Skip to main content

Advertisement

Log in

Artificial intelligence and machine-learning approaches in structure and ligand-based discovery of drugs affecting central nervous system

  • Comprehensive review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

CNS disorders are indications with a very high unmet medical needs, relatively smaller number of available drugs, and a subpar satisfaction level among patients and caregiver. Discovery of CNS drugs is extremely expensive affair with its own unique challenges leading to extremely high attrition rates and low efficiency. With explosion of data in information age, there is hardly any aspect of life that has not been touched by data driven technologies such as artificial intelligence (AI) and machine learning (ML). Drug discovery is no exception, emergence of big data via genomic, proteomic, biological, and chemical technologies has driven pharmaceutical giants to collaborate with AI oriented companies to revolutionise drug discovery, with the goal of increasing the efficiency of the process. In recent years many examples of innovative applications of AI and ML techniques in CNS drug discovery has been reported. Research on therapeutics for diseases such as schizophrenia, Alzheimer’s and Parkinsonism has been provided with a new direction and thrust from these developments. AI and ML has been applied to both ligand-based and structure-based drug discovery and design of CNS therapeutics. In this review, we have summarised the general aspects of AI and ML from the perspective of drug discovery followed by a comprehensive coverage of the recent developments in the applications of AI/ML techniques in CNS drug discovery.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. DiMasi JA, Grabowski HG, Hansen RW (2015) The cost of drug development. N Engl J Med 372(20):1972. https://doi.org/10.1056/NEJMc1504317

    Article  PubMed  Google Scholar 

  2. Morgan S et al (2011) The cost of drug development: a systematic review. Health Policy 100(1):4–17. https://doi.org/10.1016/j.healthpol.2010.12.002

    Article  PubMed  Google Scholar 

  3. Paul SM et al (2010) How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 9(3):203–214. https://doi.org/10.1038/nrd3078

    Article  CAS  PubMed  Google Scholar 

  4. Cacace E, Kritikos G, Typas A (2017) Chemical genetics in drug discovery. Curr Opin Syst Biol 4:35–42. https://doi.org/10.1016/j.coisb.2017.05.020

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chan CY et al (2013) Accelerating drug discovery via organs-on-chips. Lab Chip 13(24):4697–4710. https://doi.org/10.1039/c3lc90115g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Matthews H, Hanison J, Nirmalan N (2016) “Omics”-informed drug and biomarker discovery: opportunities, challenges and future perspectives. Proteomes. https://doi.org/10.3390/proteomes4030028

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schenone M et al (2013) Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol 9(4):232–240. https://doi.org/10.1038/nchembio.1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Santos R et al (2017) A comprehensive map of molecular drug targets. Nat Rev Drug Discov 16(1):19–34. https://doi.org/10.1038/nrd.2016.230

    Article  CAS  PubMed  Google Scholar 

  9. Rask-Andersen M, Almén MS, Schiöth HB (2011) Trends in the exploitation of novel drug targets. Nat Rev Drug Discov 10(8):579–590. https://doi.org/10.1038/nrd3478

    Article  CAS  PubMed  Google Scholar 

  10. Mohs RC, Greig NH (2017) Drug discovery and development: role of basic biological research. Alzheimers Dement (N Y) 3(4):651–657. https://doi.org/10.1016/j.trci.2017.10.005

    Article  PubMed  Google Scholar 

  11. Gribkoff VK, Kaczmarek LK (2017) The need for new approaches in CNS drug discovery: why drugs have failed, and what can be done to improve outcomes. Neuropharmacology 120:11–19. https://doi.org/10.1016/j.neuropharm.2016.03.021

    Article  CAS  PubMed  Google Scholar 

  12. Abbott NJ (2013) Blood-brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis 36(3):437–449. https://doi.org/10.1007/s10545-013-9608-0

    Article  CAS  PubMed  Google Scholar 

  13. Pankevich DE et al (2014) Improving and accelerating drug development for nervous system disorders. Neuron 84(3):546–553. https://doi.org/10.1016/j.neuron.2014.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. de Lange ECM et al (2017) Novel CNS drug discovery and development approach: model-based integration to predict neuro-pharmacokinetics and pharmacodynamics. Expert Opin Drug Discov 12(12):1207–1218. https://doi.org/10.1080/17460441.2017.1380623

    Article  CAS  PubMed  Google Scholar 

  15. Chan HCS et al (2019) Advancing drug discovery via artificial intelligence. Trends Pharmacol Sci 40(8):592–604. https://doi.org/10.1016/j.tips.2019.06.004

    Article  CAS  PubMed  Google Scholar 

  16. Smith JS, Roitberg AE, Isayev O (2018) Transforming computational drug discovery with machine learning and AI. ACS Med Chem Lett 9(11):1065–1069. https://doi.org/10.1021/acsmedchemlett.8b00437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhavoronkov A (2018) Artificial intelligence for drug discovery, biomarker development, and generation of novel chemistry. Mol Pharm 15(10):4311–4313. https://doi.org/10.1021/acs.molpharmaceut.8b00930

    Article  CAS  PubMed  Google Scholar 

  18. Mak K-K, Pichika MR (2019) Artificial intelligence in drug development: present status and future prospects. Drug Discov Today 24(3):773–780. https://doi.org/10.1016/j.drudis.2018.11.014

    Article  PubMed  Google Scholar 

  19. Smalley E (2017) AI-powered drug discovery captures pharma interest. Nat Biotechnol 35:604

    Article  CAS  PubMed  Google Scholar 

  20. Elbadawi M, Gaisford S, Basit AW (2021) Advanced machine-learning techniques in drug discovery. Drug Discov Today 26(3):769–777. https://doi.org/10.1016/j.drudis.2020.12.003

    Article  CAS  PubMed  Google Scholar 

  21. Zhu H (2020) Big data and artificial intelligence modeling for drug discovery. Annu Rev Pharmacol Toxicol 60(1):573–589. https://doi.org/10.1146/annurev-pharmtox-010919-023324

    Article  CAS  PubMed  Google Scholar 

  22. Schadt EE et al (2011) Cloud and heterogeneous computing solutions exist today for the emerging big data problems in biology. Nat Rev Genet 12(3):224–224. https://doi.org/10.1038/nrg2857-c2

    Article  CAS  PubMed  Google Scholar 

  23. Marx V (2013) The big challenges of big data. Nature 498(7453):255–260. https://doi.org/10.1038/498255a

    Article  CAS  PubMed  Google Scholar 

  24. Brown N et al (2018) Big data in drug discovery. In: Witty DR, Cox B (eds) Progress in medicinal chemistry. Elsevier, New York, pp 277–356. https://doi.org/10.1016/bs.pmch.2017.12.003

    Chapter  Google Scholar 

  25. Liu R, Li X, Lam KS (2017) Combinatorial chemistry in drug discovery. Curr Opin Chem Biol 38:117–126. https://doi.org/10.1016/j.cbpa.2017.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Benz M et al (2019) Marrying chemistry with biology by combining on-chip solution-based combinatorial synthesis and cellular screening. Nat Commun 10(1):2879. https://doi.org/10.1038/s41467-019-10685-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Borrel A et al (2020) High-throughput screening to predict chemical-assay interference. Sci Rep 10(1):3986–3986. https://doi.org/10.1038/s41598-020-60747-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Broach JR, Thorner J (1996) High-throughput screening for drug discovery. Nature 384(6604 Suppl):14–16. https://doi.org/10.1038/384014a0

