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Abstract

Burkholderia cepacia complex (BCC) is a group of gram-negative bacteria composed of at least 20 different species that cause
diseases in plants, animals as well as humans (cystic fibrosis and airway infection). Here, we analyzed the proteomic data of
47 BCC strains by classifying them in three groups. Phylogenetic analyses were performed followed by individual core region
identification for each group. Comparative analysis of the three individual core protein fractions resulted in 1766 ortholog/
proteins. Non-human homologous proteins from the core region gave 1680 proteins. Essential protein analyses reduced the
target list to 37 proteins, which were further compared to a closely related out-group, Burkholderia gladioli ATCC 10,248
strain, resulting in 21 proteins. 3D structure modeling, validation, and druggability step gave six targets that were subjected
to further target prioritization parameters which ultimately resulted in two BCC targets. A library of 12,000 ZINC drug-like
compounds was screened, where only the top hits were selected for docking orientations. These included ZINC01405842
(against Chorismate synthase aroC) and ZINC06055530 (against Bifunctional N-acetylglucosamine-1-phosphate uridyl-
transferase/Glucosamine-1-phosphate acetyltransferase glmU). Finally, dynamics simulation (200 ns) was performed for
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each ligand-receptor complex, followed by ADMET profiling. Of these targets, details of their applicability as drug targets
have not yet been elucidated experimentally, hence making our predictions novel and it is suggested that further wet-lab
experimentations should be conducted to test the identified BCC targets and ZINC scaffolds to inhibit them.
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Introduction

Burkholderia cepacia complex (BCC) represents a group of
aerobic gram-negative bacillus of Betaproteobacteria, pos-
ing a serious threat not only to the humans, but also to the
plant and animal population [1]. In humans, BCC is regarded
as challenging opportunistic pathogens especially in immu-
nocompromised individuals and in patients with genetic
disorders like cystic fibrosis (CF). A group of 20 + closely
related bacterial species form BCC group with up to 78%
identical genomes whose size ranges from 7 to 9 MB. The
genes are typically arranged in three chromosomes and mul-
tiple plasmids, which enables more flexibility in gene gain/
loss to support its disease virulence and biology [2]. BCC
species form biofilms in vitro and in vivo in the lungs of
patients with CF, protecting them from antibiotic drugs, and
sustaining continual infection. Compared to planktonic sam-
ples, the minimum inhibitory concentrations (MIC) of most
B-lactam agents are significantly higher toward BBC due to
the protective effect of their biofilm. Other factors include
(i) the putative expression of virulent genes regulated by
quorum sensing, (ii) the production of exopolysaccharide
associated to mucous phenotypes that promote the escape
of host response, and (iii) the production of lipopolysac-
charide that contributes to tissue damage [3]. Infection dif-
fusion from person to person has been reported; thereby,
many hospitals, clinics, and campuses have adopted severe
isolation measures to counter the onsets caused by BCC.
Infected individuals are often treated in area separated from
non-infected patients to limit disease spread, as BCC infec-
tion can lead to a rapid decline in pulmonary function and
cause mortality. The pathogenicity of BBC in patients with
chronic granulomatous disease appears to be dependent on
their ability to resist the killing of non-oxidative neutro-
phils and the neutrophil necrosis induction [2—4]. BCC also
causes prolonged respiratory infection among individuals
with CF, and may cause pneumonia, septicemia, and soft
tissue eruptions among individuals with chronic granu-
lomatous disease [5]. Resistance to f-lactam agents is most
often promoted by inducible chromosomal - lactamases or
efflux pumps. The capacity of novel p-lactamase inhibitors
to reestablish the in vitro action of ceftazidime suggests a
cumulative effect of p-lactamase and efflux pumps in clini-
cal BCC samples [6, 7]. Less commonly, resistance is due
to plasmid-mediated p-lactamases of the TEM class (ceph-
alosporinases) or modifications in the penicillin-binding
proteins. Intrinsic resistance of BBC strains to aminoglyco-
sides and polymyxin results from the decreased site-specific
binding of these cationic drugs to lipopolysaccharide, which
has the effect to reduce outer membrane permeability, and
efflux pump activation. One specific species B. vietnamien-
sis, is susceptible to aminoglycosides, yet resistant to other

polycationic antimicrobials. In CF patients with pulmonary
infection induced by B. vietnamiensis, the resistance to ami-
noglycoside or azithromycin treatment has been connected
with the emergence of aminoglycoside elimination by means
of induction of active drug efflux [8].

The vulnerability testing to antimicrobial drug combina-
tions of BCC strains isolated from CF patients that devel-
oped resistance to single drug therapy has been extensively
performed although evidence of clinical efficacy is still lack-
ing. MIC testing using combinations of two drugs seems to
have limited efficacy in blind treatment for CF patients with
broad resistance to BCC. The combinations of epsilometer
tests or e-test strips as well as the breakpoint combination
vulnerability testing are simpler and faster approaches that
are considered for screening the efficacy of two-drug com-
binations against BCC. Though they have good association,
they still have clinical limitations [9-11]. Recently, com-
bination of three drugs, i.e., tobramycin, meropenem, with
a third mediator being either piperacillin—tazobactam, cef-
tazidime, trimethoprim—sulfamethoxazole, or amikacin, was
effective in vitro against half of 47 multidrug-resistant BCC
isolates producing biofilms. Improvement of new agents
with in vitro and in vivo activity against BCC for patient
therapy is still challenging [12-15].

