarding all steps of the MHOLline workflow 
where among the selected four subgroups of G2 contained 
structural data for six sequences only both from high and 
very high-quality subgroups, thereby reducing the putative 
target list to six from 21 (Table 4). The PROCHECK val-
ues from the MHOLline suite, showing the stereochemical 
qualities of the constructed models were further checked 
for the final set of 6 BCC targets.

3D structure comparison, virulent factors, 
and interactome analyses

The MHOLline structures were cross-checked with SWISS-
MODEL structures as both MHOLline and SWISS-MODEL 
employee Modeler software for 3D structure prediction. 
Qualities of these structures (PROCHECK values) were 
almost the same, over 90% of the amino acid residues of 
target proteins were in the most favored regions of the 
Ramachandran plot. However, in some cases of low-qual-
ity 3D structures from MHOLline, the SWISS-MODEL 
gave better results to ensure the success of future docking 
analyses. Furthermore, targets were subjected to VFDB 
that analyzed and reported all as virulent proteins (Table 5). 
Virulence factors (VFs) refer to the properties of pathogenic 
bacteria in terms of gene products that make them capable to 
establish an internal or external interaction with a host cell, 
proliferate and enhance their potential to cause a disease. 
These VFs include bacterial toxins, cell surface proteins, 
cell surface glycoproteins, bacterial protection proteins and 
hydrolytic proteins, among others. The VFDB uses VFana-
lyzer for systematic screening of virulence factors in bacte-
rial complete as well as draft genomes by not using sim-
ple BLAST searches, rather it first constructs orthologous 
groups within the query genome and pre-analyzed reference 
genomes from VFDB to avoid potential false positive results 

due to genes/proteins paralogues. The next step is an itera-
tive and exhaustive sequence similarity searches among the 
hierarchical pre-build datasets of VFDB to accurately and 
specifically identify VFs in query strains. At the end, VFa-
nalyzer achieve relatively high specificity and sensitivity 
through a context-based data refinement process for VFs 
encoded by gene clusters [34]. BCC target proteins hav-
ing bit score ≥ 100 and identity of ≥ 50% were identified as 
potential VFs and were rendered for further physicochemical 
extrapolations.

ProtParam is a molecular weight calculator for biological 
macromolecules, an important step toward target prioriti-
zation in accordance to the Lipinski rule of five (Table 5) 
[54]. The STRING aims at collecting scores and integrating 
all publicly available sources of protein–protein interaction 
information, and to complement these data with computa-
tional predictions. The predicted interactome based on the 
six protein targets enabled to detect the protein neighbors 
that showed maximum interactions (minimum three inter-
actions) (Fig. 5). All putative targets were found to have 
more than 10 interactions but Bamb_0438 (RS01725_chro-
mosome_1 30S ribosomal protein S10), and Bamb_0648 
(RS03735_chromosome_1 Aminodeoxychorismate synthase 
component I) showed even more interactions. Bamb_0648 is 
a heterodimeric complex, which provides important physi-
ological functions unique to plants, bacteria, fungi and cer-
tain parasites and due to its absence in plant and animal 
hosts make it an excellent target for antimicrobial agents 
and herbicides [55].

Deciphering of druggability and druggable pockets

The information acquired from 3D structures and drugga-
bility studies are essential features for drug development 
to inhibit pathogen targets. According to DoGSiteScorer 
(Fig. 6A–F), all target proteins were found highly druggable. 
Meanwhile the Target-Pathogen Database, a bioinformatics 
approach to prioritize drug targets in a pathogen, was also 
consulted in order to re-check and compare the druggabil-
ity and other biochemical functions. DoGSiteScorer uses a 
“Difference of Gaussian” filter to detect potential binding 
pockets (grid-based method) depending solely on the protein 
3D structure, splitting them into sub-pockets. Protein global 
properties are calculated describing the size, shape and 
chemical features of the predicted sub-pockets and assign 
a druggability score to each sub-pocket, based on a linear 
combination of the three descriptors describing volume, 
hydrophobicity and enclosure. Furthermore, another subset 
of specific descriptors is added in a support vector machine 
(libsvm) to predict the druggability score of sub-pocket/s 
[42]. Target proteins with a score ≥ 0.8 were predicted as 
highly druggable on a scale ranging from 0 to 1. The dif-
ferent colors of pockets refer to the druggability score, i.e., 
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a green colored pocket represent high druggability whereas 
a red colored pocket represent low druggability, the other 
colored pockets lie between these druggability scores and 
colored pockets, respectively. The information of putative 
cavities with their corresponding druggability scores are 
given in Table 5.