    Article  CAS  PubMed  Google Scholar 

  29. Zhu H et al (2014) Big data in chemical toxicity research: the use of high-throughput screening assays to identify potential toxicants. Chem Res Toxicol 27(10):1643–1651. https://doi.org/10.1021/tx500145h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Macarron R et al (2011) Impact of high-throughput screening in biomedical research. Nat Rev Drug Discov 10(3):188–195. https://doi.org/10.1038/nrd3368

    Article  CAS  PubMed  Google Scholar 

  31. Klekota J et al (2006) Using high-throughput screening data to discriminate compounds with single-target effects from those with side effects. J Chem Inf Model 46(4):1549–1562. https://doi.org/10.1021/ci050495h

    Article  CAS  PubMed  Google Scholar 

  32. Favaretto M et al (2020) What is your definition of Big Data? Researchers’ understanding of the phenomenon of the decade. PLoS ONE 15(2):e0228987. https://doi.org/10.1371/journal.pone.0228987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Younas M (2019) Research challenges of big data. SOCA 13(2):105–107. https://doi.org/10.1007/s11761-019-00265-x

    Article  Google Scholar 

  34. Ishwarappa AJ (2015) A brief introduction on big data 5Vs characteristics and Hadoop technology. Procedia Comput Sci 48:319–324. https://doi.org/10.1016/j.procs.2015.04.188

    Article  Google Scholar 

  35. Leonelli S (2019) The challenges of big data biology. Elife 8:e47381. https://doi.org/10.7554/eLife.47381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee CH, Yoon HJ (2017) Medical big data: promise and challenges. Kidney Res Clin Pract 36(1):3–11. https://doi.org/10.23876/j.krcp.2017.36.1.3

    Article  PubMed  PubMed Central  Google Scholar 

  37. Scheeder C, Heigwer F, Boutros M (2018) Machine learning and image-based profiling in drug discovery. Curr Opin Syst Biol 10:43–52. https://doi.org/10.1016/j.coisb.2018.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  38. Korotcov A et al (2017) Comparison of deep learning with multiple machine learning methods and metrics using diverse drug discovery data sets. Mol Pharm 14(12):4462–4475. https://doi.org/10.1021/acs.molpharmaceut.7b00578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jing Y et al (2018) Deep learning for drug design: an artificial intelligence paradigm for drug discovery in the big data era. AAPS J 20(3):58. https://doi.org/10.1208/s12248-018-0210-0

    Article  CAS  PubMed  Google Scholar 

  40. Wooller SK et al (2017) Bioinformatics in translational drug discovery. Biosci Rep. https://doi.org/10.1042/bsr20160180

  41. Batool M, Ahmad B, Choi S (2019) A structure-based drug discovery paradigm. Int J Mol Sci. https://doi.org/10.3390/ijms20112783

    Article  PubMed  PubMed Central  Google Scholar 

  42. Liu B et al (2019) Artificial intelligence and big data facilitated targeted drug discovery. Stroke Vasc Neurol 4(4):206–213. https://doi.org/10.1136/svn-2019-000290

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhao L et al (2020) Advancing computer-aided drug discovery (CADD) by big data and data-driven machine learning modeling. Drug Discov Today 25(9):1624–1638. https://doi.org/10.1016/j.drudis.2020.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Patel L et al (2020) Machine learning methods in drug discovery. Molecules. https://doi.org/10.3390/molecules25225277

    Article  PubMed  PubMed Central  Google Scholar 

  45. Glicksberg BS et al (2019) Leveraging big data to transform drug discovery. Methods Mol Biol 1939:91–118. https://doi.org/10.1007/978-1-4939-9089-4_6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen X et al (2016) Drug-target interaction prediction: databases, web servers and computational models. Brief Bioinform 17(4):696–712. https://doi.org/10.1093/bib/bbv066

    Article  CAS  PubMed  Google Scholar 

  47. Meier K et al (2020) The generated databases (GDBs) as a source of 3D-shaped building blocks for use in medicinal chemistry and drug discovery. Chimia (Aarau) 74(4):241–246. https://doi.org/10.2533/chimia.2020.241

    Article  CAS  PubMed  Google Scholar 

  48. Xie T et al (2015) Review of natural product databases. Cell Prolif 48(4):398–404. https://doi.org/10.1111/cpr.12190

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nguyen-Vo TH et al (2020) Plant metabolite databases: from herbal medicines to modern drug discovery. J Chem Inf Model 60(3):1101–1110. https://doi.org/10.1021/acs.jcim.9b00826

    Article  CAS  PubMed  Google Scholar 

  50. Fuentes G, Oyarzabal J, Rojas AM (2009) Databases of protein-protein interactions and their use in drug discovery. Curr Opin Drug Discov Devel 12(3):358–366

    CAS  PubMed  Google Scholar 

  51. Yang B et al (2019) Computer-assisted drug virtual screening based on the natural product databases. Curr Pharm Biotechnol 20(4):293–301. https://doi.org/10.2174/1389201020666190328115411

    Article  CAS  PubMed  Google Scholar 

  52. Potemkin V, Potemkin A, Grishina M (2018) Internet resources for drug discovery and design. Curr Top Med Chem 18(22):1955–1975. https://doi.org/10.2174/1568026619666181129142127

    Article  CAS  PubMed  Google Scholar 

  53. Kim S (2016) Getting the most out of PubChem for virtual screening. Expert Opin Drug Discov 11(9):843–855. https://doi.org/10.1080/17460441.2016.1216967

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kim S et al (2018) Finding potential multitarget ligands using PubChem. Methods Mol Biol 1825:63–91. https://doi.org/10.1007/978-1-4939-8639-2_2

    Article  CAS  PubMed  Google Scholar 

  55. Wang Y et al (2012) PubChem’s bioassay database. Nucleic Acids Res 40(Database issue):D400–D412. https://doi.org/10.1093/nar/gkr1132

    Article  CAS  PubMed  Google Scholar 

  56. Kim S et al (2021) PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res 49(D1):D1388-d1395. https://doi.org/10.1093/nar/gkaa971

    Article  CAS  PubMed  Google Scholar 

  57. Kim S et al (2016) Literature information in PubChem: associations between PubChem records and scientific articles. J Cheminform 8:32. https://doi.org/10.1186/s13321-016-0142-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Umesh PK, Dubey VK (2021) Virtual screening and repurposing of FDA-approved drugs from ZINC database to identify potential autophagy inhibitors exploiting autophagy related 4A cysteine peptidase as a target: potential as novel anti-cancer molecule. J Biomol Struct Dyn 2021:1–17. https://doi.org/10.1080/07391102.2020.1869100

    Article  CAS  Google Scholar 

  59. Boucherit H et al (2020) The research of new inhibitors of bacterial methionine aminopeptidase by structure based virtual screening approach of zinc database and in vitro validation. Curr Comput Aided Drug Des 16(4):389–401. https://doi.org/10.2174/1573409915666190617165643