Reverse vaccinology includes bioinformatics and struc-
tural biology methods that were developed after the revo-
lution of next-generation genome sequencing technologies
(NGS) for rapid identification of novel therapeutics by min-
ing the enormous quantity of prokaryotic genome data. Other
approaches like subtractive microbial genomics and differ-
ential genome analysis were also implemented for the iden-
tification of molecular targets in different human pathogens
like M. tuberculosis, Burkholderia pseudomallei, Helicobac-
ter pylori, Pseudomonas aeruginosa, Neisseria gonorrhea
Corynebacterium pseudotuberculosis, and Salmonella typhi,
among others [16—18]. The main idea is to find therapeutic
targets that are keys for the pathogen survival and that do
not possess any homologous pair in the host, i.e., specific to
the pathogen. As a consequence, the drug inhibitors specific
for these protein targets are expect to carry main benefits to
patient by maximizing therapy effectiveness and minimizing
collateral toxicity due to off-target activity. Some pathogen
proteins might show a certain degree of homology to their
respective host proteome, yet they might be assigned as
potential targets for structure-based specific inhibitor devel-
opment given site-specific differences in active site amino
acid residues in the pathogen protein or other druggable
pockets. For such studies, a prerequisite is the availability of
completely sequenced genomes of target pathogens for data
screening. The Burkholderia genome database (www.burkh
olderia.com) includes all updates concerning BCC genome
annotations, curation, and comparison, thereby, providing a
great asset for the CF research community [19, 20].
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In this report, the genomic data of multiple BCC strains
were mined for novel broad-spectrum druggable protein
targets together with the identification of novel drug-like
inhibitors from the ZINC15 database (http://www.zinc15.
docking.org), with a goal to encompass the BCC pathogen-
esis. Additionally, it might open new insights for finding
novel therapeutics against cystic fibrosis.

Fig. 1 Workflow of Bioinfor-
matics/computational steps

for putative essential, core,
non-host homologous proteins)
identification for B. cepacia
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nih.gov/genomes/Bacteria) [21]. All strains were classified
in three groups based on their sample collection source:
(a) strains isolated from human sources; (b) strains from
plant sources; and (c) strains from environmental sources.
The data from NCBI were cross-checked with the Genome
OnLine Database—GOLD (www.gold.jgi.doe.gov) [22].
Figure 1 describes the hierarchical steps followed for
subtractive genome analyses to rank putative novel drug
and vaccine targets. All redundant genomes and protein
sequences were removed, and only genome representing
each strain was retained. Also, draft and incomplete genomes
were excluded to ensure analysis standardization. Tables 1,
2, 3, and 4 give elementary genome information regarding
bacterial strains, bioproject ID, replicons, genome size, pre-
dicted proteins, chromosome/plasmid accession numbers,
GC content (%), total genes and pseudogenes, tRNA, rRNA,
and disease data.

Phylogenetic analyses

Phylogenetic analyses for BCC could be performed using
multiple genes including 16S rRNA, recA, gyrB, rpoB,
acdS, atpD, gltB, and lepA genes, employing both maxi-
mum likelihood and neighbor-joining (NJ) approaches [23],
for convenience, we selected the housekeeping gene 16S
rRNA. To find a phylogeny inference, i.e., a hypothetical
chart representation and not definitive facts of evolutionary
relationships among organisms, multi-fasta files containing
sequences of 16S rRNA gene [(cytosine967-C5)-methyl-
transferase (WP_027788851.1)] from all forty-seven strains
(combined and individual tree construction for each environ-
mental, plants, human groups), were prepared and subjected
to the Molecular Evolutionary Genetics Analysis software
(MEGA7) (www.megasoftware.net) [24, 25]. The pattern of
branching reflects how species are evolved from a series of
ordinary ancestors. MEGA?7 creates a multiple alignment file
(fasta.txt) and forwards it to a multiple sequence alignment
tool (ClustalW) for phylogeny inference. The NJ trees were
constructed based on Tamura—Nei distances, using 1000
bootstrap replicates [26].

BCC core genome and non-host homology

To find the core genome of a specific species individually
or as whole for all of the three BCC groups, EDGAR soft-
ware was used. EDGAR is an Efficient Database frame-
work for comparative Genome Analyses that uses BLAST
score Ratios and is freely available (https://www.uni-giess
en.de/fbz/fb08/Inst/bioinformatik/software/EDGAR) [27,
28]. This framework aims at high-throughput compara-
tive genomics analyses of large groups of related genomes
by clustering orthologous genes and then classify these
genes as core genes or singletons. PATRIC, Pathosystem

Resource Integration Center (https://www.patricbrc.org)
was employed for circular genome comparison that has
integrated data analysis tools performing a wide range of
bioinformatics analyses related to biomedical research on
bacterial infectious diseases [29]. Furthermore, the identified
core genomes/proteomes of human, plant, and environmen-
tal BCC groups were compared with each other using the
NCBI-BLASTp program (www.ncbi.nlm.nih.gov) (default
threshold) to acquire a single-core region for all of the 47
strains. The core file was cross-checked with Burkholderia
cenocepacia HI2424 (human host) to verify the core pro-
teome data using BLASTp (all-against-all, e-value <0.0001,
bit score >200) [16, 30].

Next, the NCBI-BLASTp was re-employed to compare
the BCC representative core proteomes with the human
RefSeq proteome for non-homology analyses to avoid off-
targeting using the default parameters (e-value <0.0001, bit
score 200, and identity >25%) [17]. For non-host homol-
ogy analyses, only the human host proteome was considered
because of the complexity and unavailability of plant and
environmental host genomes in the public databases.

Gene essentiality, subcellular localization,
and virulence analyses

The minimal set of genes that are essential to support cel-
lular life are called essential genes. DEG datasets are now
accessible in the literature and comprises all essential genes
for bacteria, archaea, and eukaryotes. To identify essential
genes in BCC, the core non-host homologous proteins were
considered as query data versus the subject data of DEG
essential genes in the BLASTp (e-value <0.0001 and iden-
tity >25%) (28). The non-redundant and non-homologous
proteins were further investigated for subcellular location
to check the exoproteome and secretome of the BCC using
PsortB (www.psort.org/psortb/) [31] and Cello2GO (www.
cello.life.nctu.edu.tw.cello2go/) [32], both of these tools are
based on vector machine and suffix tree algorithm features.
The exoproteome and secretome are viewed as source of
vaccine candidates because of their continuous contact with
biotic and abiotic elements in the extracellular environment.
Subcellular localization of proteins was performed. Both
tools predicted same number of proteins from outer mem-
brane and extracellular locations and were further evalu-
ated for their involvement in virulence [31, 33]. Virulent
factors are proteins involved in disease intensity, which are
associated to microbial pathogenesis. This step is important
because antigenic/virulent proteins could serve worthy vac-
cine candidates since they intervene serious flagging path-
ways in the host cells and might potentially activate host
immune system in contrast to non-virulent proteins. Addi-
tionally, the mixtures of virulent proteins from a pathogen
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Table 4 MHOL line quality characterization of G2 subgroups for Target BCC proteins
S. No Accession numbers Protein name/gene name (symbols) Identity (%)