Virtual screening and molecular docking analyses

The functional characterization of six targets using Uni-
Prot, KEGG, ExPASy, and InterProScan databases aided 
in selecting final targets by emphasizing on their prospec-
tive roles in different metabolic pathways, thus, resulted 
in only two proteins; BCEN2424_RS14895, Bifunctional 
N-acetylglucosamine-1-phosphate uridyltransferase/
Glucosamine-1-phosphate acetyltransferase glmU (PDB 
template: 2W0W), and BCEN2424_RS07230, Choris-
mate synthase aroC (PDB template: 1UM0), which 
were rendered to virtual screening (VS) using a library 
of 12,000 drug-like compounds (ZINC15 database) via 
the MOE program. For VS, we only selected the pro-
tein targets that already had ligand compounds in their 
3D templates, already retrieved from PDB database. The 
resulting lists contained the best hits for each putative 
target protein. The interactions within the active site 
of PDB target-ligand complex structure were checked 
and, then, were followed by docking analyses selecting 
only the specific residues involved in the putative target 
activity. The lower energy scores of the MOE program 

indicates a better ligand–protein binding complex forma-
tion compared to high energy values. In this work, the 
best hits from the VS step were docked, each having 15 
poses, for the identification of best ranked ligands. For 
both BCEN2424_RS14895 and BCEN2424_RS07230 
the top 10 best ranked hits, their energy values, and 2D 
interactions details are tabulated, respectively (Tables 6, 
7), while 2D interactions are shown only for the top 1 
compound for both targets. Figure 7 illustrates the inter-
actions of ZINC06055530 into the druggable cavity of 
BCEN2424_RS14895 (Glucosamine-1-phosphate acetyl-
transferase glmU), interacting with two glycine resi-
dues (Gly9 and Gly99) through hydrogen bonding with 
the minimum possible binding energy value (−6.8601) 
as compared to other nine best hits across the column 
(Table  6). Gly9 made an arene–hydrogen interaction 
while among other interactions, three residues were basic 
(shown in blue circle in Fig. 7) and one acidic (shown in 
red circle in Fig. 7). For ZINC01405842 interaction with 
aroC, six basic residues made interaction (shown in blue 
circle in Fig. 7), while no acidic residue made any inter-
action. Several hydrogen bonds were observed (Lys49, 
Ser126, Ser127, Arg299), where Lys49 was representa-
tive of an arene–cation interaction. Overall, energy val-
ues were lower for aroC interaction with ZINC01405842, 
compared to GlmU interaction with ZINC06055530 
compound.

Fig. 5  STRING analysis of protein–protein interactions for the six 
putative protein targets. Green lines connect proteins which are asso-
ciated by recurring neighborhood method of the STRING database; 
blue connections are inferred by phylogenetic co-occurrence, and red 
lines indicate gene-fusion events; line thickness is a rough indicator 

for the strength of the association; purple lines indicate experimental 
evidence; yellow lines show text mining indication; black lines denote 
co-expression evidence; light blue lines represent database evidence. 
The colorful circles denote nodes while the lines are for edges
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ADMET Profiling, MD simulation, and binding free 
energy calculations

For the selected compounds, pharmacokinetics and phar-
macology properties (absorption, distribution, metabo-
lism, and excretion referred to as ADME, were studied to 
check higher penetration and least side effects to human 
and other hosts, if any. Most of them were substrates for 
P-glycoprotein whereas some of these compounds showed 
blood–brain barrier permeability or mutagenicity, and also 
they did not show maximum inhibition of cytochromes. 
Those predicted positive for mutagenicity, it is presumed 
that they do not cause mutations in the host DNA repli-
cation or translation processes. Most of the compounds 
showed the least acute oral toxicity to humans. Since 
the top 10 hits were selected, other compounds from the 
remaining 8 inhibitors could possibly be selected; in case, 
some are hazardous to human or other hosts. The drug-
like compounds mined in this study as potential inhibitor 

