Skip to main content

Advertisement

Log in

How effective are ionization state-based QSPKR models at predicting pharmacokinetic parameters in humans?

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Optimizing the pharmacokinetics (PK) of a drug candidate to support oral dosing is a key challenge in drug development. PK parameters are usually estimated from the concentration–time profile following intravenous administration; however, traditional methods are time-consuming and expensive. In recent years, quantitative structure–pharmacokinetic relationship (QSPKR), an in silico tool that aims to develop a mathematical relationship between the structure of a molecule and its PK properties, has emerged as a useful alternative to experimental testing. Due to the complex nature of the various processes involved in dictating the fate of a drug, the development of adequate QSPKR models that can be used in real-world pre-screening situations has proved challenging. Given the crucial role played by a molecule’s ionization state in determining its PK properties, this work aims to build predictive QSPKR models for PK parameters in humans using an ionization state-based strategy. We divide a high-quality dataset into clusters based on ionization state at physiological pH and build global and ion subset-based ‘local’ models for three major PK parameters: plasma clearance (CL), steady-state volume of distribution (VDss), and half-life (t1/2). We use a robust methodology developed in our lab entitled ‘EigenValue ANalySis’ that accounts for the stereospecificity in drug disposition and use the support vector machine algorithm for model building. Our findings suggest that categorizing compounds in accordance with ionization state does not result in improved QSPKR models. The narrow ranges in the endpoints along with redundancies in the data adversely affect the ion subset-based QSPKR models. We suggest alternative approaches such as elimination route-based models that account for drug–transporter interactions for CL and chemotype-specific QSPKR for VDss.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files). Data including molecule names and identifiers, csv files for training and test sets, eigenvalue descriptors, and supplementary figures may be freely accessed via the Mendeley Data Repository (https://doi.org/10.17632/wyknzwphzt.2). A preprint of a previous version of this manuscript has been uploaded on the Chemrxiv preprint server (https://doi.org/10.26434/chemrxiv.13560353.v1).

References

  1. Saghir SA, Rais AA (2018) Pharmacokinetics. In: Reference module in biomedical sciences. Elsevier, Amsterdam, pp 1–9. https://doi.org/10.1016/B978-0-12-801238-3.62154-2

  2. Kenakin T (2019) Pharmacokinetics. A Pharmacology primer. Elsevier, Amsterdam, pp 245–293

    Chapter  Google Scholar 

  3. Alsanosi SMM, Skiffington C, Padmanabhan S (2014) Pharmacokinetic pharmacogenomics. In: Padmanabhan S (ed) Handbook of pharmacogenomics and stratified Medicine. Elsevier, Amsterdam

    Google Scholar 

  4. Hinderliter P, Saghir S (2014) Pharmacokinetics. In: Wexler P (ed) Encyclopedia of toxicology, 3rd edn. Elsevier, Amsterdam, pp 383–390

    Google Scholar 

  5. Wang Z, Yang H, Wu Z et al (2018) In silico prediction of blood–brain barrier permeability of compounds by machine learning and resampling methods. ChemMedChem 13:2189–2201. https://doi.org/10.1002/cmdc.201800533

    Article  CAS  PubMed  Google Scholar 

  6. Wang Y, Liu H, Fan Y et al (2019) In silico prediction of human intravenous pharmacokinetic parameters with improved accuracy. J Chem Inf Model 59:3968–3980. https://doi.org/10.1021/acs.jcim.9b00300

    Article  CAS  PubMed  Google Scholar 

  7. Dave RA, Morris ME (2015) Quantitative structure–pharmacokinetic relationships for the prediction of renal clearance in humans. Drug Metab Dispos 43:73–81. https://doi.org/10.1124/dmd.114.059857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu C, Mager DE (2011) Quantitative structure–pharmacokinetic relationships. Expert Opin Drug Metab Toxicol 7:63–77. https://doi.org/10.1517/17425255.2011.537257

    Article  CAS  PubMed  Google Scholar 

  9. Chen J, Yang H, Zhu L et al (2020) In silico prediction of human renal clearance of compounds using quantitative structure–pharmacokinetic relationship models. Chem Res Toxicol 33:640–650. https://doi.org/10.1021/acs.chemrestox.9b00447