Very high-quality protein sequences (G2)

50S ribosomal protein L6/

Aminodeoxychorismate synthase component I

50S ribosomal protein L5

Bifunctional-N-acetylglucosamine- 1-phosphateuridyl-trans-

30S ribosomal protein S10/rpsJ; nusE >75

Same as above

Same as above

>50and <75

Same as above

ferase/glucosamine- 1-phosphate acetyltransferase

1 BCEN2424_RS01725
2 BCEN2424_RS01805
3 BCEN2424_RS03735
High-quality protein sequences (G)

1 BCEN2424_RS01790
2 BCEN2424_RS14895
3 BCEN2424_RS07230

Chorismate synthase

Same as above

that are expected to bind ligands with high affinity. For fur-
ther validation, the list of final targets was then subjected
to the Target-Pathogen Database (http://target.sbg.qb.fcen.
uba.ar) to prioritize drug targets in pathogens. This Database
also focuses on the structural druggability, essentiality, and
metabolic role of proteins.

Virtual screening

A ZINC library of 12,000 drug-like compounds was
retrieved from the ZINC database (www.zinc.docking.org)
and employed in virtual screening against the final set of
predicted putative BCC targets using Molecular Operating
Environment (MOE v2016.11) [43, 44]. MOE performs
accurate prediction of binding affinities through a predefined
algorithm and scoring to classify best docking orientations
between receptor and ligand in a ligand—receptor interaction
analysis. In MOE, docking and visualization were performed
according to a slightly modified protocol by Basharat et al.
[20], the parameters used were as follows: placement = tri-
angle matcher, rescoring 1 =London dG, refinement =force-
field, rescoring 2 = affinity dG. All docked ZINC compounds
were arranged in ascending order according to their bind-
ing energies and those with least energy of ligand-receptor
complex was considered as top conformation. Compounds
that were able to pass Lipinski’s drug-like test and had mini-
mum energy were selected as suitable inhibitors. Top two
ligands for each target protein were selected among the 20
best ranked compounds. Each top ligand was among those
having the maximum number of hydrogen bonds (H-bonds)
and the lowest ligand—receptor energy S scores.

ADMET and MD simulation studies and binding free
energy calculations

Among the top 10 hits that had minimum energy and were
able to pass Lipinski’s drug-like test were selected as suit-
able inhibitors. ADME/Tox analysis and skin permeation/
other physicochemical values were calculated using ADMET

prediction server (http://Immd.ecust.edu.cn/admetsar2) and
Swiss ADME (http://www.swissadme.ch/), respectively [45,
46] to validate the parameters for suitable drug/binding can-
didates. The structure of each ligand was optimized before
docking analyses by calculating charges, structure correction
if required, applying force field (MMFF94x) and minimiz-
ing energy.

Molecular dynamics simulation (MD) was done consid-
ering the top best drug complexed with the predicted tar-
get protein and was subjected to NAMD package (v2.14
GPU36) using the CHARMM36m force field [47-49]. The
particle mesh Ewald (PME) method evaluated long-range
Coulombic interactions. The integration time step was set to
2 fs (femto seconds). The production simulations were per-
formed in the NPT ensemble (constant number of particles,
pressure, and temperature) (p = 1.01325 bar and T=300 K),
using the Langevin dynamics. Na* and CI~ ions, correspond-
ing to a physiological concentration of 150 mM, were placed
in the simulation box to set the ionic strength and neutralize
the systems. After 10,000 steps (20 ps) of minimization,
the complexes were equilibrated for 135,000 steps (270 ps).
The production simulations last 200 ns and the trajectories
from MD were analyzed using MD analysis software [47,
48], while interactions were calculated with PLIP (v2.1.6)
software [49].

The MM/PBSA method (molecular mechanics pois-
son—boltzmann surface area) is one of the most widely
adopted approaches for calculating binding free energies
(AGbind) of ligands bound to biomolecule receptors after
molecular docking or dynamics. MM/PBSA was employed
for binding free energy calculations that are performed in
three steps, Molecular Mechanics (MM), Poisson-Boltz-
mann (PB) (or generalized Born (GB), and Surface Area
solvation (SA) before the summation is used to estimate
the binding energy [50]. AGbind were done using the MM/
PBSA as implemented in the CaFE package, a plugin of
VMD software [51, 52].
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Results

Overview of B. cepacia complex and genome
statistics

The genomic data of BCC obtained from NCBI were
tabulated in three different groups (G) including the envi-
ronment samples (Table 1), the plant samples (Table 2),
and human samples (Table 3). In the environmental sam-
ples, the number of proteins/genes comprises 5515/5629
to 7396/7590 and %GC content from 65.73 to 67.68%.
The Burkholderia vietnamiensis G4 ATCC 53,617, the
only strain in this group has five plasmids, while the
Burkholderia pseudomultivorans SUB-INT23-BP2 have
only one plasmid. In the plant samples, the number of
proteins/genes are from 6449/5908 to 7354/7524 and
the %GC content are 66.60-67.09%. Five out of seven in
plant group had a single plasmid. On the other hand, in
human group, the number of proteins/genes was between
5561/5717 and 7425/7898 with a %GC content between
66.31% and 67.31% and only 8 strains have 1 plasmid. The
table includes information regarding the disease type, their
prospective hosts, source of sample isolation, and country
information emphasizing the global prevalence of BCC
pathogenesis and their broad-spectrum host diversity.