Fig. 6  A–F Cartoon representation of three-dimensional models of 
BCC target proteins together with identification of druggable pock-
ets via the DoGSiteScorer server. A pocket having a score closer to 
1 is regarded as highly druggable and vice versa, on a 0–1 scale. A 

30S ribosomal protein S10; B 50S ribosomal protein L6; C Amino-
deoxychorismate synthase component I; D 50S ribosomal protein L5; 
E Bifunctional N- acetylglucosamine-1-phosphate uridyltransferase/
glucosamine-1-phosphate acetyltransferase; F Chorismate synthase

Table 6  Compound names, MOE energy scores, and predicted 
hydrogen bonds of the selected ligand showing best docked orien-
tation with bifunctional N-acetylglucosamine-1-phosphate uridyl-
transferase/glucosamine-1-phosphate acetyltransferase (BCEN2424_
RS14895)

The top best compound is shown in bold

S.no Zinc ID Complex S score 2D interactions

1 ZINC06055530  − 6.8601 GLY9, GLY99
2 ZINC67907992  − 6.7428 ASP100, ASN223
3 ZINC20542465  − 6.6819 GLY135
4 ZINC78774792  − 6.2567 ASN165, ASN223
5 ZINC67673512  − 6.3976 ASN223
6 ZINC67817383  − 6.6512 GLY9, ARG14, LYS20
7 ZINC79485544  − 6.6413 ALA8, ASP100
8 ZINC79100915  − 6.0332 TYR98, ASN223
9 ZINC10404052  − 6.5502 GLU10
10 ZINC00107306  − 6.5304 GLY9, THR77, THR195
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candidates were found to be active, safe, and have not 
previously been studies as anti-BCC and would require 
laboratory validations (Tables 8, 9).

To study the complex stability, properties like free bind-
ing energy, root-mean-square deviation (RMSD), number 
of interactions, root-mean-square fluctuation (RMSF), and 
the radius of gyration (Rg) are very useful for studying the 
stability of the complexes. Most of the energy values are 

negative that indicates a favorable ligand–protein complex 
formation.

Table 10 shows the free binding energy and contribution 
of different mechanisms to it. Negative free binding energy 
implies favorable complex formation. In this case, only com-
plex 01 formation has negative energy, and then turns out to 
be favorable. Nevertheless, it is positively smaller, and the 

Table 7  Compound names, 
MOE energy scores, and 
predicted hydrogen bonds of 
the selected ligand showing 
best docked orientation 
with Chorismate synthase 
(BCEN2424_RS07230)

The top best compound is shown in bold

S.no Zinc ID S score 2D interaction

2 ZINC01405842  − 7.0606 LYS49, SER126, SER127, ARG299
1 ZINC01413140  − 7.2415 SER126, SER127, ASN238, ALA239, ARG299
3 ZINC40478899  − 6.9413 LYS49, SER126
4 ZINC04810088  − 6.8835 LYS49, ARG299
5 ZINC32696020  − 6.7133 ARG327
6 ZINC04995376  − 6.6966 LYS49, SER126, ARG299
7 ZINC05285294  − 6.6422 LYS49, ARG299
8 ZINC71863887  − 6.6339 LYS49, HIS55
9 ZINC08216055  − 6.6018 LYS49
10 ZINC05002395  − 6.5604 SER126, SER127, ARG299

ZINC06055530
with

BCEN2424_RS14895 
(Glucosamine-1-phosphate 

acetyltransferase glmU)

ZINC01405842
with

BCEN2424_RS07230 
(Chorismate synthase aroC)

Fig. 7  Two-dimensional (2D) representation of drug–protein target 
interactions using MOE. Top best ranked docked compounds with 
best possible orientations for ZINC06055530 and ZINC01405842 
in the most druggable cavity of bifunctional N-acetylglucosamine-

1-phosphate uridyltransferase/glucosamine-1-phosphate acetyl-
transferase (BCEN2424_RS14895) and Chorismate synthase 
(BCEN2424_RS07230), respectively
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contribution of Coulomb and van der Waals interaction is 
stronger in this complex than in complex 01.

