Skip to main content

Advertisement

Log in

Targeting notch signaling pathway in breast cancer stem cells through drug repurposing approach

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Breast cancer is recognized globally as one of the leading causes of malignant morbidity. It is a heterogeneous disease that accounts for 30 percent of all women diagnosed with cancer. To bring an anti-cancer drug from the bench to the bedside is an expensive and time-consuming process. The drug repurposing approach targets new enemies (new diseases) with old weapons (known drugs). The present study identified an FDA-approved drug targeting the γ-secretase complex involved in the Notch signaling pathway in breast cancer stem cells (BCSCs). A literature survey and in-silico study identified Venetoclax as a γ-secretase inhibitor (GSI) from 1615 FDA-approved drug compounds. In-silico docking potential of Venetoclax was better than the standard γ-secretase inhibitor RO4929097. Also, the molecular dynamics simulations of 200 ns confirmed the stability of the Venetoclax-γ-secretase complex. These findings suggest that the use of Venetoclax represents a potential γ-secretase inhibitor in breast cancer stem cells. Eventually, the in vitro and clinical evaluation will be needed to confirm the potential chemopreventive and treatment effects of Venetoclax against breast cancer and breast cancer stem cells.

Graphical Abstract

Venetoclax appeared as the most promising drug of the 1615 FDA-approved drugs. Our in-silico findings suggest that Venetoclax may act as a γ-secretase inhibitor against the Notch signaling pathway in breast cancer stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. American Cancer Society (2021) American Cancer Society: Cancer Facts and Figures 2021. American Cancer Society, Atlanta

    Google Scholar 

  2. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin. https://doi.org/10.3322/caac.21442

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fillmore CM, Kuperwasser C (2008) Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res. https://doi.org/10.1186/bcr1982

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lin Y, Zhong Y, Guan H, Zhang X, Sun Q (2012) CD44+/CD24− phenotype contributes to malignant relapse following surgical resection and chemotherapy in patients with invasive ductal carcinoma. J Exp Clin Cancer Res 31:1–9. https://doi.org/10.1186/1756-9966-31-59

    Article  CAS  Google Scholar 

  5. Palomeras S, Ruiz-Martínez S, Puig T (2018) Targeting breast cancer stem cells to overcome treatment resistance. Molecules. https://doi.org/10.3390/molecules23092193

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shih IM, Wang TL (2007) Notch signaling, γ-secretase inhibitors, and cancer therapy. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-06-3958

    Article  PubMed  PubMed Central  Google Scholar 

  7. Talevi A, Bellera CL (2020) Challenges and opportunities with drug repurposing: finding strategies to find alternative uses of therapeutics. Expert Opin Drug Discov. https://doi.org/10.1080/17460441.2020.1704729

    Article  PubMed  Google Scholar 

  8. Parvathaneni V, Kulkarni NS, Muth A, Gupta V (2019) Drug repurposing: a promising tool to accelerate the drug discovery process. Drug Discov Today 24:2076–2085. https://doi.org/10.1016/j.drudis.2019.06.014

    Article  CAS  PubMed  Google Scholar 

  9. Yang G, Zhou R, Guo X, Yan C, Lei J, Shi Y (2021) Structural basis of γ-secretase inhibition and modulation by small molecule drugs. Cell. https://doi.org/10.1016/j.cell.2020.11.049

    Article  PubMed  PubMed Central  Google Scholar 

  10. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H et al (2000) The Protein Data Bank. Nucleic Acids Res. https://doi.org/10.1093/nar/28.1.235

    Article  PubMed  PubMed Central  Google Scholar 

  11. Forli W, Halliday S, Belew R, Olson A (2012) AutoDock Version 4.2. Citeseer

  12. Trott O, Olson AJ (2009) AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. https://doi.org/10.1002/jcc.21334

    Article  Google Scholar 

  13. Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem. https://doi.org/10.1002/jcc.20945

    Article  PubMed  Google Scholar 

  14. Lee J, Cheng X, Swails JM, Yeom MS, Eastman PK, Lemkul JA et al (2016) CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J Chem Theory Comput. https://doi.org/10.1021/acs.jctc.5b00935

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lee J, Hitzenberger M, Rieger M, Kern NR, Zacharias M, Im W (2020) CHARMM-GUI supports the Amber force fields. J Chem Phys. https://doi.org/10.1063/5.0012280