Phylogenetic analyses of BCC

Phylogenetic tree is a graph display of the evolutionary
relationship among taxa under comparison. The basic
assumption of a phylogenetic investigation is that all taxa
(leaves of the tree) are related among them through homol-
ogous relationships with hypothetical ancestors that com-
pose the internal vertices of the tree. Here, we compared
the phylogenetic relationships between BCC species or
strains based on the nucleotide sequences of the 16S rRNA
(cytosine®®’-C%)-methyltransferase gene, though, as afore-
mentioned, many other genic combinations have also been
used, other studies also describe the cluster and distinct
lineages formation in detail based on NJ as well as ML
phylogeny analyses [23]. Through MEGA7, multiple phy-
logenetic trees were constructed, where all the 47 strains
are split in two clusters (Fig. 2A-D), where interestingly
BCC strains from all sources are mixed in the two clusters.
Inside MEGA7, one can download the sequences into the
Alignment Explorer and retrieve the unaligned sequences
in FASTA format by selecting Export Alignment from the
Data menu. The multiple alignment could be followed as
per study requirement using tools like Muscle, T-coffee,
and Clustal Omega available at EBBL-EBI (https://www.
ebi.ac.uk/Tools/msa/) and their output files could be used
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Fig.2 A Phylogenetic tree of 47 BCC species and strains based on
the 16S rRNA (cytosine®®’-C)-methyltransferase gene. B Phyloge-
netic tree of /9 BCC strains isolated from human sources based on
the 16S rRNA (cytosine®®’-C’)-methyltransferase gene. C Phylo-
genetic tree of seven BCC strains isolated from plant sources based
on the 16S rRNA (cytosine®®’-C3)-methyltransferase gene. D Phylo-
genetic tree of 2/ BCC strains isolated from environmental sources
based on the 16S rRNA (cytosine®®’-C?)-methyltransferase gene

as input files in the MEGA program (41). MEGAT7 uses
ClustalW together with the neighbor-joining (NJ) method
and a focus was made to elucidate the ancestral relation-
ship in Genus Burkholderia of all different strains iso-
lated from diverse sources and locations worldwide. It
is assumed that a more closely or distinctly relatedness
among various BCC strains could aid in designing future
projects, where a genus size could vary by the addition of
new variants and, hence, would give an insight into their
pan and core genomes as well as therapeutic targets iden-
tification for a broad spectrum of BCC pathogens.

Prediction of intraspecies core genome with EDGAR
and PATRIC

EDGAR comparative genomics workflow was employed to
identify core genomes of BCC strains isolated from human
and plant samples. At this stage, the plant core genome was
identified but excluded to avoid complications with host
homology analyses to be performed in the forthcoming
step. The individual core files comprised of 2495 and 2371
proteins for plant and human isolates, respectively, sowing
a close comparison of the BCC strains isolated from com-
pletely different sources. Furthermore, PATRIC resulted
bidirectional BLASTp genome comparison in circular
graphs for representative human isolates (Fig. 3). PATRIC
has the limitation that it can analyze only 10 genomes at a
time; hence the dataset of nineteen genomes isolated from
humans was divided into two sets, whereas plant isolates
were analyzed separately. The proteome comparison tool of
the PARIC workflow readily identified insertions and dele-
tions in up to ten genomes among a user-selected reference
genome and other nine as target genomes. The reference
genome can possibly be (a) a user-private genome in PAT-
RIC, (b) an annotated genome outside the PATRIC, (c) any
genome that is publicly available in PATRIC, or (d) possibly
a genome feature group containing a set of proteins saved
in PATRIC. The tool performing the proteome comparison
follows the basic principle of RAST tool that is based on
the sequence-based comparison, coloring each gene based
on protein similarity after using BLASTp [53]. Later, each
of the gene is marked as either a unique, a unidirectional or
bidirectional best hit after comparing to the selected refer-
ence genome. The output file includes a whole-genome sche-
matic circular view that is colored after running BLASTp
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Fig.2 (continued)
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Fig.2 (continued)
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Fig. 3 Circular genome representation of human BCC strains via PATRIC server
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Fig.4 Distribution of intra/
interspecies orthologs in BCC
human and plant isolates. Venn
diagram representation showing
the individual intraspecies core
genome/proteome of BCC iso-
lates from human sources (left)
and from plant sources (right),
whereas the central part of the
diagram represents the interspe-
cies core genome/proteome

of BCC genus (only selected
species in this work)

BCC core of
human isolates

and provides an insight into the circular interactive graphical
representation of the alignment of genes and other genomic
data. All the tracks on the genome viewer are shown as con-
centric rings that are arranged from outermost to innermost
including position, contigs/chromosomes, CDS forward and
reverse, non-CDS features, GC content, and GC skew, along
with other details given in the PATRIC user manual avail-
able at PATRIC homepage. In, general, the conserved and
missing genomic regions among different BCC strains are
prominent for viewing.

Core proteome, host non-homology, and essential
genes identification

The core genome files from plant and human isolates were
compared with BLASTp (e-value <0.0001) to find the
conserved genome between the BCC species that parasite
both phyla, which resulted in a single-core genome file
containing 1766 genes (Fig. 4). This file was, then, com-
pared by BLASTp (e-value <0.0001, bit score=100 and
identity > 25%) to the human proteome (host for potential
therapy against BCC) to filter out potential homologous pro-
tein with humans from the core BCC. Through this step, we
identified 1680 proteins specific of the core BCC that did not
show significant homology with humans. This step aimed to
minimize unwanted toxic effect of drugs for humans result-
ing from cross-reactivity between BCC protein targets and
the human proteome.

To find pathogen essential genes out of 1680 core file,
the amino acid data files of prokaryotes, eukaryotes, and
archaea were retrieved from the DEG database followed
by a comparison with the set of BCC core proteins using
BLASTDp (e-value <0.0001 and identity >25%). Essen-
tial genes/proteins comprise of a minimal set of genes/
proteins that are essential for survival of living cell in
their environment. The essential genes among the BCC
core (1680 genes) were found to be only 37, which we
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considered as putative therapeutic targets. To improve the
reliability of these proteins as potential broad-spectrum
therapeutic targets, we compared the file of 37 BCC pro-
teins with Burkholderia gladioli ATCC 10,248 (BLASTDp,
e-value <0.0001), another closely related BCC species.
This filtering further drop downed the BCC core, essential
, and non-host homologous target proteins to 21.

Comparative subcellular localization

The 21 putative therapeutic targets of BCC were shared
among the Burkholderia genus, we further anticipated
the comparative subcellular localization of these proteins
using Cello2GO and were cross-checked using PSORTb
tool. The tool represents a number of analytical modules
for the prediction of target protein localization based on
localization scores. These scores represent the confidence
values for each of the localization sites, a site having a
score > 7.5, that site and its score are returned as predicted
localization. Occasionally, more than one site returns high
scores that means that the protein under study may have
multiple localization sites. This step is important to iden-
tify the exact location of targeted proteins and classify
them as secreted, cytoplasmic, putative surface exposed
(PSE), and transmembrane proteins (according to signal
peptides, retention signals, and transmembrane helices
in accordance to the biological role they play during cell
growth, replication, and host interaction).