    Article  CAS  PubMed  Google Scholar 

  60. Abdusalam AAA, Murugaiyah V (2020) Identification of potential inhibitors of 3CL protease of SARS-CoV-2 from zinc database by molecular docking-based virtual screening. Front Mol Biosci 7:603037. https://doi.org/10.3389/fmolb.2020.603037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Awale M, Jin X, Reymond JL (2015) Stereoselective virtual screening of the ZINC database using atom pair 3D-fingerprints. J Cheminform 7:3. https://doi.org/10.1186/s13321-014-0051-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Monika KJ, Singh K (2013) Virtual screening using the ligand ZINC database for novel lipoxygenase-3 inhibitors. Bioinformation 9(11):583–587. https://doi.org/10.6026/97320630009583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nogara PA et al (2015) Virtual screening of acetylcholinesterase inhibitors using the Lipinski’s rule of five and ZINC databank. Biomed Res Int 2015:870389. https://doi.org/10.1155/2015/870389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Irwin JJ (2008) Using ZINC to acquire a virtual screening library. Curr Protoc Bioinformatics. https://doi.org/10.1002/0471250953.bi1406s22

    Article  PubMed  Google Scholar 

  65. Sterling T, Irwin JJ (2015) ZINC 15—ligand discovery for everyone. J Chem Inf Model 55(11):2324–2337. https://doi.org/10.1021/acs.jcim.5b00559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Real Compound Libraries (2021) Enamine. https://enamine.net/library-synthesis/real-compounds/real-compound-libraries

  67. Klingler F-M et al (2019) SAR by space: enriching hit sets from the chemical space. Molecules. https://doi.org/10.3390/molecules24173096

    Article  PubMed  PubMed Central  Google Scholar 

  68. Grygorenko OO et al (2020) Generating multibillion chemical space of readily accessible screening compounds. iScience 23(11):101681. https://doi.org/10.1016/j.isci.2020.101681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sorokina M et al (2021) COCONUT online: collection of open natural products database. J Cheminf 13(1):2. https://doi.org/10.1186/s13321-020-00478-9

    Article  Google Scholar 

  70. Davies M et al (2015) ChEMBL web services: streamlining access to drug discovery data and utilities. Nucleic Acids Res 43(W1):W612–W620. https://doi.org/10.1093/nar/gkv352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Papadatos G, Overington JP (2014) The ChEMBL database: a taster for medicinal chemists. Future Med Chem 6(4):361–364. https://doi.org/10.4155/fmc.14.8

    Article  CAS  PubMed  Google Scholar 

  72. Capecchi A et al (2019) PubChem and ChEMBL beyond Lipinski. Mol Inform 38(5):e1900016. https://doi.org/10.1002/minf.201900016

    Article  CAS  PubMed  Google Scholar 

  73. Mendez D et al (2019) ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res 47(D1):D930–D940. https://doi.org/10.1093/nar/gky1075

    Article  CAS  PubMed  Google Scholar 

  74. Papadatos G et al (2016) SureChEMBL: a large-scale, chemically annotated patent document database. Nucleic Acids Res 44(D1):D1220–D1228. https://doi.org/10.1093/nar/gkv1253

    Article  CAS  PubMed  Google Scholar 

  75. Falaguera MJ, Mestres J (2021) Identification of the core chemical structure in SureChEMBL patents. J Chem Inf Model 61(5):2241–2247. https://doi.org/10.1021/acs.jcim.1c00151

    Article  CAS  PubMed  Google Scholar 

  76. Wirth M et al (2013) SwissBioisostere: a database of molecular replacements for ligand design. Nucleic Acids Res 41(Database issue):D1137–D1143. https://doi.org/10.1093/nar/gks1059

    Article  CAS  PubMed  Google Scholar 

  77. Daina A, Zoete V (2019) Application of the SwissDrugDesign online resources in virtual screening. Int J Mol Sci. https://doi.org/10.3390/ijms20184612

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zoete V et al (2016) SwissSimilarity: a web tool for low to ultra high throughput ligand-based virtual screening. J Chem Inf Model 56(8):1399–1404. https://doi.org/10.1021/acs.jcim.6b00174

    Article  CAS  PubMed  Google Scholar 

  79. Cole JC et al (2018) Knowledge-based conformer generation using the Cambridge structural database. J Chem Inf Model 58(3):615–629. https://doi.org/10.1021/acs.jcim.7b00697

    Article  CAS  PubMed  Google Scholar 

  80. Groom CR et al (2016) The Cambridge structural database. Acta Crystallogr B Struct Sci Cryst Eng Mater 72(Pt 2):171–179. https://doi.org/10.1107/s2052520616003954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wishart DS et al (2008) DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 36(1):D901–D906. https://doi.org/10.1093/nar/gkm958

    Article  CAS  PubMed  Google Scholar 

  82. Wishart DS et al (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34(Database issue):D668–D672. https://doi.org/10.1093/nar/gkj067

    Article  CAS  PubMed  Google Scholar 

  83. Wishart DS et al (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46(D1):D1074–D1082. https://doi.org/10.1093/nar/gkx1037

    Article  CAS  PubMed  Google Scholar 

  84. Wishart DS, Wu A (2016) Using DrugBank for in silico drug exploration and discovery. Curr Protoc Bioinformatics 54:14.4.1-14.4.31. https://doi.org/10.1002/cpbi.1

    Article  PubMed  Google Scholar 

  85. Wishart DS (2008) DrugBank and its relevance to pharmacogenomics. Pharmacogenomics 9(8):1155–1162. https://doi.org/10.2217/14622416.9.8.1155

    Article  CAS  PubMed  Google Scholar 

  86. Berman HM et al (2000) The protein data bank. Nucleic Acids Res 28(1):235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Burley SK et al (2017) Protein data bank (PDB): the single global macromolecular structure archive. Methods Mol Biol 1607:627–641. https://doi.org/10.1007/978-1-4939-7000-1_26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Prestegard JH (2021) A perspective on the PDB’s impact on the field of glycobiology. J Biol Chem 296:100556. https://doi.org/10.1016/j.jbc.2021.100556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jiménez J et al (2017) DeepSite: protein-binding site predictor using 3D-convolutional neural networks. Bioinformatics 33(19):3036–3042. https://doi.org/10.1093/bioinformatics/btx350

    Article  CAS  PubMed  Google Scholar 

  90. Fernández A (2019) Deep learning to therapeutically target unreported complexes. Trends Pharmacol Sci 40(8):551–554. https://doi.org/10.1016/j.tips.2019.04.009

    Article  CAS  PubMed  Google Scholar 

  91. Liñares-Blanco J et al (2020) Molecular docking and machine learning analysis of Abemaciclib in colon cancer. BMC Mol Cell Biol 21(1):52. https://doi.org/10.1186/s12860-020-00295-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. The UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47(D1):D506–D515. https://doi.org/10.1093/nar/gky1049

    Article  CAS  Google Scholar 

  93. Sarker IH (2021) Machine learning: algorithms, real-world applications and research directions. SN Comput Sci 2(3):160. https://doi.org/10.1007/s42979-021-00592-x

    Article  PubMed  PubMed Central  Google Scholar 

  94. The UniProt Consortium (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45(D1):D158-d169. https://doi.org/10.1093/nar/gkw1099

    Article  CAS  Google Scholar 

  95. Pundir S, Martin MJ, O’Donovan C (2017) UniProt protein knowledgebase. Methods Mol Biol 1558:41–55. https://doi.org/10.1007/978-1-4939-6783-4_2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang Y et al (2020) Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res 48(D1):D1031–D1041. https://doi.org/10.1093/nar/gkz981

    Article  CAS  PubMed  Google Scholar 

  97. Chen X, Ji ZL, Chen YZ (2002) TTD: therapeutic target database. Nucleic Acids Res 30(1):412–415. https://doi.org/10.1093/nar/30.1.412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hamet P, Tremblay J (2017) Artificial intelligence in medicine. Metabolism 69:S36–S40. https://doi.org/10.1016/j.metabol.2017.01.011

