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Abstract
IL(interleukin)-6 is a multifunctional cytokine crucial for immunological, hematopoiesis, inflammation, and bone metabo-
lism. Strikingly, IL-6 has been shown to significantly contribute to the initiation of cytokine storm—an acute systemic 
inflammatory syndrome in Covid-19 patients. Recent study has showed that blocking the IL-6 signaling pathway with an 
anti-IL-6 receptor monoclonal antibody (mAb) can reduce the severity of COVID-19 symptoms and enhance patient survival. 
However, the mAb has several drawbacks, such as high cost, potential immunogenicity, and invasive administration due to 
the large-molecule protein product. Instead, these issues could be mitigated using small molecule IL-6 inhibitors, but none 
are currently available. This study aimed to discover IL-6 inhibitors based on the PPI with a novel camelid Fab fragment, 
namely 68F2, in a crystal protein complex structure (PDB ID: 4ZS7). The pharmacophore models and molecular docking 
were used to screen compounds from DrugBank databases. The oral bioavailability of the top 24 ligands from the screening 
was predicted by the SwissAMDE tool. Subsequently, the selected molecules from docking and MD simulation illustrated a 
promising binding affinity in the formation of stable complexes at the active binding pocket of IL-6. Binding energies using 
the MM-PBSA technique were applied to the top 4 hit compounds. The result indicated that DB08402 and DB12903 could 
form strong interactions and build stable protein–ligand complexes with IL-6. These potential compounds may serve as a 
basis for further developing small molecule IL-6 inhibitors in the future.
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Introduction

The SARS-CoV-2 pandemic, nicknamed COVID-19, has 
emerged as a severe public health challenge. One of the 
dangerous complications of COVID-19 disease is the over-
whelming release of proinflammatory cytokines, which in 
turn trigger uncontrolled inflammatory responses known 
as “cytokine storms” [1, 2]. Cytokine storms can rap-
idly cause acute respiratory distress syndrome (ARDS), 
multiple organ failure, and poor prognosis in COVID-19 
patients [3]. Recent studies of the immunological profiles 
of critically ill patients with Covid-19 have shown over-
activity of the humoral immune pathway with interleukin 
IL-6 amplification. This results in the overproduction of 
inflammatory cytokines and chemokines, notably IL-6, 
ultimately resulting in a cytokine storm with ARDS [4]. 
Furthermore, according to analyses of serum IL-6 lev-
els in covid19 patients, the results showed that patients 
with complicated forms of COVID-19 had nearly three-
fold higher levels of IL-6 compared with uncomplicated 
patients [5]. Therefore, IL-6 inhibition could become a 
novel target for therapeutics to manage dysregulation in 
COVID-19 patients, and studies aimed at interfering with 
this interleukin activity are urgently required.

IL-6 was identified in 1986 as a B cell stimulation factor 
that enhances the differentiation of effector B cells toward 
antibody-producing cells, also known as IFN-β2 [6, 7]. 
IL-6 is a 185 amino acid polypeptide of 22 kDa, derived 
from a wide variety of immune and non-immune cells, 
including T cells, B cells, monocytes, endothelial cells, 
fibroblasts, keratinocytes, mesangial cells, and adipocytes 
[7, 8]. The IL-6 type cytokines are activated through the 
gp130 signaling probe, a transmembrane protein found in 
most cytokine receptor systems to activate the Janus fam-
ily of tyrosine kinases (JAKs), including JAK1, JAK2, and 
Tyk2 [9, 10]. The connection between IL-6 and gp130 
is formed through an IL-6-specific receptor (IL-6R or 
gp80) [11]. On target cells, the extracellular domains of 
IL-6R and gp130 associate with IL-6 to create a functional 
hexameric signaling complex, which then binds to JAK 
proteins and initiates downstream signaling pathways [12, 
13]. IL-6 has two modes of action: cis and trans. Classic 
(cis)-signaling occurs only in cells expressing membrane-
bound IL-6 receptor (mIL-6R), which has homeostatic and 
anti-inflammatory effects. On the other hand, in IL6 trans-
signalling, IL6 binds to a soluble IL6R (sIL6R) and pos-
sesses detrimental pro-inflammatory effects [13].

Thus far, IL-6 pathway inhibitors such as tocilizumab, 
siltuximab, and sarilumab have been developed and are 
used to treat several chronic inflammatory diseases, 
including rheumatoid arthritis (RA) [14, 15]. Significantly, 
these targeted monoclonal antibodies (mAb) have also 

been shown to improve survival in patients with severe 
coronavirus disease 2019 (COVID-19) [15, 16]. Moreover, 
according to recent studies, blockade of IL-6 signaling by 
directly blocking the interaction between IL-6 and IL-6R 
also reduces the progression of cytokine storm [16, 17]. 
Although the benefits obtained from monoclonal antibody 
treatment have been demonstrated, these biological agents 
still have certain disadvantages, such as high treatment 
cost, unsuitability for oral administration, difficulty to con-
trol, and the risk of inducing strong immune responses. 
Small molecule therapy, on the other hand, provides a 
number of significant advantages, including simpler oral 
administration, possible optimization of pharmacokinetic 
properties, lower treatment costs, more controllability, and 
less immunogenic [18]. Oral bioavailability offers signifi-
cant benefits in terms of accessibility, compliance, and 
widespread use, making such therapy more suitable for 
long-term treatment.

The present study was designed to identify potential com-
pounds as IL-6 inhibitors by computational methods. The 
strategy includes three main stages. Firstly, we generated 
structure-based pharmacophore models for IL-6 and used 
them for the initial screening of the Drugbank database. 
Secondly, molecular docking is performed to determine the 
suitability of the small molecule in the binding site. Finally, 
top compounds were validated by ADME analysis, molecu-
lar dynamics (MD) simulations, and free binding energy. As 
to structure-based drug design, molecular docking offers a 
starting model of the binding modes between small mol-
ecules with protein at the atomic level. MD simulations are 
subsequently used to evuluate the stability of these com-
plexes in the context of the full atomistic molecular mechan-
ics force field [19].