The latter is confirmed accounting the interactions made 
during the simulation time. The number of hydrogen bonds 
(H-bond), hydrophobic contacts, salt bridge, π-π stack-
ing, and π-cation interactions through the simulation were 
determined for each complex using the PLIP software. Form 
Fig. 8, we can see that the total interaction number made by 
02 is more than twice than 01 but they are made by less resi-
dues. In both cases, almost all interaction types are present 
in each complex.

Figure 9 shows that the RMSD for both complexes attain 
stability after the first 50 ns of the simulation showing with 
little high values around 8 and 5 Å for system 01 and 02, 
respectively. It is well known that sometimes, the rigid-body 
alignment is not rich enough and, the RMSD and RMSF will 
increase for all atoms, overestimating them and neglecting 

Table 8  Pharmacokinetic parameters of the top-scoring ZINC compounds for predicted target bifunctional N-acetylglucosamine-1-phosphate 
uridyltransferase/glucosamine-1-phosphate acetyltransferase (BCEN2424_RS14895)

The bold words represent the selected final ZINC durg-like molecules whose MD analyses were performed later on

S. No Compound ID Molar refractivity Polar surface 
area topology 
(Å2)

Bioavailability Druglikeness 
Lipinski/viola-
tions

Leadlike-
ness/viola-
tions

Consensus 
Log P o/w

Skin permeation 
Log Kp (= cm/s)

1 ZINC06055530 80.42 109.19 0.55 Yes/0 Yes/0 2.08  − 7.18
2 ZINC67907992 88.52 59.98 0.55 Yes/0 Yes/0 2.14  − 6.98
3 ZINC20542465 81.63 81.07 0.55 Yes/0 Yes/0 1.18  − 7.39
4 ZINC78774792 79.88 74.18 0.55 Yes/0 Yes/0 2.74  − 6.31
5 ZINC67673512 78.26 73.22 0.85 Yes/0 Yes/0 1.38  − 7.58
6 ZINC67817383 74.31 95.08 0.56 Yes/0 Yes/0  − 0.03  − 8.26
7 ZINC79485544 78.02 137.66 0.55 Yes/0 Yes/0 2.38  − 6.18
8 ZINC79100915 79.69 76.14 0.55 Yes/0 Yes/0 1.53  − 7.56
9 ZINC10404052 82.43 58.95 0.55 Yes/0 Yes/0 2.46  − 6.06
10 ZINC00107306 73.82 136.41 0.56 Yes/0 Yes/0 0.88  − 8.03

Table 9  Pharmacokinetic parameters of the top-scoring ZINC compounds for predicted target Chorismate synthase (BCEN2424_RS07230)

The bold words represent the selected final ZINC durg-like molecules whose MD analyses were performed later on

S. No Compound ID Molar refractivity Polar surface 
area topology 
(Å2)

Bioavailability Druglikeness 
Lipinski/viola-
tions

Leadlike-
ness/viola-
tions

Consensus 
Log P o/w

Skin permeation 
Log Kp (= cm/s)

1 ZINC01405842 87.71 93.31 0.56 Yes/0 Yes/0 2.43  − 6.28
2 ZINC01413140 79.87 95.70 0.55 Yes/0 Yes/0 1.78  − 6.53
3 ZINC40478899 80.15 75.55 0.56 Yes/0 Yes/0 1.92  − 6.54
4 ZINC04810088 85.00 74.45 0.55 Yes/0 Yes/0 2.89  − 6.02
5 ZINC32696020 90.20 61.27 – – – – –
6 ZINC04995376 93.38 53.93 0.55 Yes/0 Yes/0 2.47  − 6.08
7 ZINC05285294 98.44 45.14 0.55 Yes/0 Yes/0 2.77  − 5.70
8 ZINC71863887 91.16 65.79 0.85 Yes/0 Yes/0 2.34  − 6.38
9 ZINC08216055 86.48 84.97 0.55 Yes/0 Yes/0 2.30  − 6.48
10 ZINC05002395 74.76 96.48 0.55 Yes/0 Yes/0 0.92  − 7.11