    Article  CAS  Google Scholar 

  99. Turing AM (1950) I—Computing machinery and intelligence. Mind LIX(236):433–460. https://doi.org/10.1093/mind/LIX.236.433

    Article  Google Scholar 

  100. Carbonell JG, Michalski RS, Mitchell TM (1983) An overview of machine learning. In: Michalski RS, Carbonell JG, Mitchell TM (eds) Machine learning: an artificial intelligence approach. Springer, Berlin, pp 3–23. https://doi.org/10.1007/978-3-662-12405-5_1

    Chapter  Google Scholar 

  101. Todeschini R, Consonni V (2000) Frontmatter. In: Handbook of molecular descriptors. Wiley, Weinheim, pp i–xxi. https://doi.org/10.1002/9783527613106.fmatter

  102. Dong J et al (2015) ChemDes: an integrated web-based platform for molecular descriptor and fingerprint computation. J Cheminf 7(1):60. https://doi.org/10.1186/s13321-015-0109-z

    Article  CAS  Google Scholar 

  103. Sukumar N et al (2011) Molecular descriptors for biological systems. In: Guha R, Bender A (eds) Computational approaches in cheminformatics and bioinformatics. Wiley-VCH, Weinheim, pp 107–143. https://doi.org/10.1002/9781118131411.ch5

    Chapter  Google Scholar 

  104. Todeschini R, Consonni V, Gramatica P (2009) Chemometrics in QSAR. In: Brown SD, Tauler R, Walczak B (eds) Comprehensive chemometrics. Elsevier, Oxford, pp 129–172. https://doi.org/10.1016/B978-044452701-1.00007-7

    Chapter  Google Scholar 

  105. Bajorath J (2001) Selected concepts and investigations in compound classification, molecular descriptor analysis, and virtual screening. J Chem Inf Comput Sci 41(2):233–245. https://doi.org/10.1021/ci0001482

    Article  CAS  PubMed  Google Scholar 

  106. Raymond JW, Willett P (2002) Effectiveness of graph-based and fingerprint-based similarity measures for virtual screening of 2D chemical structure databases. J Comput Aided Mol Des 16(1):59–71. https://doi.org/10.1023/A:1016387816342

    Article  CAS  PubMed  Google Scholar 

  107. Ivanciuc O (2013) Chemical graphs, molecular matrices and topological indices in chemoinformatics and quantitative structure-activity relationships. Curr Comput Aided Drug Des 9(2):153–163. https://doi.org/10.2174/1573409911309020002

    Article  CAS  PubMed  Google Scholar 

  108. Kombo DC et al (2013) 3D molecular descriptors important for clinical success. J Chem Inf Model 53(2):327–342. https://doi.org/10.1021/ci300445e

    Article  CAS  PubMed  Google Scholar 

  109. Orosz Á, Héberger K, Rácz A (2022) Comparison of descriptor-and fingerprint sets in machine learning models for ADME-Tox targets. Front Chem 10:852893. https://doi.org/10.3389/fchem.2022.852893

    Article  PubMed  PubMed Central  Google Scholar 

  110. Senese CL et al (2004) 4D-fingerprints, universal QSAR and QSPR descriptors. J Chem Inf Comput Sci 44(5):1526–1539. https://doi.org/10.1021/ci049898s

    Article  CAS  PubMed  Google Scholar 

  111. Jaroslaw P (2009) Receptor dependent multidimensional QSAR for modeling drug–receptor interactions. Curr Med Chem 16(25):3243–3257. https://doi.org/10.2174/092986709788803286

    Article  Google Scholar 

  112. Hayakawa D et al (2020) A molecular interaction field describing nonconventional intermolecular interactions and its application to protein–ligand interaction prediction. J Mol Graph Model 96:107515. https://doi.org/10.1016/j.jmgm.2019.107515

    Article  CAS  PubMed  Google Scholar 

  113. Chartier M, Najmanovich R (2015) Detection of binding site molecular interaction field similarities. J Chem Inf Model 55(8):1600–1615. https://doi.org/10.1021/acs.jcim.5b00333

    Article  CAS  PubMed  Google Scholar 

  114. Artese A et al (2013) Molecular interaction fields in drug discovery: recent advances and future perspectives. WIREs Comput Mol Sci 3(6):594–613. https://doi.org/10.1002/wcms.1150

    Article  CAS  Google Scholar 

  115. Ranade V (2006) Molecular interaction fields. Am J Therapeutics 13(4):385–386

    Google Scholar 

  116. Bertoni M et al (2021) Bioactivity descriptors for uncharacterized chemical compounds. Nat Commun 12(1):3932. https://doi.org/10.1038/s41467-021-24150-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chuang KV, Gunsalus LM, Keiser MJ (2020) Learning molecular representations for medicinal chemistry. J Med Chem 63(16):8705–8722. https://doi.org/10.1021/acs.jmedchem.0c00385

    Article  CAS  PubMed  Google Scholar 

  118. Xue L, Bajorath J (2000) Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Comb Chem High Throughput Screen 3(5):363–372. https://doi.org/10.2174/1386207003331454

    Article  CAS  PubMed  Google Scholar 

  119. Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50(5):742–754. https://doi.org/10.1021/ci100050t

    Article  CAS  PubMed  Google Scholar 

  120. Glem RC et al (2006) Circular fingerprints: flexible molecular descriptors with applications from physical chemistry to ADME. IDrugs 9(3):199–204

    PubMed  Google Scholar 

  121. Kearnes S et al (2016) Molecular graph convolutions: moving beyond fingerprints. J Comput Aided Mol Des 30(8):595–608. https://doi.org/10.1007/s10822-016-9938-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wang X et al (2019) Molecule property prediction based on spatial graph embedding. J Chem Inf Model 59(9):3817–3828. https://doi.org/10.1021/acs.jcim.9b00410

    Article  CAS  PubMed  Google Scholar 

  123. Steinbeck C et al (2006) Recent developments of the chemistry development kit (CDK)—an open-source java library for chemo- and bioinformatics. Curr Pharm Des 12(17):2111–2120. https://doi.org/10.2174/138161206777585274

    Article  CAS  PubMed  Google Scholar 

  124. Willighagen EL et al (2017) The Chemistry Development Kit (CDK) v2.0: atom typing, depiction, molecular formulas, and substructure searching. J Cheminform 9(1):33. https://doi.org/10.1186/s13321-017-0220-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lovrić M, Molero JM, Kern R (2019) PySpark and RDKit: moving towards big data in cheminformatics. Mol Inform 38(6):e1800082. https://doi.org/10.1002/minf.201800082

    Article  CAS  PubMed  Google Scholar 

  126. Tangadpalliwar SR et al (2019) ChemSuite: a package for chemoinformatics calculations and machine learning. Chem Biol Drug Des 93(5):960–964. https://doi.org/10.1111/cbdd.13479

    Article  CAS  PubMed  Google Scholar 

  127. Chen Z et al (2018) iFeature: a Python package and web server for features extraction and selection from protein and peptide sequences. Bioinformatics 34(14):2499–2502. https://doi.org/10.1093/bioinformatics/bty140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Taguchi YH, Turki T (2020) A new advanced in silico drug discovery method for novel coronavirus (SARS-CoV-2) with tensor decomposition-based unsupervised feature extraction. PLoS ONE 15(9):e0238907. https://doi.org/10.1371/journal.pone.0238907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ma’ayan A et al (2007) Network analysis of FDA approved drugs and their targets. Mt Sinai J Med N Y 74(1):27–32. https://doi.org/10.1002/msj.20002