Materials and methods

Drugbank databases set for virtual screening

The databases used for screening included 9,213 compounds 
from the DrugBank database [20]. The next step was confor-
mationally prepared using the conformational Import tool in 
Molecular Operating Environment (MOE) 2015.10 software 
[21]. The conformation limit was set to 10,000, the stochas-
tic search iteration limit was 1,000, the energy minimization 
iteration limit was 1,000, the energy minimization gradient 
test was 0.0001, and the input filters were clear. The output 
conformers were saved as MOE database (*.mdb).

Pharmacophore model construction

The pharmacophore models were constructed based on a 
protein–protein interaction at the binding site 1 of interleukin 



2317Molecular Diversity (2023) 27:2315–2330	

1 3

6 with 68F2 that mimics the interaction of IL-6 with IL-6R 
[9]. According to X-ray structure analysis, the side chain 
of HCDR3 valine ties into site 1 like IL-6R Phe279, while 
the side chain of LCDR1 tyrosine occupies a second cavity 
within site 1 and mimics the interactions of IL-6R Phe229. 
Phe229 and Phe279 of IL-6R are called the “hot spot resi-
due” by Boulanger et al. [12] because mutagenesis studies 
confirmed their critical role in the interaction between the 
receptor and the cytokine. Mutation of this residue to valine 
or serine completely abolishes the IL-6R binding to IL-6 
[22]. The interaction between Phe229 and Phe279 from 
IL-6R and the cytokine is mimicked by two hydrophobic 
residues from the CDR loops of 68F2. Here, the hydropho-
bic side chain of Tyr32 located in the CDR1 loop of the 
variable domain light chain superimposes Phe229. Similarly, 
the side chain of Val104 of the CDR3 loop of the heavy 
chain takes over the role of Phe279. The full set of interac-
tions (hydrogen bonds, salt bridges, and hydrophobic) was 
observed between antibody 68F2 and antigen IL-6 in the 
X-ray structure. Therefore, the 68F2 antibody can be seen as 
an accurate structural mimic of IL-6R: it occupies the same 
interaction site with and provides similar key interacting res-
idues to anchor points on the IL-6 surface [9]. Protein con-
tact analysis between IL-6 and 68F2 by MOE 2015 software 
showed that Tyr32 and Val104 of 68F2 interact mainly with 
amino acids Phe74, Gln75, Leu178, and Arg179 of IL-6. 
Previous studies on hot-spot residues mutations also indi-
cated that Arg179, Leu178, and Phe74 are involved in the 
interaction between IL-6/IL-6R [22]. Consequently, in this 
study, the 3D-pharmacophore model is constructed based 
on the chemical features of these residues and the spatially 
favorable locations of their functional groups. This step was 
performed by the pharmacophore editor tool in the MOE 
2015.10 software [21]. The interactions of 4 amino acids 
Phe74, Gln75, Leu178, and Arg179 on IL-6 are specified 
in Table 1.

Molecular docking

The protein structures were prepared (high-resolution crystal 
structures 2.9Å, PDB ID: 4ZS7) [23], including the repair 

of amino acid residues, the addition of hydrogen atoms and 
charges, the removal of water molecules, and the minimiza-
tion of energy. The ligand databases were minimized the 
energy using MOE 2015.10 software with Amber10: EHT 
force field [21]. The results were converted and saved as a 
*.sdf format suitable for the docking software.

The protein-prepared structure above was fed into the 
BioSolveIT LeadIT 2.1.8 software [24] to create the binding 
site. The crucial residues were used as references to generate 
the binding site model. They were loaded into the dock-
ing program, and a binding pocket was generated by being 
expanded with a suitable radius. Docking runs were oper-
ated using the following parameters: the maximum number 
of solutions per iteration was 1000, that per fragmentation 
was 200, the number of poses to keep was the top 10, and 
default docking options were used [25]. Successfully docked 
ligand conformations were evaluated on the lowest bind-
ing energy (kJ/mol). The frequency interaction between 
ligands with the critical residues of IL-6 was analyzed 
using the protein–ligand interaction fingerprints (PLIF) 
tool of the MOE 2015.10 software. PLIF summarizes the 
interactions between ligands and proteins using a fingerprint 
scheme. The interactions are classified into six types: side 
chain hydrogen bond donor (D), side‐chain hydrogen bond 
acceptor (A), backbone hydrogen bond donor (d), backbone 
hydrogen bond acceptor (a), ionic attraction (I), arene–arene 
interaction (R), and surface contact (C) [26].

Analysis of ADME properties

SwissADME online free tool was employed to evaluate 
the individual ADME behavior like physiochemical prop-
erties, lipophilicity, water solubility, pharmacokinetics, 
drug-likeness, and medicinal chemistry properties of the 
compounds. The best ligands after molecular docking were 
uploaded directly to the submission page (http://​www.​swiss​
adme.​ch) in *.smlie format, and the results are presented for 
each molecule in tables, graphs, and an excel spreadsheet. 
The physicochemical parameters were generated, including 
the molecular weight between 150 and 500 g/mol, polarity: 
TPSA between 20 and 130 Å2, solubility: log S not higher 
than 6, and flexibility: no more than ten rotatable bonds. For 
lipophilicity, we used the descriptor Consensus LogP(o/w), 
the arithmetic means of the logP(o/w) values predicted by 
the five proposed methods. The solubility of substances is 
better when LogP is less than 5. The water solubility of 
compounds was predicted based on the ESOL LogS values, 
where logS should be from − 6.5 to 0.5 mol/dm3 [27]. The 
BOILED-Egg allows for the intuitive evaluation of passive 
gastrointestinal absorption (HIA) and brain penetration 
(BBB) in the function of the position of the molecules in 
the WLOGP- versus -TPSA referential [28–30].