Table 10  Free binding energy calculations of stable complexes dur-
ing the last 25 ns (250 frames) of the molecular dynamic simulation 
(in units of kcal/mol)

Free binding energy Complex 01 
(BCEN2424_
RS14895)

Complex 02 
(BCEN2424_
RS07230)

∆G  − 7.9482 0.4469
∆Gelect  − 3.2855  − 28.1553
∆GvdW  − 24.1366  − 26.4169
∆GPB 23.1732 59.1582
∆GSA  − 3.6993  − 4.1391
∆Ggas  − 27.4221  − 54.5722
∆GSol 19.4739 55.0191
∆GPol 19.8877 31.0029
∆GNonPol  − 27.8359  − 30.556
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important fluctuations associated with biological function 
if there are small portions of the complex with high mobil-
ity [56].

A measure of the residue fluctuation is the root-mean-
square fluctuation (RMSF) parameter. Figure 10 show 
the RMSF calculated for both complexes. Similar to the 
results for RMSD, the 02 complex shows lower values for 
all the residues responsible for the interactions (see figure 
PLIP Interaction figure), indicating that the ligand makes 
the enzyme less flexible.

A measurement of how compact the complex is, can 
be verified by calculating the radius of gyration (Rg). The 
complex 01 shows the lowest and most stable value of Rg 

than the complex 02 with oscillations around 1.5 Å. On 
the other hand, complex 02 shows a decreasing value with 
simulation time (Fig. 11).

Discussion

In this work, an attempt was made to highlight the differ-
ences of genome architecture through Pangenomics includ-
ing rRNA, tRNA, pseudogenes, % GC content and size of 
different BCC strains isolated from plant, human and envi-
ronmental sources followed by identification of therapeutic 
protein targets in a step-by-step manner. BCC forms a group 

Fig. 8  Interactions calculated for, A ZINC06055530 with BCEN2424_RS14895 (Glucosamine-1-phosphate acetyltransferase glmU), and B 
ZINC01405842 with BCEN2424_RS07230 (Chorismate synthase aroC)

Fig. 9  RMSD calculated for A ZINC06055530 with BCEN2424_RS14895 (Glucosamine-1-phosphate acetyltransferase glmU), and B 
ZINC01405842 with BCEN2424_RS07230 (Chorismate synthase aroC)
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of related bacterial species that are capable of imparting 
cystic fibrosis and aerosol-based contamination. Bacterial 
genotyping showed that infections by Burkholderia cepacia 
strains are more specific in cystic fibrosis patients, which 
denotes a greater propagation capacity among these patients. 
Based on the genomic information, we constructed differ-
ent phylogenetic trees to check the ancestral relationship of 
all different isolates of BCC complex on an individual and 
combined basis. The combined phylogenetic tree showed 
that strains isolated from plant, human, and environmen-
tal sample sources represent different branch position when 
compared to the individual trees, which might implicate that 
BCC strains isolated from different sources might be able 

to evolve differently under specific circumstances and cause 
diseases in several different hosts. Due to the fact that BCC 
is responsible for a wide range of diseases from nosoco-
mial infection in CF patients to rice root infection in plant, 
among other, a focus was made on finding the minimal set 
of genes/proteins shared by all the strains (core genome/pro-
teomes) included in this study. Keeping a stringent criterion 
for core genome identification for a large number of bacte-
rial genomes drastically reduces the totality of core protein 
targets in comparison to the pan genome that increase with 
increase in number of genomic datasets under study. This 
core data although shared by BCC strains might also share 
similarity with their host genomes/proteomes in terms of 

Fig. 10  RMSF calculated for, A ZINC06055530 with BCEN2424_RS14895 (Glucosamine-1-phosphate acetyltransferase glmU), and B 
ZINC01405842 with BCEN2424_RS07230 (Chorismate synthase aroC)