    Article  Google Scholar 

  130. Sarkans U et al (2021) From ArrayExpress to BioStudies. Nucleic Acids Res 49(D1):D1502–D1506. https://doi.org/10.1093/nar/gkaa1062

    Article  CAS  PubMed  Google Scholar 

  131. Clough E, Barrett T (2016) The gene expression omnibus database. Methods Mol Biol (Clifton, N.J.) 1418:93–110. https://doi.org/10.1007/978-1-4939-3578-9_5

    Article  Google Scholar 

  132. Parkinson H et al (2007) ArrayExpress—a public database of microarray experiments and gene expression profiles. Nucleic Acids Res 35(Database issue):D747–D750. https://doi.org/10.1093/nar/gkl995

    Article  CAS  PubMed  Google Scholar 

  133. Athar A et al (2019) ArrayExpress update—from bulk to single-cell expression data. Nucleic Acids Res 47(D1):D711–D715. https://doi.org/10.1093/nar/gky964

    Article  CAS  PubMed  Google Scholar 

  134. Cao C, Moult J (2014) GWAS and drug targets. BMC Genomics 15(Suppl 4):S5. https://doi.org/10.1186/1471-2164-15-S4-S5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Beck T, Shorter T, Brookes AJ (2020) GWAS central: a comprehensive resource for the discovery and comparison of genotype and phenotype data from genome-wide association studies. Nucleic Acids Res 48(D1):D933–D940. https://doi.org/10.1093/nar/gkz895

    Article  CAS  PubMed  Google Scholar 

  136. Buniello A et al (2019) The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res 47(D1):D1005–D1012. https://doi.org/10.1093/nar/gky1120

    Article  CAS  PubMed  Google Scholar 

  137. Wei J et al (2021) Genome-wide CRISPR screens reveal host factors critical for SARS-CoV-2 infection. Cell 184(1):76–91. https://doi.org/10.1016/j.cell.2020.10.028

    Article  CAS  PubMed  Google Scholar 

  138. King EA, Davis JW, Degner JF (2019) Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval. PLoS Genet 15(12):e1008489. https://doi.org/10.1371/journal.pgen.1008489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kodama Y et al (2012) The Sequence Read Archive: explosive growth of sequencing data. Nucleic Acids Res 40(Database issue):D54–D56. https://doi.org/10.1093/nar/gkr854

    Article  CAS  PubMed  Google Scholar 

  140. Han Y et al (2019) DriverML: a machine learning algorithm for identifying driver genes in cancer sequencing studies. Nucleic Acids Res 47(8):e45. https://doi.org/10.1093/nar/gkz096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Han Y et al (2021) Corrigendum to article “DriverML: a machine learning algorithm for identifying driver genes in cancer sequencing studies.” Nucleic Acids Res 49(7):4196. https://doi.org/10.1093/nar/gkab193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Dhasmana A et al (2020) Topological and system-level protein interaction network (PIN) analyses to deduce molecular mechanism of curcumin. Sci Rep 10(1):12045. https://doi.org/10.1038/s41598-020-69011-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zhang Z et al (2018) Resurrected protein interaction networks reveal the innovation potential of ancient whole-genome duplication. Plant Cell 30(11):2741–2760. https://doi.org/10.1105/tpc.18.00409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Farooq QUA et al (2020) A systems biology-driven approach to construct a comprehensive protein interaction network of influenza A virus with its host. BMC Infect Dis 20(1):480. https://doi.org/10.1186/s12879-020-05214-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Han L et al (2017) Human enterovirus 71 protein interaction network prompts antiviral drug repositioning. Sci Rep 7:43143. https://doi.org/10.1038/srep43143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Farooq QUA et al (2020) Inferring Virus-Host relationship between HPV and its host Homo sapiens using protein interaction network. Sci Rep 10(1):8719. https://doi.org/10.1038/s41598-020-65837-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hase T et al (2009) Structure of protein interaction networks and their implications on drug design. PLOS Comput Biol 5(10):e1000550. https://doi.org/10.1371/journal.pcbi.1000550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Tsuji S et al (2021) Artificial intelligence-based computational framework for drug-target prioritization and inference of novel repositionable drugs for Alzheimer’s disease. Alzheimer’s Res Therapy 13(1):92. https://doi.org/10.1186/s13195-021-00826-3

    Article  Google Scholar 

  149. iCLUE&ASK (2021) https://icluenask.standigm.com/about

  150. White J (2020) PubMed. Med Ref Serv Q 39(4):382–387. https://doi.org/10.1080/02763869.2020.1826228

    Article  PubMed  Google Scholar 

  151. Kim J et al (2013) DigSee: disease gene search engine with evidence sentences (version cancer). Nucleic Acids Res 41(Web Server Issue):W510–W517. https://doi.org/10.1093/nar/gkt531

    Article  PubMed  PubMed Central  Google Scholar 

  152. Nayal M, Honig B (2006) On the nature of cavities on protein surfaces: application to the identification of drug-binding sites. Proteins 63(4):892–906. https://doi.org/10.1002/prot.20897

    Article  CAS  PubMed  Google Scholar 

  153. Kandoi G, Acencio ML, Lemke N (2015) Prediction of druggable proteins using machine learning and systems biology: A mini-review. Front Physiol 6:366. https://doi.org/10.3389/fphys.2015.00366

    Article  PubMed  PubMed Central  Google Scholar 

  154. Rifaioglu AS et al (2021) MDeePred: novel multi-channel protein featurization for deep learning-based binding affinity prediction in drug discovery. Bioinformatics 37(5):693–704. https://doi.org/10.1093/bioinformatics/btaa858

    Article  CAS  PubMed  Google Scholar 

  155. Kandel J, Tayara H, Chong KT (2021) PUResNet: prediction of protein–ligand binding sites using deep residual neural network. J Cheminf 13(1):65. https://doi.org/10.1186/s13321-021-00547-7

    Article  CAS  Google Scholar 

  156. Yuan J-H et al (2020) Druggability assessment in TRAPP using machine learning approaches. J Chem Inf Model 60(3):1685–1699. https://doi.org/10.1021/acs.jcim.9b01185

    Article  CAS  PubMed  Google Scholar 

  157. Olah M et al (2005) WOMBAT: world of molecular bioactivity. Chemoinformatics Drug Discov 2005:221–239. https://doi.org/10.1002/3527603743.ch9

    Article  Google Scholar 

  158. Lee K, Lee M, Kim D (2017) Utilizing random forest QSAR models with optimized parameters for target identification and its application to target-fishing server. BMC Bioinformatics 18(Suppl 16):567. https://doi.org/10.1186/s12859-017-1960-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Senior AW et al (2020) Improved protein structure prediction using potentials from deep learning. Nature 577(7792):706–710. https://doi.org/10.1038/s41586-019-1923-7

    Article  CAS  PubMed  Google Scholar 

  160. Cyclica Launches Ligand Express™, a Disruptive Cloud-Based Platform to Revolutionize Drug Discovery (2017). https://www.cyclicarx.com/press-releases/cyclica-launches-ligand-express-a-disruptive-cloud-based-platform-to-revolutionize-drug-discovery