Table 1   Interaction between 68F2 and IL-6 at binding site 1

*Site-directed mutagenesis of residues of IL-6 and 68F2 antibody has 
identified them as being necessary for binding

Antigen IL-6 Type of interaction Antibody 68F2

Phe74*-phenyl Aromatic ring Tyr32-phenyl
Gln75-O (Acceptor) hydrogen bond (donor) Tyr32-NH2

Gln183-OH (Donor) hydrogen bond (acceptor) Tyr32-O
Leu178*-CD1 Hydrophobic Val104-CD1
Arg179*-NH2 (Cat) salt bridge (ani) Val104-O

http://www.swissadme.ch
http://www.swissadme.ch
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Molecular dynamics simulations

Molecular dynamics (MD) simulations were carried out 
using GROMACS 2021.2 software [31]. Protein topologies 
were prepared by the pdb2gmx module of GROMACSus-
ing the CHARMM27 all-atom force field [32]. The simula-
tions were performed on IL-6, in the apoprotein form and 
complexes with small molecules. Ligand topologies were 
constructed by the Swissparam web server [33] after add-
ing hydrogen atoms to the initial structure by the Avoga-
dro software [34]. A dodecahedron box was defined where 
the protein was positioned at least 10 Å from the box edge. 
The system was filled with water solvent (TIP3P model) 
and electrically neutralized by the addition of an appro-
priate number of Na+ or Cl− ions (salt concentration was 
0.15 M) [35]. The constructed system was energy mini-
mized for 100 ps using the steepest descent minimization 
with a maximum force of 10 kJ/mol. Production runs of 
100 ns were performed at 300 K for the NVT (isothermal-
isochoric) ensemble and 1.0 bar pressure for the subsequent 
NPT (isothermal-isobaric) ensemble. After the MD produc-
tion had been completed, data from the resulting trajecto-
ries were used to calculate the root mean square deviation 
(RMSD), root mean square fluctuation (RMSF), radius of 
gyration (Rg), and solvent accessible surface area (SASA) 
values by GROMACS built-in commands to evaluate the 
stability of the complexes and the effect of ligands on the 
receptor when binding occurs. In particular, the occupancy 
of hydrogen bond formation was also analyzed using the 
VMD software [36] to determine the interacting ability of 
ligands with the key residues. A hydrogen bond was defined 
by simple geometric criteria: a distance between hydrogen 
donor (D) and acceptor (A) atoms of < 3.5 Å and an angle 
of D–H…A > 120° [37].

Binding free energy

The molecular mechanics Poisson–Boltzmann surface area 
(MM/PBSA) method was used to compute the binding free 
energy of all complexes. A thousand frames were extracted 
from each 100 ns simulation trajectory by means of the 
gmx-trjconv utility of Gromacs. The extracted frames were 
utilized for free binding energy calculation in the company 
with the g_mmpbsa tool [38]. The total binding free energy 
(∆Gbind) was calculated as:

The free energy of protein, ligand, or complex component 
can be calculated as follows:

(1)ΔGbind = ΔGcomplex −
(

ΔGprotein + ΔGligand

)

(2)ΔGbind = EMM + Gsolvat − TΔS

where EMM is the molecular potential energy between a 
ligand and the biomolecular target and is contributed by 
binding energy (Ebond) and unbinding energy (Evdw + Eelec). 
Ebond is the energy of bonded interactions which is calculated 
as zero in a dynamic simulation, Evdw and Eelec are the van 
der Waals and the electrostatic interactions energy, respec-
tively. Gsolvat is calculated from polar and non-polar compo-
nents of molecules, Gpolar represents the polar contributions 
between the solute and solvent to the solvation energy, and 
GSASA is the non-polar solvation energy using the solvent 
accessible surface area (SASA). In the MM/PBSA approach, 
the entropy contribution can be omitted if relative binding 
free energies of different ligands for the same protein shall 
be computed [39–42]. Hence, the binding free energy was 
calculated as the sum of van der Waals energy, electrostatic 
energy, polar solvation energy, and solvent-accessible sur-
face area energy (SASA) [38], and the formula can be rewrit-
ten as:

Results and discussions

Pharmacophore model generation

Using a manually created pharmacophore query at the bind-
ing site, two 3D-pharmacophore models were generated 
based on the PPIs of IL-6/68F2. Ph-IL6-1 is the first phar-
macophore model, which was constructed from the residues 
of the 68F2 antibody corresponding to the crucial residues 
of IL-6, including Tyr32 and Val104. The fundamental 
structural properties of two residues were selected to create 
five pharmacophore features by the Pharmacophore editor 
tool of MOE version 2015.10. In detail, the used three func-
tional groups of Tyr32, including a phenyl ring that is prone 
to participate in aromatic interaction (Aro), a donor hydro-
gen bond group (Don)–amino (–NH2), and a carboxylate 
group (–COO−) that can accept hydrogen bond (Acc). Using 
a similar approach to Val104, another two pharmacophore 
points were built, and the final developed pharmacophore 
contained F1: Aro, F2: Don, F3: Acc, F4: Hyd, and F5: 
Ani (Fig. 1A).

The second pharmacophore model (Ph-IL6-2) con-
tained five features that must complement functional 
groups of IL-6, covering Phe74, Gln75, Leu178, Arg179, 
and Gln183 of IL-6. As previously known, the -N+ ion 
in Arg179 is considered by default as a cation (Cat), and 
a pharmacophore feature ani (anion) will be placed on 
the projection of the nitrogen atom. In that way, the other 
pharmacophore feature was generated as follows: F1: Aro, 
F2: Don, F3: Acc, F4: Hyd, and F5: Ani. Because Phe74, 

(3)ΔGbind =
(

Evdw + Eelec

)

+ Gpolar + GSASA
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Leu178, and Arg179 are crucial residues, corresponding 
F1, F4, and F5 were essential points, and either F2 or F3 
was constrained at least one point in this model (Fig. 1B).

A database of more than 5 million conformations of 
the Drugbank library was rapid and virtually screened in 
turn through the two pharmacophores above. The screen-
ing resulted in 1,426 compounds satisfying both models, 
of which 1174 satisfied the Ph-IL6-1 model and 252 satis-
fied the Ph-IL6-2 model. All compounds that met the two 
models were further screened by molecular docking as the 
second filter of the drug discovery process.