3D structure prediction via high-throughput
comparative homology modeling

The 21 proteins submitted to MHOLIline yielded an out-
put file of different groups of target protein sequences
comprising GO, G1, G2, and G3 groups where only the
G2 group could be proceeded for further analyses. The
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MHOLIline generates these four groups depending on
alignment quality parameters of input sequences for find-
ing template structures in the PDB database using inte-
grated BLASTp and BATS tools. Based on initial align-
ment, the grouping of input sequences in G2 follow strict
parameters; e-value <10 =5, identity >25%, and Length
Variation Index (LVI) <0.7 (the coverage scores in the
MHOLline, i.e., LVI<0.1 is equivalent to >90%, an iden-
tity coverage between query and target protein) thus G2 is
the only group that comply with MHOLIline criterion and
was used for further analyses. The G2 group comprises
further seven subgroups (BATS analyses) where only the
first four groups (good, medium to good, high, and very
high-quality sequences) were included in this study. In
subgroups, only 13 distinct quality model sequences were
found, for 12 sequences the 3D homology structures were
effectively predicted by MHOLIline via integrated MOD-
ELLER software. The output summary file summarizes
information regarding all steps of the MHOLIline workflow
where among the selected four subgroups of G2 contained
structural data for six sequences only both from high and
very high-quality subgroups, thereby reducing the putative
target list to six from 21 (Table 4). The PROCHECK val-
ues from the MHOLIline suite, showing the stereochemical
qualities of the constructed models were further checked
for the final set of 6 BCC targets.

3D structure comparison, virulent factors,
and interactome analyses

The MHOLIline structures were cross-checked with SWISS-
MODEL structures as both MHOLIine and SWISS-MODEL
employee Modeler software for 3D structure prediction.
Qualities of these structures (PROCHECK values) were
almost the same, over 90% of the amino acid residues of
target proteins were in the most favored regions of the
Ramachandran plot. However, in some cases of low-qual-
ity 3D structures from MHOLIline, the SWISS-MODEL
gave better results to ensure the success of future docking
analyses. Furthermore, targets were subjected to VFDB
that analyzed and reported all as virulent proteins (Table 5).
Virulence factors (VFs) refer to the properties of pathogenic
bacteria in terms of gene products that make them capable to
establish an internal or external interaction with a host cell,
proliferate and enhance their potential to cause a disease.
These VFs include bacterial toxins, cell surface proteins,
cell surface glycoproteins, bacterial protection proteins and
hydrolytic proteins, among others. The VFDB uses VFana-
lyzer for systematic screening of virulence factors in bacte-
rial complete as well as draft genomes by not using sim-
ple BLAST searches, rather it first constructs orthologous
groups within the query genome and pre-analyzed reference
genomes from VFDB to avoid potential false positive results

due to genes/proteins paralogues. The next step is an itera-
tive and exhaustive sequence similarity searches among the
hierarchical pre-build datasets of VFDB to accurately and
specifically identify VFs in query strains. At the end, VFa-
nalyzer achieve relatively high specificity and sensitivity
through a context-based data refinement process for VFs
encoded by gene clusters [34]. BCC target proteins hav-
ing bit score > 100 and identity of >50% were identified as
potential VFs and were rendered for further physicochemical
extrapolations.

ProtParam is a molecular weight calculator for biological
macromolecules, an important step toward target prioriti-
zation in accordance to the Lipinski rule of five (Table 5)
[54]. The STRING aims at collecting scores and integrating
all publicly available sources of protein—protein interaction
information, and to complement these data with computa-
tional predictions. The predicted interactome based on the
six protein targets enabled to detect the protein neighbors
that showed maximum interactions (minimum three inter-
actions) (Fig. 5). All putative targets were found to have
more than 10 interactions but Bamb_0438 (RS01725_chro-
mosome_1 30S ribosomal protein S10), and Bamb_0648
(RS03735_chromosome_1 Aminodeoxychorismate synthase
component I) showed even more interactions. Bamb_0648 is
a heterodimeric complex, which provides important physi-
ological functions unique to plants, bacteria, fungi and cer-
tain parasites and due to its absence in plant and animal
hosts make it an excellent target for antimicrobial agents
and herbicides [55].

Deciphering of druggability and druggable pockets

The information acquired from 3D structures and drugga-
bility studies are essential features for drug development
to inhibit pathogen targets. According to DoGSiteScorer
(Fig. 6A-F), all target proteins were found highly druggable.
Meanwhile the Target-Pathogen Database, a bioinformatics
approach to prioritize drug targets in a pathogen, was also
consulted in order to re-check and compare the druggabil-
ity and other biochemical functions. DoGSiteScorer uses a
“Difference of Gaussian” filter to detect potential binding
pockets (grid-based method) depending solely on the protein
3D structure, splitting them into sub-pockets. Protein global
properties are calculated describing the size, shape and
chemical features of the predicted sub-pockets and assign
a druggability score to each sub-pocket, based on a linear
combination of the three descriptors describing volume,
hydrophobicity and enclosure. Furthermore, another subset
of specific descriptors is added in a support vector machine
(libsvm) to predict the druggability score of sub-pocket/s
[42]. Target proteins with a score > 0.8 were predicted as
highly druggable on a scale ranging from O to 1. The dif-
ferent colors of pockets refer to the druggability score, i.e.,
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troF
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Fig.5 STRING analysis of protein—protein interactions for the six
putative protein targets. Green lines connect proteins which are asso-
ciated by recurring neighborhood method of the STRING database;
blue connections are inferred by phylogenetic co-occurrence, and red
lines indicate gene-fusion events; line thickness is a rough indicator

a green colored pocket represent high druggability whereas
a red colored pocket represent low druggability, the other
colored pockets lie between these druggability scores and
colored pockets, respectively. The information of putative
cavities with their corresponding druggability scores are
given in Table 5.