  161. Korkmaz S, Zararsiz G, Goksuluk D (2015) MLViS: a web tool for machine learning-based virtual screening in early-phase of drug discovery and development. PLoS ONE 10(4):e0124600. https://doi.org/10.1371/journal.pone.0124600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Wójcikowski M, Zielenkiewicz P, Siedlecki P (2015) Open Drug Discovery Toolkit (ODDT): a new open-source player in the drug discovery field. J Cheminf 7(1):26. https://doi.org/10.1186/s13321-015-0078-2

    Article  Google Scholar 

  163. Blaschke T et al (2020) REINVENT 2.0: an AI tool for de novo drug design. J Chem Inf Model 60(12):5918–5922. https://doi.org/10.1021/acs.jcim.0c00915

    Article  CAS  PubMed  Google Scholar 

  164. Alley EC et al (2019) Unified rational protein engineering with sequence-based deep representation learning. Nat Methods 16(12):1315–1322. https://doi.org/10.1038/s41592-019-0598-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Amendola G, Cosconati S (2021) PyRMD: a new fully automated AI-powered ligand-based virtual screening tool. J Chem Inf Model 61(8):3835–3845. https://doi.org/10.1021/acs.jcim.1c00653

    Article  CAS  PubMed  Google Scholar 

  166. Gentile F et al (2020) Deep docking: a deep learning platform for augmentation of structure based drug discovery. ACS Cent Sci 6(6):939–949. https://doi.org/10.1021/acscentsci.0c00229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Bai Q et al (2020) MolAICal: a soft tool for 3D drug design of protein targets by artificial intelligence and classical algorithm. Brief Bioinformatics. https://doi.org/10.1093/bib/bbaa161

    Article  PubMed  Google Scholar 

  168. Yan Y et al (2017) Protein–ligand empirical interaction components for virtual screening. J Chem Inf Model 57(8):1793–1806. https://doi.org/10.1021/acs.jcim.7b00017

    Article  CAS  PubMed  Google Scholar 

  169. Cherkasov A et al (2009) Use of artificial intelligence in the design of small peptide antibiotics effective against a broad spectrum of highly antibiotic-resistant superbugs. ACS Chem Biol 4(1):65–74. https://doi.org/10.1021/cb800240j

    Article  CAS  PubMed  Google Scholar 

  170. Kinnings SL et al (2011) A machine learning-based method to improve docking scoring functions and its application to drug repurposing. J Chem Inf Model 51(2):408–419. https://doi.org/10.1021/ci100369f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Leong MK et al (2017) Prediction of N-methyl-d-aspartate receptor GluN1-ligand binding affinity by a novel SVM-pose/SVM-score combinatorial ensemble docking scheme. Sci Rep 7:40053. https://doi.org/10.1038/srep40053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Li H et al (2015) Improving AutoDock Vina using random forest: the growing accuracy of binding affinity prediction by the effective exploitation of larger data sets. Mol Inf 34(2–3):115–126. https://doi.org/10.1002/minf.201400132

    Article  CAS  Google Scholar 

  173. Arciniega M, Lange OF (2014) Improvement of virtual screening results by docking data feature analysis. J Chem Inf Model 54(5):1401–1411. https://doi.org/10.1021/ci500028u

    Article  CAS  PubMed  Google Scholar 

  174. Waszkowycz B (2008) Towards improving compound selection in structure-based virtual screening. Drug Discov Today 13(5–6):219–226. https://doi.org/10.1016/j.drudis.2007.12.002

    Article  CAS  PubMed  Google Scholar 

  175. Carpenter KA et al (2018) Deep learning and virtual drug screening. Future Med Chem 10(21):2557–2567. https://doi.org/10.4155/fmc-2018-0314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Melville JL, Burke EK, Hirst JD (2009) Machine learning in virtual screening. Comb Chem High Throughput Screen 12(4):332–343. https://doi.org/10.2174/138620709788167980

    Article  CAS  PubMed  Google Scholar 

  177. Pereira JC, Caffarena ER, dos Santos CN (2016) Boosting docking-based virtual screening with deep learning. J Chem Inf Model 56(12):2495–2506. https://doi.org/10.1021/acs.jcim.6b00355

    Article  CAS  PubMed  Google Scholar 

  178. Ballester PJ, Mitchell JB (2010) A machine learning approach to predicting protein–ligand binding affinity with applications to molecular docking. Bioinformatics 26(9):1169–1175. https://doi.org/10.1093/bioinformatics/btq112

    Article  CAS  PubMed  Google Scholar 

  179. Zilian D, Sotriffer CA (2013) SFCscore(RF): a random forest-based scoring function for improved affinity prediction of protein–ligand complexes. J Chem Inf Model 53(8):1923–1933. https://doi.org/10.1021/ci400120b

    Article  CAS  PubMed  Google Scholar 

  180. Liu Q, Kwoh CK, Li J (2013) Binding affinity prediction for protein–ligand complexes based on β contacts and B factor. J Chem Inf Model 53(11):3076–3085. https://doi.org/10.1021/ci400450h

    Article  CAS  PubMed  Google Scholar 

  181. Li H et al (2014) istar: a web platform for large-scale protein–ligand docking. PLoS ONE 9(1):e85678. https://doi.org/10.1371/journal.pone.0085678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Li GB et al (2013) ID-Score: a new empirical scoring function based on a comprehensive set of descriptors related to protein–ligand interactions. J Chem Inf Model 53(3):592–600. https://doi.org/10.1021/ci300493w

    Article  CAS  PubMed  Google Scholar 

  183. Ballester PJ (2012) Machine learning scoring functions based on random forest and support vector regression. In: Proceedings of the 6th international conference on pattern recognition in bioinformatics. Springer, Berlin

  184. Durrant JD, McCammon JA (2010) NNScore: a neural-network-based scoring function for the characterization of protein–ligand complexes. J Chem Inf Model 50(10):1865–1871. https://doi.org/10.1021/ci100244v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Ouyang X, Handoko SD, Kwoh CK (2011) CScore: a simple yet effective scoring function for protein–ligand binding affinity prediction using modified CMAC learning architecture. J Bioinform Comput Biol 9(Suppl 1):1–14. https://doi.org/10.1142/s021972001100577x

    Article  PubMed  Google Scholar 

  186. Cang Z, Wei G-W (2017) TopologyNet: topology based deep convolutional and multi-task neural networks for biomolecular property predictions. PLOS Comput Biol 13(7):e1005690. https://doi.org/10.1371/journal.pcbi.1005690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Ragoza M et al (2017) Protein–ligand scoring with convolutional neural networks. J Chem Inf Model 57(4):942–957. https://doi.org/10.1021/acs.jcim.6b00740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Stepniewska-Dziubinska MM, Zielenkiewicz P, Siedlecki P (2018) Development and evaluation of a deep learning model for protein–ligand binding affinity prediction. Bioinformatics 34(21):3666–3674. https://doi.org/10.1093/bioinformatics/bty374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Ashtawy HM, Mahapatra NR (2015) BgN-Score and BsN-Score: Bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein–ligand complexes. BMC Bioinformatics 16(4):S8. https://doi.org/10.1186/1471-2105-16-S4-S8

    Article  PubMed  PubMed Central  Google Scholar 

  190. Ain QU et al (2015) Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening. Wiley Interdiscip Rev Comput Mol Sci 5(6):405–424. https://doi.org/10.1002/wcms.1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Yang X et al (2019) Concepts of artificial intelligence for computer-assisted drug discovery. Chem Rev 119(18):10520–10594. https://doi.org/10.1021/acs.chemrev.8b00728