Molecular docking and virtual screening

Molecular docking is one of the most frequently used meth-
ods in structure-based drug design because of its ability to 
predict, with a remarkable degree of accuracy, the conforma-
tion of small molecule ligands was placed into the appropri-
ate target binding site. Therefore, a molecular binding simu-
lation was performed in this study to elucidate the binding 
mode of the ligand-receptor. Accordingly, a binding pocket 
with a radius of 10 Å was extended from the locations of key 
residues Phe74, Gln75, Leu178, Arg179, and Gln183. The 
generated molecular docking model is illustrated in Fig. 2A.

Fig. 1   The generated pharmacophore models and their alignment to the IL-6 backbone. Two 3D-pharmacophore models were constructed by 
mimicking the critical residues of 68F2 (Ph-IL6-1, A) and by corresponding crucial residues on the IL-6 (Ph-IL6-2, B)

Fig. 2   Results of molecular 
docking. A The molecular dock-
ing model of IL-6 was identified 
from its key residues using 
LeadIT software. B The top 24 
compounds (green) in the bind-
ing pocket
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The compounds obtained from screening through the 
pharmacophore models were used for docking into the 
binding pocket of IL-6. As a result, 1364 compounds 
(95.6%) successfully docked to IL-6 with negative dock-
ing scores; 1.8%, 76.9%, and 21.3% of which had dock-
ing scores <  − 20 kJ/mol, from − 20 to − 10 kJ/mol and 
from − 10 to 0 kJ/mol, respectively (Table S1 and Figure S1). 
A more negative docking score indicates stronger binding 
of the ligand to the protein target. The top 24 ligands with 
docking scores less than -20 kJ/mol and interacting with at 
least three critical residues at the determined binding pocket 
on IL-6 are shown in Fig. 2B.

From the docking results, we further applied the Pro-
tein–ligand interaction fingerprints (PLIF) in the MOE to 
analyze the presence of different types of chemical interac-
tions between ligands and the protein target. This technique 
also aims to evaluate and improve the performance of the 
structure-based 3D-pharmacophore models in virtual screen-
ing. The frequency of ligands interacting with binding site 
residues was counted and illustrated in Fig. 3, Figure S2. 
Based on the PLIF results, it can be seen that a significant 
proportion of ligands could interact with the key residues. 
In particular, Phe74, Gln75, Arg179, and Gln183 of IL-6 
formed interaction with ligands at the high ratio of 88%, 
87%, 76%, and 70%, respectively. On the other hand, from 
docking models of good bonding, the ligands were required 
as follows: the hydrogen bond donor and acceptors that 
can combine with the polar amino acids (Gln75, Gln183); 
the hydrophobic group that can go deep into the binding 
site to interact with Leu178; the ions which will create the 
salt bridge bonding with the charged amino acid (Arg179, 
Arg182), and the aromatic rings can form arene-arene inter-
actions with Phe74 (Table S2).

In general, the PLIF results increased the reliability and 
screening efficiency of 3D-pharmacophore by identifying 
compounds with suitable physicochemical properties for 

binding to IL-6 from databases as diverse as drug banks. 
Based on the docking score and interaction analysis, the top 
24 ligands were selected for further screening steps, and 
their detailed interaction models are shown in Table 2 and 
Table S3.

ADME analysis

A major crucial factor determining the success of any oral 
drug discovery and development is the prediction of ADME 
parameters before switching to experimental studies. There-
fore, the 24 top docking score compounds were further tested 
for their ADME parameters using the SwissADME tool, a 
freely available web tool for pharmacokinetic predictions, 
drug-likeness, and suitable for the medicinal synthesis of 
these small molecules [28]. Compounds with pharmacoki-
netic parameters that do not meet “drug-like” properties will 
be rejected in the next step of the screening process.

Table 3 and Figure S3 showed physicochemical and bio-
availability radar for the top list (24 ligands). Most of these 
compounds had molecular weight varied between 150 and 
500 g/mol, which is a prime property to be called drug-
likeness of the small molecules. The number of rotatable 
bonds can predict molecular flexibility and permeability. 
The molecular permeability is strongly correlated with the 
number of rotatable bonds without considering the molecu-
lar weight. Compounds with more than ten rotating bonds 
have been shown to have poor permeability. Interestingly, 
all the top compounds had a number of rotatable bonds of 
less than 10 that have good oral absorption. The numbers 
of H-bond acceptors and donors were in the range of 3–10 
and 1–4, respectively. Table 3 and Figure S3 also described 
these top lists’ ESOL LogS values and solubility categories, 
the results showed that all compounds are soluble in water. 
Among them, DB12008 is the best water-soluble compound 
with a minimum logS value of -2.89 and a maximum logS 

Fig. 3   Protein ligand interaction fingerprint (PLIF) of the docking poses in IL-6
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value of -6.06, DB08881 is considered the least water-sol-
uble compound.

BOILED-Egg is an intuitive method for simultaneously 
predicting two key ADME parameters, including passive 
gastrointestinal absorptive capacity (HIA) and brain acces-
sibility (BBB) via the WLOGP and TPSA reference val-
ues. In the BOILED-Egg plot (Fig. 4), the yellow region 
characterizes the boundary of molecules’ properties related 
to passing the blood–brain barrier (BBB), and the white 
region defines the properties of molecules with a highly 
probable HIA absorption. Meanwhile, the outer space gray 
is associated with poor human intestinal absorption (HIA) 
and limited brain penetration. As observed from the graph, 
with the exception of DB08881 and DB11772, it can be 
seen that most of the top compounds are located inside 
the egg—an area with suitable physicochemical space for 
oral bioavailability. Notably, for DB06190 and DB12658, 
even though these two substances are in the yellow region, 
they are P-glycoprotein (PGP) substrates, which seem to be 
readily released from the central nervous system (CNS). 
Additionally, in the graph, the blue dots are for the P-gp 
(PGP+) substrate, which can be actively effluxed from the 
brain or gastrointestinal tract, while the red dots are for P-gp 

non-substrate (PGP˗). Based on the finding, more than 60% 
of the candidates were PGP+, suggesting that they may have 
reduced intestinal absorption but exerted a CNS protective 
effect.