    Article  CAS  PubMed  Google Scholar 

  10. Zhivkova Z, Doytchinova I (2012) Prediction of steady-state volume of distribution of acidic drugs by quantitative structure–pharmacokinetics relationships. J Pharm Sci 101:1253–1266. https://doi.org/10.1002/jps.22819

    Article  CAS  PubMed  Google Scholar 

  11. Lombardo F, Obach RS, Shalaeva MY, Gao F (2002) Prediction of volume of distribution values in humans for neutral and basic drugs using physicochemical measurements and plasma protein binding data. J Med Chem 45:2867–2876. https://doi.org/10.1021/jm0200409

    Article  CAS  PubMed  Google Scholar 

  12. Zhivkova Z, Mandova T, Doytchinova I (2015) Quantitative structure–pharmacokinetics relationships analysis of basic drugs: volume of distribution. J Pharm Pharm Sci 18:515–527. https://doi.org/10.18433/j3xc7s

  13. Hansch C, Fujita T (1964) ρ-σ-π analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc 86:1616–1626. https://doi.org/10.1021/ja01062a035

    Article  CAS  Google Scholar 

  14. Verma J, Khedkar V, Coutinho E (2010) 3D-QSAR in drug design—a review. Curr Top Med Chem 10:95–115. https://doi.org/10.2174/156802610790232260

    Article  CAS  PubMed  Google Scholar 

  15. Eichelbaum M, Gross AS (1996) Stereochemical aspects of drug action and disposition. Adv Drug Res 28:1–64

    Article  CAS  Google Scholar 

  16. Wingard LB, O’reilly RA, Levy G (1978) Pharmacokinetics of warfarin enantiomers: a search for intrasubject correlations. Clin Pharmacol Ther 23:212–217. https://doi.org/10.1002/cpt1978232212

    Article  CAS  PubMed  Google Scholar 

  17. Wedlund PJ, Aslanian WS, Jacqz E et al (1985) Phenotypic differences in mephenytoin pharmacokinetics in normal subjects. J Pharmacol Exp Ther 234:662–669

    CAS  PubMed  Google Scholar 

  18. Joseph B, Gomatam AN, Shaikh MAS et al (2019) Eigen Value ANalySis (EVANS)—a tool to address pharmacodynamic, pharmacokinetic and toxicity issues. Int J Quant Struct Relationsh 4:118–136. https://doi.org/10.4018/ijqspr.2019070105

    Article  CAS  Google Scholar 

  19. Gomatam A, Joseph B, Gawde U et al (2022) Predicting toxicity of endocrine disruptors and blood-brain barrier permeability using chirality-sensitive descriptors and machine learning. Comput Toxicol. https://doi.org/10.1016/j.comtox.2022.100240

    Article  Google Scholar 

  20. Obach RS, Lombardo F, Waters NJ (2008) Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds. Drug Metab Dispos 36:1385–1405. https://doi.org/10.1124/dmd.108.020479

    Article  CAS  PubMed  Google Scholar 

  21. Charifson PS, Walters WP (2014) Acidic and basic drugs in medicinal chemistry: a perspective. J Med Chem 57:9701–9717. https://doi.org/10.1021/jm501000a

    Article  CAS  PubMed  Google Scholar 

  22. Morgan HL (1965) The generation of a unique machine description for chemical structures—a technique developed at chemical abstracts service. J Chem Doc 5:107–113. https://doi.org/10.1021/c160017a018

    Article  CAS  Google Scholar 

  23. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  24. Yap CW (2011) PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32:1466–1474. https://doi.org/10.1002/jcc.21707

    Article  CAS  PubMed  Google Scholar 

  25. Jambhekar S (2013) Physicochemical and biopharmaceutical properties of drug substances and pharmacokinetics. In: Lemke T, Williams D, Roche V, Zito W (eds) Foye’s principles of medicinal chemistry, 7th edn. Lippincott Williams & Wilkins, Philadelphia