    Article  CAS  PubMed  Google Scholar 

  192. Wang D et al (2019) Improving the virtual screening ability of target-specific scoring functions using deep learning methods. Front Pharmacol 10:924. https://doi.org/10.3389/fphar.2019.00924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Li L et al (2011) Target-specific support vector machine scoring in structure-based virtual screening: computational validation, in vitro testing in kinases, and effects on lung cancer cell proliferation. J Chem Inf Model 51(4):755–759. https://doi.org/10.1021/ci100490w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Sullivan PF (2012) Puzzling over schizophrenia: schizophrenia as a pathway disease. Nat Med 18(2):210–211. https://doi.org/10.1038/nm.2670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Kottaram A et al (2019) Brain network dynamics in schizophrenia: reduced dynamism of the default mode network. Hum Brain Mapp 40(7):2212–2228. https://doi.org/10.1002/hbm.24519

    Article  PubMed  PubMed Central  Google Scholar 

  196. Ermakov EA et al (2021) Oxidative stress-related mechanisms in schizophrenia pathogenesis and new treatment perspectives. Oxid Med Cell Longev 2021:8881770. https://doi.org/10.1155/2021/8881770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. MacKay M-AB et al (2018) Multidimensional connectomics and treatment-resistant schizophrenia: linking phenotypic circuits to targeted therapeutics. Front Psychiatry 9:537. https://doi.org/10.3389/fpsyt.2018.00537

    Article  PubMed  PubMed Central  Google Scholar 

  198. Perkovic MN et al (2017) Theranostic biomarkers for schizophrenia. Int J Mol Sci 18(4):733. https://doi.org/10.3390/ijms18040733

    Article  CAS  PubMed  Google Scholar 

  199. Saha S et al (2005) A systematic review of the prevalence of schizophrenia. PLoS Med 2(5):e141. https://doi.org/10.1371/journal.pmed.0020141

    Article  PubMed  PubMed Central  Google Scholar 

  200. World Health Organization (2008) The global burden of disease: 2004 update. World Health Organization, Geneva. https://apps.who.int/iris/handle/10665/43942

  201. Hyman SE (2012) Revolution stalled. Sci Transl Med 4(155):155cm11. https://doi.org/10.1126/scitranslmed.3003142

    Article  PubMed  Google Scholar 

  202. Yang QX et al (2019) Identification of the gene signature reflecting schizophrenia’s etiology by constructing artificial intelligence-based method of enhanced reproducibility. CNS Neurosci Ther 25(9):1054–1063. https://doi.org/10.1111/cns.13196

    Article  PubMed  PubMed Central  Google Scholar 

  203. Zhao K, So HC (2019) Drug repositioning for schizophrenia and depression/anxiety disorders: a machine learning approach leveraging expression data. IEEE J Biomed Health Informatics 23(3):1304–1315. https://doi.org/10.1109/JBHI.2018.2856535

    Article  Google Scholar 

  204. Chakravarty MM (2019) Guest editorial: special issue on machine learning in schizophrenia. Schizophr Res 214:1–2. https://doi.org/10.1016/j.schres.2019.10.044

    Article  PubMed  Google Scholar 

  205. Goedert M, Spillantini MG (2006) A century of Alzheimer’s disease. Science 314(5800):777–781. https://doi.org/10.1126/science.1132814

    Article  CAS  PubMed  Google Scholar 

  206. 2021 Alzheimer’s disease facts and figures. Alzheimers Dement 17(3):327–406. https://doi.org/10.1002/alz.12328

  207. Misra S, Medhi B (2013) Drug development status for Alzheimer’s disease: present scenario. Neurol Sci 34(6):831–839. https://doi.org/10.1007/s10072-013-1316-x

    Article  PubMed  Google Scholar 

  208. Cummings JL, Morstorf T, Zhong K (2014) Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimer’s Res Therapy 6(4):37. https://doi.org/10.1186/alzrt269

    Article  Google Scholar 

  209. Louros N et al (2020) Structure-based machine-guided mapping of amyloid sequence space reveals uncharted sequence clusters with higher solubilities. Nat Commun 11(1):3314. https://doi.org/10.1038/s41467-020-17207-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Sügis E et al (2019) HENA, heterogeneous network-based data set for Alzheimer’s disease. Sci Data 6(1):151. https://doi.org/10.1038/s41597-019-0152-0

    Article  PubMed  PubMed Central  Google Scholar 

  211. Hung T-C et al (2014) In silico investigation of traditional Chinese medicine compounds to inhibit human histone deacetylase 2 for patients with Alzheimer’s disease. BioMed Res Int 2014:769867. https://doi.org/10.1155/2014/769867

    Article  PubMed  PubMed Central  Google Scholar 

  212. Lee J et al (2019) Development of predictive models for identifying potential S100A9 inhibitors based on machine learning methods. Front Chem 7:779. https://doi.org/10.3389/fchem.2019.00779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Cavas L et al (2019) Neural network modeling of AChE inhibition by new carbazole-bearing oxazolones. Interdiscip Sci 11(1):95–107. https://doi.org/10.1007/s12539-017-0245-4

    Article  CAS  PubMed  Google Scholar 

  214. Jamal S, Grover A, Grover S (2019) Machine learning from molecular dynamics trajectories to predict caspase-8 inhibitors against Alzheimer’s disease. Front Pharmacol 10:780. https://doi.org/10.3389/fphar.2019.00780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Zhang X-M et al (2021) Graph neural networks and their current applications in bioinformatics. Front Genet. https://doi.org/10.3389/fgene.2021.690049

    Article  PubMed  PubMed Central  Google Scholar 

  216. Miyazaki Y et al (2020) Comprehensive exploration of target-specific ligands using a graph convolution neural network. Mol Inform 39(1–2):e1900095. https://doi.org/10.1002/minf.201900095

    Article  CAS  PubMed  Google Scholar 

  217. Kleandrova VV, Speck-Planche A (2020) PTML modeling for Alzheimer’s disease: design and prediction of virtual multi-target inhibitors of GSK3B, HDAC1, and HDAC6. Curr Top Med Chem 20(19):1661–1676. https://doi.org/10.2174/1568026620666200607190951

    Article  CAS  PubMed  Google Scholar 

  218. Gupta R, Ambasta RK, Kumar P (2020) Identification of novel class I and class IIb histone deacetylase inhibitor for Alzheimer’s disease therapeutics. Life Sci 256:117912. https://doi.org/10.1016/j.lfs.2020.117912

    Article  CAS  PubMed  Google Scholar 

  219. Fang J et al (2017) AlzhCPI: A knowledge base for predicting chemical–protein interactions towards Alzheimer’s disease. PLoS ONE 12(5):e0178347. https://doi.org/10.1371/journal.pone.0178347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Fang J et al (2015) Discovery of multitarget-directed ligands against Alzheimer’s disease through systematic prediction of chemical–protein interactions. J Chem Inf Model 55(1):149–164. https://doi.org/10.1021/ci500574n

    Article  CAS  PubMed  Google Scholar 

  221. Pang XC et al (2018) Network pharmacology-based analysis of Chinese herbal Naodesheng formula for application to Alzheimer’s disease. Chin J Nat Med 16(1):53–62. https://doi.org/10.1016/s1875-5364(18)30029-3

    Article  CAS  PubMed  Google Scholar 

  222. Grisoni F et al (2019) Design of natural-product-inspired multitarget ligands by machine learning. ChemMedChem 14(12):1129–1134. https://doi.org/10.1002/cmdc.201900097