Drug metabolism and elimination are profoundly 
influenced by the cytochrome P450, including CYP1A2, 
CYP2C19, CYP2C9, CYP2D6, and CYP3A4. Inhibition of 
five major isoenzymes is one of the main causes of toxicity 
or other undesirable effects. These pharmacokinetic disad-
vantages are undoubtedly due to the lower clearance and 
accumulation of the drug or its metabolites. Table S4 pro-
vides data on whether selective inhibition of CYP isozymes 
by top virtual screening hits. Unfortunately, all 24 ligands 
interact with at least one of the five metabolic enzymes 
above. Due to the inhibition of all five isozymes above, 
DB11830, DB12658, and DB08911 are predicted to have 
greater drug-drug interactions than others.

Lipinski’s rule of five [43] is commonly applied to evalu-
ate the similar ‘drug-like’ properties of small molecules. 
The biologically active molecule must meet five criteria 
to be potentially used as a drug for oral administration: 
MW ≤ 500, MLOGP ≤ , N or O ≤ 10, and NH or OH ≤ 5. 
Intriguingly, with the exception of DB11772, DB08911, 

Table 2   The docking scores 
of 24 top ligands and their 
interactions with IL-6

No Ligands ID Docking 
score (kJ/
mol)

Residues interaction of IL-6 Satisfying of 
pharmacophore 
model

1 DB12903 − 25.02 Phe74, Gln75, Arg179, Gln183 Ph_1
2 DB14726 − 24.76 Phe74, Gln75, Arg179, Ph_1
3 DB12687 − 24.39 Phe74, Gln75, Arg179, Arg182, Gln183 Ph_1
4 DB11830 − 23.41 Phe78, Arg179, Gln183 Ph_1
5 DB11526 − 22.64 Phe74, Gln75, Leu178, Arg179, Arg182, Gln183 Ph_1
6 DB12355 − 22.30 Phe74, Gln75, Leu178, Arg179, Arg182, Gln183 Ph_1
7 DB08881 − 22.16 Phe74, Gln75, Arg179, Gln183 Ph_1
8 DB12008 − 21.76 Gln75, Arg179, Gln183 Ph_1
9 DB13060 − 21.55 Phe74, Arg179, Gln183 Ph_1
10 DB07970 − 21.40 Phe74, Gln75, Arg179, Arg182, Gln183 Ph_1
11 DB12364 − 21.27 Phe74, Gln75, Arg179, Gln183 Ph_1
12 DB11963 − 21.27 Phe74, Gln75, Arg179, Gln183 Ph_1
13 DB06190 − 21.12 Phe74, Leu178, Arg179, Arg182, Gln183 Ph_1 & Ph_2
14 DB08402 − 20.74 Phe74, Gln75, Arg179, Gln183 Ph_2
15 DB14904 − 20.73 Gln75, Leu178, Arg179, Arg182, Gln183 Ph_1
16 DB11772 − 20.71 Phe74, Gln75, Arg179, Arg182, Gln183 Ph_1
17 DB07268 − 20.65 Phe74, Gln75, Arg179, Gln183 Ph_1
18 DB12658 − 20.50 Phe74, Gln75, Arg179, Gln183 Ph_1
19 DB07101 − 20.50 Phe74, Arg179, Arg182, Gln183 Ph_1
20 DB15399 − 20.48 Gln75, Leu178, Arg179, Arg182, Gln183 Ph_1
21 DB08911 − 20.48 Phe74, Gln75, Arg179, Gln183 Ph_1
22 DB03115 − 20.13 Phe74, Arg179, Gln183 Ph_1
23 DB07586 − 20.13 Phe74, Gln75, Leu178, Arg179, Arg182 Ph_1
24 DB12696 − 20.13 Gln75, Arg179, Gln183 Ph_1
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Table 3   The physicochemical 
properties of the top 24 ligands

RB rotatable bond, HBA hydrogen bond acceptor, HBD hydrogen bond donor, Cons.LogP consensus LogP

No Ligands ID Physicochemical properties Lipid solubility Water solubility

RB HBA HBD TPSA WLOGP Cons
LogP

ESOL
LogS

ESOL class

1 DB12903 3 3 3 105.4 3.36 2.79 − 4.91 Moderately soluble
2 DB14726 10 6 2 129.2 0.53 1.09 − 3.61 Soluble
3 DB12687 8 5 2 96.6 1.00 1.53 − 3.84 Soluble
4 DB11830 7 4 3 105.8 3.46 2.69 − 4.17 Moderately soluble
5 DB11526 8 5 2 101.6 3.83 2.47 − 5.57 Moderately soluble
6 DB12355 9 5 3 115.8 2.93 3.17 − 5.11 Moderately soluble
7 DB08881 7 6 2 100.3 7.27 4.84 − 6.02 Poorly soluble
8 DB12008 8 7 2 108.7 2.33 0.37 − 2.89 Soluble
9 DB13060 10 7 4 114.9 3.08 3.64 − 6.01 Poorly soluble
10 DB07970 7 6 3 97.1 5.47 3.40 − 4.50 Moderately soluble
11 DB12364 9 5 2 83.6 2.97 2.41 − 4.70 Moderately soluble
12 DB06190 9 4 2 72.4 2.61 0.21 − 3.39 Soluble
13 DB11963 8 6 2 79.4 4.84 3.52 − 5.38 Moderately soluble
14 DB08402 6 6 2 101.4 4.34 3.38 − 5.11 Poorly soluble
15 DB14904 7 5 4 94.5 2.07 1.92 − 3.49 Soluble
16 DB11772 8 8 2 137.0 5.97 2.32 − 5.63 Moderately soluble
17 DB07268 5 4 4 113.2 2.77 2.12 − 3.97 Soluble
18 DB12658 5 4 1 75.4 2.86 2.86 − 3.82 Soluble
19 DB07101 8 7 4 90.8 3.73 3.05 − 4.53 Moderately soluble
20 DB15399 7 6 3 116.3 3.39 2.62 − 4.52 Moderately soluble
21 DB08911 6 5 2 107.1 4.11 3.90 − 5.86 Moderately soluble
22 DB03115 8 7 4 90.8 3.72 3.71 − 5.44 Moderately soluble
23 DB07586 8 4 3 98.7 3.54 2.99 − 4.22 Moderately soluble
24 DB12696 9 4 3 100.4 3.06 2.99 − 4.04 Moderately soluble