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sterling T, Irwin JJ (2015) ZINC 15—ligand discovery for everyone. J Chem Inf Model. https://doi.org/10.1021/acs.jcim.5b00559J

    Article  PubMed  PubMed Central  Google Scholar 

  17. Humphrey W, Dalke A, Schulten KVMD (1996) Visual molecular dynamics. J Mol Graph. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  PubMed  Google Scholar 

  18. Dallakyan S, Olson AJ (2015) Small-molecule library screening by docking with PyRx. Methods Mol Biol. https://doi.org/10.1007/978-1-4939-2269-7_19

    Article  PubMed  Google Scholar 

  19. Discovery Studio (2015) Dassault Systemes BIOVIA. Discovery Studio Modelling Environment, Release 4.5. Accelrys Softw Inc., San Diego

  20. Visualizer DS (2005) v4. 0.100. 13345. Accelrys Softw. Inc., San Diego

  21. Phillips JC, Hardy DJ, Maia JDC, Stone JE, Ribeiro JV, Bernardi RC et al (2020) Scalable molecular dynamics on CPU and GPU architectures with NAMD. J Chem Phys. https://doi.org/10.1063/5.0014475

    Article  PubMed  PubMed Central  Google Scholar 

  22. Michaud-Agrawal N, Denning EJ, Woolf TB, Beckstein O (2011) MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J Comput Chem. https://doi.org/10.1002/jcc.21787

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gowers R, Linke M, Barnoud J, Reddy T, Melo M, Seyler S et al (2016) MDAnalysis: a Python Package for the rapid analysis of molecular dynamics simulations. In: Proceedings of the 15th Python in science conference. https://doi.org/10.25080/Majora-629e541a-00e

  24. Sanner MF, Olson AJ, Spehner JC (1995) Fast and robust computation of molecular surfaces. In: Proceedings of annual symposium on computational geometry. https://doi.org/10.1145/220279.220324

  25. Adasme MF, Linnemann KL, Bolz SN, Kaiser F, Salentin S, Haupt VJ et al (2021) PLIP 2021: expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res. https://doi.org/10.1093/nar/gkab294

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang E, Sun H, Wang J, Wang Z, Liu H, Zhang JZH et al (2019) End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design. Chem Rev. https://doi.org/10.1021/acs.chemrev.9b00055

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L et al (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res. https://doi.org/10.1021/ar000033j

    Article  PubMed  Google Scholar 

  28. Liu H, Hou T (2016) CaFE: a tool for binding affinity prediction using end-point free energy methods. Bioinformatics. https://doi.org/10.1093/bioinformatics/btw215

    Article  PubMed  PubMed Central  Google Scholar 

  29. Martínez L (2015) Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PLoS ONE. https://doi.org/10.1371/journal.pone.0119264

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tolcher AW, Messersmith WA, Mikulski SM, Papadopoulos KP, Kwak EL, Gibbon DG et al (2012) Phase I study of RO4929097, a gamma secretase inhibitor of notch signaling, in patients with refractory metastatic or locally advanced solid tumors. J Clin Oncol. https://doi.org/10.1200/JCO.2011.36.8282

    Article  PubMed  PubMed Central  Google Scholar 

  31. Drug Bank (2005) Amphetamine, MDMA, Metamphetamine

Download references

Acknowledgements

Part of the results presented here was developed with the help of CENAPAD-SP (Centro Nacional de Processamento de Alto Desempenho em São Paulo) grant UNICAMP/FINEP- MCT, CENAPAD-UFC (Centro Nacional de Processamento de Alto Desempenho, at Universidade Federal, do Ceará) and Digital Research Alliance of Canada (DRAC).

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

YP and IC carried out the experiment. YP wrote the manuscript with support from VT, IC, and AM. VT helped supervise the project and finally approved the version to be submitted. All authors provided critical feedback and helped shape the research, analysis, and manuscript.

Corresponding author

Correspondence to Vishwas Tripathi.

Ethics declarations

Conflict of interest

All authors have no conflict of interest to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 352 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, Y., Camps, I., Mishra, A. et al. Targeting notch signaling pathway in breast cancer stem cells through drug repurposing approach. Mol Divers 27, 2431–2440 (2023). https://doi.org/10.1007/s11030-022-10561-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10561-y

Keywords

Navigation