  26. Lombardo F, Jing Y (2016) In silico prediction of volume of distribution in humans. Extensive data set and the exploration of linear and nonlinear methods coupled with molecular interaction fields descriptors. J Chem Inf Model 56:2042–2052. https://doi.org/10.1021/acs.jcim.6b00044

    Article  CAS  PubMed  Google Scholar 

  27. RC Team (2013) R: a language and environment for statistical computing. RC Team, Vienna

    Google Scholar 

  28. Meyer D, Dimitriadou E, Hornik K et al (2022) The e1071 Package

  29. Karatzoglou A, Smola A, Hornik K, Zeileis A (2004) kernlab—an S4 package for kernel methods in R. J Stat Softw 11(9):1–20

    Article  Google Scholar 

  30. Roy K, Kar S, Das RN (2015) Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment. Elsevier, Amsterdam

    Google Scholar 

  31. Roy K, Das RN, Ambure P, Aher RB (2016) Be aware of error measures. Further studies on validation of predictive QSAR models. Chemom Intell Lab Syst 152:18–33. https://doi.org/10.1016/j.chemolab.2016.01.008

    Article  CAS  Google Scholar 

  32. Gaohua L, Miao X, Dou L (2021) Crosstalk of physiological pH and chemical pKa under the umbrella of physiologically based pharmacokinetic modeling of drug absorption, distribution, metabolism, excretion, and toxicity. Expert Opin Drug Metab Toxicol 17:1103–1124. https://doi.org/10.1080/17425255.2021.1951223

    Article  CAS  PubMed  Google Scholar 

  33. Manallack DT, Prankerd RJ, Yuriev E et al (2013) The significance of acid/base properties in drug discovery. Chem Soc Rev 42:485–496. https://doi.org/10.1039/c2cs35348b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gleeson MP (2008) Generation of a set of simple, interpretable ADMET rules of thumb. J Med Chem 51:817–834. https://doi.org/10.1021/jm701122q

    Article  CAS  PubMed  Google Scholar 

  35. Davies M, Jones RDO, Grime K et al (2020) Improving the accuracy of predicted human pharmacokinetics: lessons learned from the AstraZeneca drug pipeline over two decades. Trends Pharmacol Sci 41:390–408. https://doi.org/10.1016/j.tips.2020.03.004

    Article  CAS  PubMed  Google Scholar 

  36. Simeon S, Montanari D, Gleeson MP (2019) Investigation of factors affecting the performance of in silico volume distribution QSAR models for human, rat, mouse, dog & monkey. Mol Inform 38:1–12. https://doi.org/10.1002/minf.201900059

    Article  CAS  Google Scholar 

  37. Smith DA, Beaumont K, Maurer TS, Di L (2018) Relevance of half-life in drug design. J Med Chem 61:4273–4282. https://doi.org/10.1021/acs.jmedchem.7b00969

    Article  CAS  PubMed  Google Scholar 

  38. Smith DA, Beaumont K, Maurer TS, Di L (2015) Volume of distribution in drug design. J Med Chem 58:5691–5698. https://doi.org/10.1021/acs.jmedchem.5b00201

    Article  CAS  PubMed  Google Scholar 

  39. Lu J, Lu D, Zhang X et al (2016) Estimation of elimination half-lives of organic chemicals in humans using gradient boosting machine. Biochim Biophys Acta 1860:2664–2671. https://doi.org/10.1016/j.bbagen.2016.05.019

    Article  CAS  PubMed  Google Scholar 

  40. Arnot JA, Brown TN, Wania F (2014) Estimating screening-level organic chemical half-lives in humans. Environ Sci Technol 48:723–730. https://doi.org/10.1021/es4029414

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Biotechnology (DBT), Government of India, for funding manpower and consumables for this research (Order No: BT/PR13600/BID/7/545/2015 dated 29/12/2016). We thank Prof. Kunal Roy, Jadavpur University, for providing access to DTC tools for model validation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evans Coutinho.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 197 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomatam, A., Joseph, B., Advani, P. et al. How effective are ionization state-based QSPKR models at predicting pharmacokinetic parameters in humans?. Mol Divers 27, 1675–1687 (2023). https://doi.org/10.1007/s11030-022-10520-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10520-7

Keywords

Navigation