Fig. 11  Rg calculated for, A ZINC06055530 with BCEN2424_RS14895 (Glucosamine-1-phosphate acetyltransferase glmU), and B 
ZINC01405842 with BCEN2424_RS07230 (Chorismate synthase aroC)
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homology, therefore it is very important to filter such data 
at this stage by comparing to their respective host genomes. 
Since the NCBI database provide more information about 
viral and prokaryotic genomes and up to certain degree of 
eukaryotic organisms, the host homology in this study was 
restricted only keeping in mind the human as the major 
host of utmost importance. Following these filtering steps 
reduces the number of genes/proteins in the dataset under 
analyses that was further reduced after subjecting to gene 
essentiality step where only those genes/proteins are selected 
that are vital for the survival of the microorganisms.

To reduce the cost and development time of BCC drugs, 
virtual screening (VS) of a large number of drug librar-
ies is now extensively used. Only few compounds have 
yet been discovered by virtual screening analyses that 
might interact with the BCC protein structures. Despite 
the fact that structural information was computationally 
predicted and could, therefore, differ from experimental 
facts, we constructed the 3D models of target proteins by 
comparative homology modeling using experimental tem-
plates obtained from the PDB databank. No compound is 
reported so far mentioning interaction to our identified tar-
get protein structures via high-throughput virtual screen-
ing methods. Therefore, in the current study, the top ten 
ligands were selected on the basis of their binding affini-
ties after the screening of a library of 12,000 drug-like 
molecules. Among them, the best ligands were selected 
according to their high binding affinity and minimal 
energy scores for ligand–receptor interaction. The infor-
mation given here might further aid in designing bench 
experiments for antibiotic and vaccine development. The 
putative BCC protein candidates that were identified here 
are key therapeutic targets for a number of reasons given 
below separately.

BCEN2424_RS14895_glmU

Bifunctional N-acetylglucosamine-1-phosphate uridyl-
transferase/glucosamine-1-phosphate acetyltransferase 
is an essential precursor of peptidoglycan and rhamnose-
GlcNAc linker region of the mycobacterial cell wall. The 
pathway for UDP-GlcNAc biosynthesis is significantly dif-
ferent in eukaryotes and prokaryotes. Since in vitro experi-
ments showed that glmU is essential for bacterial cell wall, 
we assume that it is a potential drug target in BCC. It is 
also reported as a drug candidate for tuberculosis [57]. The 
best interacting leads are shown along with their ZINC IDs, 
minimized energy, number of interactions, and interacting 
residues. ZINC06269029 was predicted as the top-ranked 
molecule interacting with Gly9 and Gly99 residues in the 
binding site of glmU (Table 4, Fig. 7).

BCEN2424_RS07230_aroC

Chorismate synthase catalyzes the formation of Choris-
mate, the last step of the shikimate pathway. Chorismate 
is a branch-point metabolite used in the synthesis of aro-
matic amino acids, p-aminobenzoic acid, folate, and other 
cyclic metabolites such as ubiquinone. Shikimate pathways 
are present only in plants, fungi, and bacteria, making these 
pathway enzymes possible targets for herbicides, antibiotics, 
and antifungals. Chorismate synthase from Mycobacterium 
tuberculosis is also considered to be a potential therapeutic 
target [58]. A comparison between model template struc-
tures was made and Lys49, Ser126, Ser127, and Arg299 resi-
dues are shown with top ZINC-selected docked compound 
(Table 5, Fig. 7).

Conclusions

In this report, we performed a series of in silico analyses 
using a number of bioinformatics tools that led us to identify 
novel therapeutic targets for the first time in BCC. Further-
more, some of the BCC targets identified here were already 
reported experimentally, which validate our methodology. 
We believe that the set of target proteins proposed here is 
worthy for future in vitro and in vivo experimentation for 
drugs and vaccine development. Furthermore, the set of 
integrated techniques used here is/could be extended to the 
search of therapeutic targets in a number of other pathogens 
[59].
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