Virtual screening and molecular docking analyses

The functional characterization of six targets using Uni-
Prot, KEGG, ExPASy, and InterProScan databases aided
in selecting final targets by emphasizing on their prospec-
tive roles in different metabolic pathways, thus, resulted
in only two proteins; BCEN2424_RS14895, Bifunctional
N-acetylglucosamine-1-phosphate uridyltransferase/
Glucosamine-1-phosphate acetyltransferase glmU (PDB
template: 2WOW), and BCEN2424_RS07230, Choris-
mate synthase aroC (PDB template: 1UMO), which
were rendered to virtual screening (VS) using a library
of 12,000 drug-like compounds (ZINC15 database) via
the MOE program. For VS, we only selected the pro-
tein targets that already had ligand compounds in their
3D templates, already retrieved from PDB database. The
resulting lists contained the best hits for each putative
target protein. The interactions within the active site
of PDB target-ligand complex structure were checked
and, then, were followed by docking analyses selecting
only the specific residues involved in the putative target
activity. The lower energy scores of the MOE program

42
-

trpB

[E—

—_'

trpA

for the strength of the association; purple lines indicate experimental
evidence; yellow lines show text mining indication; black lines denote
co-expression evidence; light blue lines represent database evidence.
The colorful circles denote nodes while the lines are for edges

indicates a better ligand—protein binding complex forma-
tion compared to high energy values. In this work, the
best hits from the VS step were docked, each having 15
poses, for the identification of best ranked ligands. For
both BCEN2424_RS14895 and BCEN2424_RS07230
the top 10 best ranked hits, their energy values, and 2D
interactions details are tabulated, respectively (Tables 6,
7), while 2D interactions are shown only for the top 1
compound for both targets. Figure 7 illustrates the inter-
actions of ZINC06055530 into the druggable cavity of
BCEN2424_RS14895 (Glucosamine-1-phosphate acetyl-
transferase glmU), interacting with two glycine resi-
dues (Gly9 and Gly99) through hydrogen bonding with
the minimum possible binding energy value (—6.8601)
as compared to other nine best hits across the column
(Table 6). Gly9 made an arene—hydrogen interaction
while among other interactions, three residues were basic
(shown in blue circle in Fig. 7) and one acidic (shown in
red circle in Fig. 7). For ZINC01405842 interaction with
aroC, six basic residues made interaction (shown in blue
circle in Fig. 7), while no acidic residue made any inter-
action. Several hydrogen bonds were observed (Lys49,
Ser126, Ser127, Arg299), where Lys49 was representa-
tive of an arene—cation interaction. Overall, energy val-
ues were lower for aroC interaction with ZINC01405842,
compared to GlmU interaction with ZINC06055530
compound.

@ Springer
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Fig.6 A-F Cartoon representation of three-dimensional models of
BCC target proteins together with identification of druggable pock-
ets via the DoGSiteScorer server. A pocket having a score closer to
1 is regarded as highly druggable and vice versa, on a 0-1 scale. A

Table6 Compound names, MOE energy scores, and predicted
hydrogen bonds of the selected ligand showing best docked orien-
tation with bifunctional N-acetylglucosamine-1-phosphate uridyl-
transferase/glucosamine-1-phosphate acetyltransferase (BCEN2424_
RS14895)

S.no  Zinc ID Complex S score 2D interactions

1 ZINC06055530 —6.8601 GLY9, GLY99

2 ZINC67907992 —6.7428 ASP100, ASN223

3 ZINC20542465 —6.6819 GLY135

4 ZINC78774792 —6.2567 ASN165, ASN223

5 ZINC67673512 —6.3976 ASN223

6 ZINC67817383 —6.6512 GLY9, ARG14, LYS20
7 ZINC79485544 —6.6413 ALAS, ASP100

8 ZINCT79100915 —6.0332 TYRO9S, ASN223

9 ZINC10404052 —-6.5502 GLU10

10 ZINCO00107306 —6.5304 GLY9, THR77, THR195

The top best compound is shown in bold

@ Springer

30S ribosomal protein S10; B 50S ribosomal protein L6; C Amino-
deoxychorismate synthase component I; D 50S ribosomal protein L5;
E Bifunctional N- acetylglucosamine-1-phosphate uridyltransferase/
glucosamine-1-phosphate acetyltransferase; F Chorismate synthase

ADMET Profiling, MD simulation, and binding free
energy calculations

For the selected compounds, pharmacokinetics and phar-
macology properties (absorption, distribution, metabo-
lism, and excretion referred to as ADME, were studied to
check higher penetration and least side effects to human
and other hosts, if any. Most of them were substrates for
P-glycoprotein whereas some of these compounds showed
blood-brain barrier permeability or mutagenicity, and also
they did not show maximum inhibition of cytochromes.
Those predicted positive for mutagenicity, it is presumed
that they do not cause mutations in the host DNA repli-
cation or translation processes. Most of the compounds
showed the least acute oral toxicity to humans. Since
the top 10 hits were selected, other compounds from the
remaining 8 inhibitors could possibly be selected; in case,
some are hazardous to human or other hosts. The drug-
like compounds mined in this study as potential inhibitor
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Table 7 Compound names,

S.no Zinc ID S score 2D interaction
MOE energy scores, and
predicted hydrogen bonds of 2 ZINC01405842 —7.0606 LYS49, SER126, SER127, ARG299
Eiififfﬁig gﬁz‘;faiiofmg 1 ZINCO1413140 ~7.2415 SER126, SER127, ASN238, ALA239, ARG299
with Chorismate synthase 3 ZINC40478899 —6.9413 LYS49, SER126
(BCEN2424_RS07230) 4 ZINC04810088 —6.8835 LYS49, ARG299

5 ZINC32696020 —6.7133 ARG327

6 ZINC04995376 —6.6966 LYS49, SER126, ARG299

7 ZINC05285294 —6.6422 LYS49, ARG299

8 ZINC71863887 —6.6339 LYS49, HIS55

9 ZINC08216055 —-6.6018 LYS49

10 ZINC05002395 —6.5604 SER126, SER127, ARG299

The top best compound is shown in bold

ZINC06055530
with
BCEN2424 RS14895
(Glucosamine-1-phosphate
acetyltransferase glmU)

Fig.7 Two-dimensional (2D) representation of drug—protein target
interactions using MOE. Top best ranked docked compounds with
best possible orientations for ZINC06055530 and ZINCO01405842
in the most druggable cavity of bifunctional N-acetylglucosamine-

candidates were found to be active, safe, and have not
previously been studies as anti-BCC and would require
laboratory validations (Tables 8, 9).