Fig. 4   TPSA and WLOGP of 
the top 24 ligands plotted on the 
BOILED-Egg
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DB03115, and DB13060 (MW > 500), the remaining 20 
ligands all follow Lipinski's rule. Besides, this top list of 
compounds also agreed with other models of drug-likeness, 
namely Ghose [44], Veber [45], Egan [46], and Muegge [47] 
(Table 5).

When we evaluated AMDE profiles of the top 24 hits 
from the virtual screening, seven compounds stood out: 
DB07970, DB08402, DB11963, DB12903, DB07101, 
DB07586, and DB07268. These molecules have physico-
chemical properties suitable for oral bioavailability, are 
predicted to be non-substrate of P-gp (PGP˗) and do not 
cross the BBB. Therefore, the 100 ns MD simulation was 
performed for seven protein–ligand complexes to validate 
the interactions of the candidate molecules with the IL-6.

Molecular dynamics simulation

MD simulation studies play a significant role in the drug 
discovery process. In this study, structural changes, stability, 
and flexibility of the IL-6 protein to the ligands were moni-
tored by comparing the values of root mean square deviation 

(RMSD), root mean square fluctuation (RMSF), solvent 
accessible surface areas (SASA), a radius of gyration (Rg) 
and the occupancy interaction of hydrogen bonds (H-bonds).

RMSD evaluates the structural stability of ligand–protein 
complexity over a specific time period. The RMSD values 
of individual protein-IL6 (apoprotein) and the complexes 
(docked forms) are shown in Fig. 5A and Table 4. Accord-
ing to the results in Table 4, out of the seven molecules 
studied, four molecules (DB07970, DB08402, DB11963, 
and DB12903) have RMSD values lower than that of the 
apoprotein (3.26 ± 0.47 Å). For all compounds, DB07101 
has the highest RMSD of all systems with a mean value of 
4.14 ± 0.43 Å, and this value tends to increase as the simu-
lation run gets longer. It indicates that the DB07101 com-
plex had less stability during the simulation. Meanwhile, 
DB08402 achieves the lowest RMSD with a mean value of 
2.84 ± 0.24, and the complex of IL-6 with DB08402 was 
predicted to have the most stability during the above 100 ns 
simulation. From the RMSD plots in Fig. 5A, we can see 
that the RMSD of the apoprotein-IL6 strongly deviates in 
the initial 30 ns, but they become stable after that till the end 

Fig. 5   A Protein carbon backbone RMSD and B carbon alpha RMSF values of IL-6 in apoprotein form and complexes with top 7 compounds; C 
ligand RMSD values, and D the number of hydrogen bonds of these compounds from data of the 100 ns MDs trajectories
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of the simulation time. Similarly, DB07970 and DB11963 
in their complexes with IL-6 also fluctuated strongly during 
the first 30 ns of the simulation progress. Still, after fluctua-
tion time, these complexes gradually reached equilibrium 
and had smaller RMSD fluctuations (< 1 Å) than apoprotein 
(Fig. 5A).

Solvent accessible surface area (SASA) of proteins has 
always been considered a decisive factor in protein folding 
and stability studies. A higher SASA value indicates struc-
tural relaxations of protein, and a low fluctuation is expected 
over the simulation time [48]. The average values of all sys-
tems are shown in Table 4, and a graph showing their change 
over time is shown in Figure S4. Except for DB07101 and 
DB07268, which shows higher SASA values than apopro-
tein (85.73 ± 0.90 nm2) and reveal the conformational states 
with higher protein expansion, the protein structure in all 
complexes with the remaining ligands is virtually unaffected 
by ligands binding.

The compactness of a system is measured by the radius 
of gyration (Rg). According to Lobanov et al. (2008), Rg 
is considered an indicator of the folding rate and the com-
pactness of a protein structure [49]. A more compact pro-
tein indicates that the drug molecule has not significantly 
interfered with the folding mechanism of the protein. Fig-
ure 5S describes the radius of the gyration plot for IL-6 in 
docked and undocked form, their mean values are shown in 
Table 4. Interestingly, all of the docked forms with seven 
ligands have Rg values of approximately or less low than 
apporotein (12.18 ± 0.16 Å). These results clearly indicate 
that the protein structure is not significantly affected by the 
binding of the ligands.

The RMSD of the ligand also determines the protein 
flexibility, if the molecule fluctuations from the protein 
site, the molecule may lose binding and the stability of the 
complex will be reduced. The average ligand RMSD val-
ues are in Table 4 and the RMSD-time plot is in Fig. 5C. 
The results show that most complexes had RMSD values 
smaller than 2 Å. Strikingly, DB08402, DB07586, and 
DB12903 reached stability with RMSD fluctuations only 

about 1 Å after 5, 10, and 20 ns, respectively. Thus, we can 
consider that all complexes keep a steady stage throughout 
the simulation.

To provide more detailed information on motions in IL-6 
binding of selected compounds. RMSF analysis was per-
formed to reveal information on residue-specific flexibility. 
A more stable structure has a low RMSF value, while a 
higher RMSF value represents a higher degree of move-
ment [50]. The RMSF profiles of the apoprotein and the 
complexes calculated by residues index Cα overlapped with 
that of the apoprotein as shown in Fig. 5B.

As observed in the RMSF plots, protein fluctuates 
strongly mainly in 2 regions: Region1-residues 40 to 70, 
which majorly belong to the interpolated flexible loops of the 
inter-helix between helices A and B, and Region2-residues 
130 to 160, which are lying outside the principal four heli-
cal bundles and is also flexible in nature. Interestingly, the 
critical residues at the binding site, such as Phe74, Gln75, 
Leu178, Arg179, and Gln183 of IL-6 had stable fluctuations 
with RMSF < 2.0 Å in all systems. The results strongly sug-
gested that all the ligand-bound IL-6 complexes were stable.

The number of intermolecular hydrogen bonds was ana-
lyzed to get insight into the protein–ligand interaction and 
stability. In this study, the number of hydrogen bonds was 
calculated from the trajectories of 100 ns MD simulations 
using the VDM software. Table S6 and Fig. 5D indicate 
that all ligands interacted strongly with IL-6. At the same 
time, the percentage occupancy of hydrogen bonds of these 
ligands was also investigated to find compounds that inter-
act strongly with the critical residues of IL-6/68F2 PPIs. 
Excepted for DB07268 and DB07586, the remaining five 
ligands with the H-bond occupation of > 100% were consid-
ered strong hydrogen bonds (Table S6).

By comparing the values of protein backbone RMSD, 
solvent accessible surface area (SASA), radius of gyration 
(Rg), ligands RMSD, RMSF, and the hydrogen bond interac-
tion with key residues, the four ligands DB12903, DB11963, 
DB07970, and DB08402 were identified as the most potent 
inhibitors of the IL-6.

Table 4   The mean and standard 
deviation of protein backbone 
RMSD, solvent accessible 
surface area (SASA), the 
gyration radius (Rg), and ligand 
RMSD values were calculated 
from the data of 100 ns MD 
trajectories of the IL-6 in 
apoprotein form and complexes 
with the top 7 ligands

Complex RMSD of pro-
tein Cbackbone (Å)

SASA
(nm2)

Rg (Å) RMSD of 
the ligand 
(Å)

Apoprotein-IL6 3.26 ± 0.47 85.73 ± 0.90 12.18 ± 0.16
IL-6-DB12903 3.22 ± 0.39 85.39 ± 0.97 11.91 ± 0.11 1.44 ± 0.31
IL-6-DB07970 3.19 ± 0.39 85.73 ± 0.86 11.92 ± 0.13 1.78 ± 0.33
IL-6-DB11963 3.25 ± 0.30 85.55 ± 0.83 12.11 ± 0.15 1.85 ± 0.24
IL-6- DB08402 2.84 ± 0.24 84.77 ± 1.17 11.97 ± 0.10 1.07 ± 0.25
IL-6-DB07101 4.14 ± 0.43 86.27 ± 0.90 11.81 ± 0.15 1.67 ± 0.32
IL-6-DB07268 3.49 ± 0.43 86.03 ± 0.94 12.16 ± 0.15 1.71 ± 0.43
IL-6-DB07586 4.05 ± 0.38 85.24 ± 0.81 12.04 ± 0.14 1.23 ± 0.19
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In addition to hydrogen bonding, the PPIs of IL-6/68F2 
are formed mainly by hydrophobic interactions with hot-
spot radicals. Therefore, we further analyzed the surface 
contact and arene-arene interactions between IL-6 and the 
top 4 ligands. The results were extracted from 100 frames 
of 100 ns MD simulation trajectories using the PLIF tool in 
MOE 2015.10 software and are detailed in Table S7. Analy-
sis of interaction occupancy on each ligand binding to key 
residues of IL-6 showed that all four ligands exhibited strong 
interactions with the key residues. Some residues had a total 
interaction frequency > 100% because they formed multiple 
same interactions simultaneously.

For more detail, visual analyses were conducted by 
comparing the poses for each ligand-target interaction in 
the protein active sites. First, we discuss the analysis for 
DB08402, in which its interaction is shown in Fig. 6D, 
Tables S6, and S7. The binding mode of DB08402 indi-
cates the importance of hydrogen bonds and hydrophobic 
interactions within the activity site of IL-6. This ligand 
form strong interactions with the two hot-spot residues of 
IL-6, including Arg179 and Phe 74. In detail, the oxygen 
atom of the carboxylate group (–COO−) at the benzoate 
ring and the carbonyl group (–CO−) of the 2,4 dichloroben-
zamido ring of DB08402 accept the hydrogen bonding of 
Phe74 and Arg179 with a high-frequency of 156.28% and 
95.18%, respectively. For the hydrophobic interaction, the 

aromatic rings of DB08402 formed edge‐to‐face contact 
with Phe74 by Pi-alkyl and arene-arene stacking with a 
total frequency of 88.11% and 31.19%, respectively. In 
continuation, these aromatic rings of DB08402 also form 
Pi-cation interactions with the N atoms (–N+), Pi-alkyl 
interactions with the carbon backbone, and alkyl interac-
tions with chlorine atoms of Arg179 with a total frequency 
of 72.92%.

Next, we discuss the DB12903 and DB11963 target 
interactions, which are presented in Fig.  6A, Fig. 6B, 
Table S6, and Table S7. The results show that DB12903 
and DB11963 have the common property that both cre-
ate a strong hydrogen binding with Arg179, Gln 183, 
and Gln75. The ˗NH+ and ˗NH2 groups of these ligands 
donated hydrogen bonds with Gln75 with a frequency of 
69.41% and 121.76%, respectively. Similarly, Gln183 has 
a percentage occupancy of 93.19% and 120.01%, respec-
tively. On the other hand, these two ligands act as hydro-
gen acceptors from the amino groups of Arg179 with 
percent of occurrence values of 170.04% and 205.70%, 
respectively. For hydrophobic interaction, both ligands 
also show a high occupancy interaction with Gln75 and 
Arg179. In the case of DB12903, the indol, pyrazole, and 
benzothiazole rings of DB12903 interact with the back-
bone atoms of Arg179 and Gln175 with a frequency of 
97.14% and 79.04%, respectively. In this orientation, the 

Fig. 6   The detailed interaction diagram of the ligand atoms with the IL-6 key residues. In which, Figs.  6A, 6B, 6C, and 6D correspond to 
DB12093, DB11963, DB07970, and DB08402, respectively
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quinazoline and phenyl rings of DB11963 also contact 
with the two residues above with an occupancy of 96.97% 
and 90.02%, respectively.