To study the complex stability, properties like free bind-
ing energy, root-mean-square deviation (RMSD), number
of interactions, root-mean-square fluctuation (RMSF), and
the radius of gyration (Rg) are very useful for studying the
stability of the complexes. Most of the energy values are

ZINC01405842
with
BCEN2424 RS07230
(Chorismate synthase aroC)

acetyl-
synthase

1-phosphate  uridyltransferase/glucosamine-1-phosphate
transferase (BCEN2424_RS14895) and Chorismate
(BCEN2424_RS07230), respectively

negative that indicates a favorable ligand—protein complex
formation.

Table 10 shows the free binding energy and contribution
of different mechanisms to it. Negative free binding energy
implies favorable complex formation. In this case, only com-
plex 01 formation has negative energy, and then turns out to
be favorable. Nevertheless, it is positively smaller, and the
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Table 8 Pharmacokinetic parameters of the top-scoring ZINC compounds for predicted target bifunctional N-acetylglucosamine-1-phosphate
uridyltransferase/glucosamine-1-phosphate acetyltransferase (BCEN2424_RS14895)

S.No Compound ID  Molar refractivity Polar surface Bioavailability Druglikeness Leadlike- Consensus  Skin permeation
area topology Lipinski/viola-  ness/viola- Log P o/w Log Kp (=cm/s)
(10\2) tions tions

1 ZINC06055530 80.42 109.19 0.55 Yes/O Yes/0 2.08 —7.18

2 ZINC67907992 88.52 59.98 0.55 Yes/O Yes/0 2.14 —6.98

3 ZINC20542465 81.63 81.07 0.55 Yes/O Yes/0 1.18 -17.39

4 ZINC78774792 79.88 74.18 0.55 Yes/O Yes/0 2.74 -6.31

5 ZINC67673512  78.26 73.22 0.85 Yes/O Yes/0 1.38 —17.58

6 ZINC67817383 74.31 95.08 0.56 Yes/O Yes/0 -0.03 —8.26

7 ZINC79485544 78.02 137.66 0.55 Yes/0 Yes/0 2.38 —6.18

8 ZINC79100915 79.69 76.14 0.55 Yes/O Yes/0 1.53 -7.56

9 ZINC10404052 82.43 58.95 0.55 Yes/O Yes/0 2.46 —6.06

10 ZINC00107306 73.82 136.41 0.56 Yes/0 Yes/0 0.88 —8.03

The bold words represent the selected final ZINC durg-like molecules whose MD analyses were performed later on

Table 9 Pharmacokinetic parameters of the top-scoring ZINC compounds for predicted target Chorismate synthase (BCEN2424_RS07230)

S.No Compound ID  Molar refractivity Polar surface Bioavailability Druglikeness Leadlike- Consensus  Skin permeation
area topology Lipinski/viola-  ness/viola- Log P o/w Log Kp (=cm/s)
(Az) tions tions

1 ZINC01405842 87.71 93.31 0.56 Yes/O Yes/0 243 -6.28

2 ZINC01413140 79.87 95.70 0.55 Yes/O Yes/0 1.78 -6.53

3 ZINC40478899 80.15 75.55 0.56 Yes/O Yes/0 1.92 -6.54

4 ZINC04810088 85.00 74.45 0.55 Yes/O Yes/0 2.89 -6.02

5 ZINC32696020 90.20 61.27 - - - - -

6 ZINC04995376 93.38 53.93 0.55 Yes/O Yes/0 247 -6.08

7 ZINC05285294 98.44 45.14 0.55 Yes/O Yes/0 2.77 -5.70

8 ZINC71863887 91.16 65.79 0.85 Yes/O Yes/0 2.34 -6.38

9 ZINC08216055 86.48 84.97 0.55 Yes/O Yes/0 2.30 —-6.48

10 ZINC05002395 74.76 96.48 0.55 Yes/O Yes/0 0.92 -7.11

The bold words represent the selected final ZINC durg-like molecules whose MD analyses were performed later on

Table 10 Free binding energy calculations of stable complexes dur-
ing the last 25 ns (250 frames) of the molecular dynamic simulation
(in units of kcal/mol)

Free binding energy Complex 01 Complex 02
(BCEN2424_ (BCEN2424_
RS14895) RS07230)
AG —7.9482 0.4469
AG,,., —3.2855 —28.1553
AG —24.1366 —26.4169
AGpy 23.1732 59.1582
AGy, —3.6993 —4.1391
AG —27.4221 —54.5722
AGg, 19.4739 55.0191
AGp,, 19.8877 31.0029
AGyonpor —27.8359 —30.556

@ Springer

contribution of Coulomb and van der Waals interaction is
stronger in this complex than in complex O1.

The latter is confirmed accounting the interactions made
during the simulation time. The number of hydrogen bonds
(H-bond), hydrophobic contacts, salt bridge, n-n stack-
ing, and m-cation interactions through the simulation were
determined for each complex using the PLIP software. Form
Fig. 8, we can see that the total interaction number made by
02 is more than twice than 01 but they are made by less resi-
dues. In both cases, almost all interaction types are present
in each complex.

Figure 9 shows that the RMSD for both complexes attain
stability after the first 50 ns of the simulation showing with
little high values around 8 and 5 A for system 01 and 02,
respectively. It is well known that sometimes, the rigid-body
alignment is not rich enough and, the RMSD and RMSF will
increase for all atoms, overestimating them and neglecting
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Fig. 8 Interactions calculated for, A ZINC06055530 with BCEN2424_RS14895 (Glucosamine-1-phosphate acetyltransferase glmU), and B

ZINC01405842 with BCEN2424_RS07230 (Chorismate synthase aroC)
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Fig.9 RMSD calculated for A ZINC06055530 with BCEN2424_RS14895 (Glucosamine-1-phosphate acetyltransferase glmU), and B

ZINC01405842 with BCEN2424_RS07230 (Chorismate synthase aroC)

important fluctuations associated with biological function
if there are small portions of the complex with high mobil-
ity [56].

A measure of the residue fluctuation is the root-mean-
square fluctuation (RMSF) parameter. Figure 10 show
the RMSF calculated for both complexes. Similar to the
results for RMSD, the 02 complex shows lower values for
all the residues responsible for the interactions (see figure
PLIP Interaction figure), indicating that the ligand makes
the enzyme less flexible.

A measurement of how compact the complex is, can
be verified by calculating the radius of gyration (Rg). The
complex 01 shows the lowest and most stable value of Rg

than the complex 02 with oscillations around 1.5 A. On
the other hand, complex 02 shows a decreasing value with
simulation time (Fig. 11).

Discussion

In this work, an attempt was made to highlight the differ-
ences of genome architecture through Pangenomics includ-
ing rRNA, tRNA, pseudogenes, % GC content and size of
different BCC strains isolated from plant, human and envi-
ronmental sources followed by identification of therapeutic
protein targets in a step-by-step manner. BCC forms a group

@ Springer
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Fig. 10 RMSF calculated for, A ZINC06055530 with BCEN2424_RS14895
ZINC01405842 with BCEN2424_RS07230 (Chorismate synthase aroC)
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Fig.11 Rg calculated for, A ZINC06055530 with BCEN2424_RS14895 (Glucosamine-1-phosphate acetyltransferase glmU), and B

ZINC01405842 with BCEN2424_RS07230 (Chorismate synthase aroC)

of related bacterial species that are capable of imparting
cystic fibrosis and aerosol-based contamination. Bacterial
genotyping showed that infections by Burkholderia cepacia
strains are more specific in cystic fibrosis patients, which
denotes a greater propagation capacity among these patients.
Based on the genomic information, we constructed differ-
ent phylogenetic trees to check the ancestral relationship of
all different isolates of BCC complex on an individual and
combined basis. The combined phylogenetic tree showed
that strains isolated from plant, human, and environmen-
tal sample sources represent different branch position when
compared to the individual trees, which might implicate that
BCC strains isolated from different sources might be able

@ Springer

to evolve differently under specific circumstances and cause
diseases in several different hosts. Due to the fact that BCC
is responsible for a wide range of diseases from nosoco-
mial infection in CF patients to rice root infection in plant,
among other, a focus was made on finding the minimal set
of genes/proteins shared by all the strains (core genome/pro-
teomes) included in this study. Keeping a stringent criterion
for core genome identification for a large number of bacte-
rial genomes drastically reduces the totality of core protein
targets in comparison to the pan genome that increase with
increase in number of genomic datasets under study. This
core data although shared by BCC strains might also share
similarity with their host genomes/proteomes in terms of
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homology, therefore it is very important to filter such data
at this stage by comparing to their respective host genomes.
Since the NCBI database provide more information about
viral and prokaryotic genomes and up to certain degree of
eukaryotic organisms, the host homology in this study was
restricted only keeping in mind the human as the major
host of utmost importance. Following these filtering steps
reduces the number of genes/proteins in the dataset under
analyses that was further reduced after subjecting to gene
essentiality step where only those genes/proteins are selected
that are vital for the survival of the microorganisms.

To reduce the cost and development time of BCC drugs,
virtual screening (VS) of a large number of drug librar-
ies is now extensively used. Only few compounds have
yet been discovered by virtual screening analyses that
might interact with the BCC protein structures. Despite
the fact that structural information was computationally
predicted and could, therefore, differ from experimental
facts, we constructed the 3D models of target proteins by
comparative homology modeling using experimental tem-
plates obtained from the PDB databank. No compound is
reported so far mentioning interaction to our identified tar-
get protein structures via high-throughput virtual screen-
ing methods. Therefore, in the current study, the top ten
ligands were selected on the basis of their binding affini-
ties after the screening of a library of 12,000 drug-like
molecules. Among them, the best ligands were selected
according to their high binding affinity and minimal
energy scores for ligand-receptor interaction. The infor-
mation given here might further aid in designing bench
experiments for antibiotic and vaccine development. The
putative BCC protein candidates that were identified here
are key therapeutic targets for a number of reasons given
below separately.

BCEN2424_RS14895_gIimU

Bifunctional N-acetylglucosamine-1-phosphate uridyl-
transferase/glucosamine-1-phosphate acetyltransferase
is an essential precursor of peptidoglycan and rhamnose-
GlcNAc linker region of the mycobacterial cell wall. The
pathway for UDP-GIcNAc biosynthesis is significantly dif-
ferent in eukaryotes and prokaryotes. Since in vitro experi-
ments showed that glmU is essential for bacterial cell wall,
we assume that it is a potential drug target in BCC. It is
also reported as a drug candidate for tuberculosis [57]. The
best interacting leads are shown along with their ZINC IDs,
minimized energy, number of interactions, and interacting
residues. ZINC06269029 was predicted as the top-ranked
molecule interacting with Gly9 and Gly99 residues in the
binding site of glmU (Table 4, Fig. 7).

BCEN2424_RS07230_aroC

Chorismate synthase catalyzes the formation of Choris-
mate, the last step of the shikimate pathway. Chorismate
is a branch-point metabolite used in the synthesis of aro-
matic amino acids, p-aminobenzoic acid, folate, and other
cyclic metabolites such as ubiquinone. Shikimate pathways
are present only in plants, fungi, and bacteria, making these
pathway enzymes possible targets for herbicides, antibiotics,
and antifungals. Chorismate synthase from Mycobacterium
tuberculosis is also considered to be a potential therapeutic
target [58]. A comparison between model template struc-
tures was made and Lys49, Ser126, Ser127, and Arg299 resi-
dues are shown with top ZINC-selected docked compound
(Table 5, Fig. 7).

Conclusions

In this report, we performed a series of in silico analyses
using a number of bioinformatics tools that led us to identify
novel therapeutic targets for the first time in BCC. Further-
more, some of the BCC targets identified here were already
reported experimentally, which validate our methodology.
We believe that the set of target proteins proposed here is
worthy for future in vitro and in vivo experimentation for
drugs and vaccine development. Furthermore, the set of
integrated techniques used here is/could be extended to the
search of therapeutic targets in a number of other pathogens
[59].
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