Finally, we discuss the DB07970-target interaction 
shown in Fig. 6C, TableS6, and Table S7. The results show 
that DB07970 has high-frequency hydrogen bonds and 

hydrophobic interactions with Arg179 residue. Here, the 
nitrogen, oxygen, and fluoride atoms of DB07970 accepted 
hydrogen bonds from Arg179 with a frequency of 168.94%, 
and the aromatic rings participated in Pi-cation and Pi-alkyl 
interactions with these hot-spot residues with a total percent 
of occurrence value of 89.25%.

Fig. 7   The overlapping images of the complexes of IL-6 with DB08402, DB07970, DB11963, and DB12903 at the time points 0 (in dark pink), 
50 (in dark green), and 100 ns (in dark orange) of MD simulations, respectively
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To take a closer look at the binding strength between 
the ligand and the protein target, we extract frames at 0 ns, 
50 ns, and 100 ns time points, respectively. As expected, all 
four ligands, DB12903, DB11963, DB07970, and DB08402, 

could maintain contact with IL-6 during 100 ns MD simula-
tion (Fig. 7).

At the end of the MD simulation, the binding free energy 
of inhibitors was calculated by MM/PBSA approach. Data 
derived from the average binding energy calculations can offer 
a better insight into the interactions of the enzyme-ligand com-
plexes. MM/PBSA was employed on the MD trajectories based 
on van der Waals, electrostatic, polar solvation, and nonpolar 
solvation energies (SASA). Based on these results in Table 5, 
the binding free energy of DB12903, DB11963, DB07970, and 
DB08402 are − 118.30 ± 23.88 kJ/mol, − 91.70 ± 34.80 kJ/
mol, − 129.96 ± 39.31 kJ/mol, and − 267.09 ± 40.96 kJ/mol, 
respectively. This observation highlighted that DB08402 forms 
a powerful interaction with IL-6 and secures the top rank in the 
energy list among selected compounds. Followed by DB07970 
and DB12903 with 2nd and 3rd place, respectively. Finally, 
with the highest ∆Gbind values, DB11963 is determined as the 
ligand with the lowest binding affinity.

However, when observing the fluctuations of the com-
plexes, the results show that DB08402 and DB12903 com-
plexes give a stable energy value, whereas that of DB07970 
and DB11963 fluctuate enormously and had positive ∆Gbind 
values at the last 20 ns of MD trajectory (Fig. 8). Notably, 

Table 5   The calculation of 
binding free energy results in 4 
top hit ligands

Complex Evdw
(kJ/mol)

Eelec
(kJ/mol)

Epolar
(kJ/mol)

ESASA
(kJ/mol)

∆Gbind
(kJ/mol)

DB12903 − 73.47
 ± 14.22

− 56.59
 ± 32.78

21.53
 ± 22.07

− 9.77
 ± 1.65

− 118.30
 ± 23.88

DB11963 − 68.09
 ± 17.51

− 32.52 ± 36.60 23.41
 ± 21.32

− 14.5
 ± 2.01

− 91.70
 ± 34.80

DB07970 − 82.03 ± 26.37 − 63.42 ± 43.55 25.80 ± 33.02 − 10.31 ± 3.14 − 129.96 ± 39.31
DB08402 − 168.39

 ± 20.74
− 92.31

 ± 39.76
11.09
 ± 6.72

− 17.47
 ± 1.44

− 267.09
 ± 40.96

Fig. 8   The binding energy 
variation for the 100 ns MD 
simulation of 4 top hit ligands, 
including DB08402 (in green), 
DB12903 (in black), DB07970 
(in red), and DB11963 (in yel-
low), as calculated using the 
MM/PBSA method

Fig. 9   Summarize the studied results
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DB08402 binding energy tended to decrease at the end of the 
simulation and reflected an increase in binding affinity.

In summary, based on analysis of complexes stability, fre-
quency of interactions occupancy, and MM/PBSA binding free 
energy, DB08402, and DB12903 were identified as the best-hit 
compound within the scope of this study. The results of virtual 
screening, PLIF analysis, ADME properties prediction, and 
MD simulations are summarized in Fig. 9.

Conclusions

As we know, protein–protein interactions (PPIs) could be a 
target for blocking signal transduction. In recent years, many 
new drug discovery projects have been proposed to develop 
novel PPI inhibitors to find potential therapy in related dis-
eases, even for COVID-19 [51–54]. However, because the 
binding pocket's shape has not been well described on the 
protein surface, it is challenging to discover small mole-
cules with PPI inhibitory potential. Fortunately, the advent 
of X-ray crystallography and mutation studies have contrib-
uted to elucidating the nature of PPI between IL-6 and its 
receptor IL-6R. In addition, the significant development of 
artificial intelligence (AI) in recent decades has significantly 
reduced the time and cost of new drug discovery [55]. From 
there, the medicinal chemist can begin research on IL-6 
inhibitors based on these fundamental biological databases.

In this study, we approach the drug discovery process 
by in silico screening. With the ability to quickly search for 
compounds from large databases, this method will enhance 
the hit rate and reduce the time and cost of in vitro and 
in vivo testing. The process was constructed and screened 
from the approximately 10.000 substances in the Drug-
bank database through structure-based pharmacophore 
and molecular docking models. 24 compounds with dock-
ing scores < –20 kJ/mol interacted with critical residues 
of IL-6 were identified. Subsequently, applying the Swis-
sADME tool resulted in seven druggable candidates with 
suitable pharmacokinetic properties. Calculations based on 
100 ns MD simulation data and free binding energy indi-
cated DB12903 and DB08402 as promising the most poten-
tial IL-6 inhibitors candidate. Hopefully, the outcomes of 
this research will provide a novel therapeutic approach for 
inflammatory, autoimmune, and infectious diseases, espe-
cially for COVID-19.
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