    Article  CAS  PubMed  Google Scholar 

  223. Thompson CA (2001) FDA approves galantamine for Alzheimer’s disease. Am J Health Syst Pharm 58(8):649. https://doi.org/10.1093/ajhp/58.8.649a

    Article  CAS  PubMed  Google Scholar 

  224. Jamal S et al (2016) Integrating network, sequence and functional features using machine learning approaches towards identification of novel Alzheimer genes. BMC Genomics 17(1):807. https://doi.org/10.1186/s12864-016-3108-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Exscientia announces second molecule created using AI from Sumitomo Dainippon Pharma collaboration to enter Phase 1 clinical trial. Cited 16 Sept 2021. https://www.exscientia.ai/news-insights/exscientia-second-ai-molecule-from-collaboration-in-phase1

  226. Oh M, Ahn J, Yoon Y (2014) A network-based classification model for deriving novel drug-disease associations and assessing their molecular actions. PLoS ONE 9(10):e111668. https://doi.org/10.1371/journal.pone.0111668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Dorsey ER et al (2018) The emerging evidence of the Parkinson pandemic. J Parkinsons Dis 8(s1):S3–S8. https://doi.org/10.3233/jpd-181474

    Article  PubMed  PubMed Central  Google Scholar 

  228. Reeve A, Simcox E, Turnbull D (2014) Ageing and Parkinson’s disease: why is advancing age the biggest risk factor? Ageing Res Rev 14(100):19–30. https://doi.org/10.1016/j.arr.2014.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Cerri S, Mus L, Blandini F (2019) Parkinson’s disease in women and men: what’s the difference? J Parkinsons Dis 9(3):501–515. https://doi.org/10.3233/jpd-191683

    Article  PubMed  PubMed Central  Google Scholar 

  230. Pinto M et al (2019) Boosting drug discovery for Parkinson’s: enhancement of the delivery of a monoamine oxidase-b inhibitor by brain-targeted PEGylated polycaprolactone-based nanoparticles. Pharmaceutics. https://doi.org/10.3390/pharmaceutics11070331

    Article  PubMed  PubMed Central  Google Scholar 

  231. Taylor JP, Hardy J, Fischbeck KH (2002) Toxic proteins in neurodegenerative disease. Science 296(5575):1991–1995. https://doi.org/10.1126/science.1067122

    Article  CAS  PubMed  Google Scholar 

  232. Maclagan LC et al (2020) Identifying drugs with disease-modifying potential in Parkinson’s disease using artificial intelligence and pharmacoepidemiology. Pharmacoepidemiol Drug Saf 29(8):864–872. https://doi.org/10.1002/pds.5015

    Article  CAS  PubMed  Google Scholar 

  233. Peng J, Guan J, Shang X (2019) Predicting Parkinson’s disease genes based on Node2vec and Autoencoder. Front Genet 10:226. https://doi.org/10.3389/fgene.2019.00226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Matarazzo M et al (2019) Remote monitoring of treatment response in Parkinson’s disease: the habit of typing on a computer. Mov Disord 34(10):1488–1495. https://doi.org/10.1002/mds.27772

    Article  PubMed  Google Scholar 

  235. Potashkin JA et al (2012) Biosignatures for Parkinson’s disease and atypical parkinsonian disorders patients. PLoS ONE 7(8):e43595. https://doi.org/10.1371/journal.pone.0043595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Váradi C et al (2019) Serum N-glycosylation in Parkinson’s disease: a novel approach for potential alterations. Molecules. https://doi.org/10.3390/molecules24122220

    Article  PubMed  PubMed Central  Google Scholar 

  237. Verge genomics: employing AI to improve drug discovery (2018). Pharma Technology Focus, New York

  238. Burik A (2018) AI is being put to work to treat Parkinson’s disease in the UK. Labiotech.eu. https://www.labiotech.eu/trends-news/benevolent-ai-parkinsons-disease/

  239. Yele V, Azam MA, Jupudi S (2020) Ligand-based pharmacophore modelling, in silico virtual screening, molecular docking and molecular dynamic simulation study to identify novel Francisella tularensis ParE inhibitors. Chem Pap 74(12):4567–4580. https://doi.org/10.1007/s11696-020-01274-3

    Article  CAS  Google Scholar 

  240. Ferraz WR et al (2020) Ligand and structure-based virtual screening applied to the SARS-CoV-2 main protease: an in silico repurposing study. Future Med Chem 12(20):1815–1828. https://doi.org/10.4155/fmc-2020-0165

    Article  CAS  PubMed  Google Scholar 

  241. Liu C et al (2020) Pharmacophore-based virtual screening toward the discovery of novel anti-echinococcal compounds. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2020.00118

    Article  PubMed  PubMed Central  Google Scholar 

  242. Cheng T et al (2012) Structure-based virtual screening for drug discovery: a problem-centric review. AAPS J 14(1):133–141. https://doi.org/10.1208/s12248-012-9322-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Maia EHB et al (2020) Structure-based virtual screening: from classical to artificial intelligence. Front Chem. https://doi.org/10.3389/fchem.2020.00343

    Article  PubMed  PubMed Central  Google Scholar 

  244. Negi P, Prakash S, Patil VM (2021) Structure based drug design approach to identify potential SARS-CoV-2 polymerase inhibitors. Coronaviruses 2(4):507–515. https://doi.org/10.2174/2666796701999201113114545

    Article  CAS  Google Scholar 

  245. Vázquez J et al (2020) Merging ligand-based and structure-based methods in drug discovery: an overview of combined virtual screening approaches. Molecules 25(20):4723

    Article  PubMed  PubMed Central  Google Scholar 

  246. Wilson GL, Lill MA (2011) Integrating structure-based and ligand-based approaches for computational drug design. Future Med Chem 3(6):735–750. https://doi.org/10.4155/fmc.11.18

    Article  CAS  PubMed  Google Scholar 

  247. Sliwoski G et al (2014) Computational methods in drug discovery. Pharmacol Rev 66(1):334–395. https://doi.org/10.1124/pr.112.007336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Klopmand G (1990) In: Johnson MA, Maggiora GM (eds) Concepts and applications of molecular similarity. Wiley, New York, p 393

  249. Plewczynski D, Spieser SA, Koch U (2009) Performance of machine learning methods for ligand-based virtual screening. Comb Chem High Throughput Screen 12(4):358–368. https://doi.org/10.2174/138620709788167962

    Article  CAS  PubMed  Google Scholar 

  250. Jayaraj PB, Jain S (2019) Ligand based virtual screening using SVM on GPU. Comput Biol Chem 83:107143. https://doi.org/10.1016/j.compbiolchem.2019.107143

    Article  CAS  PubMed  Google Scholar 

  251. Ma XH et al (2009) Comparative analysis of machine learning methods in ligand-based virtual screening of large compound libraries. Comb Chem High Throughput Screen 12(4):344–357. https://doi.org/10.2174/138620709788167944

    Article  CAS  PubMed  Google Scholar 

  252. Fukunishi Y (2009) Structure-based drug screening and ligand-based drug screening with machine learning. Comb Chem High Throughput Screen 12(4):397–408. https://doi.org/10.2174/138620709788167890

    Article  CAS  PubMed  Google Scholar 

  253. Quintus F et al (2009) Ligand scaffold hopping combining 3D maximal substructure search and molecular similarity. BMC Bioinformatics 10:245. https://doi.org/10.1186/1471-2105-10-245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Jain AN (2004) Ligand-based structural hypotheses for virtual screening. J Med Chem 47(4):947–961. https://doi.org/10.1021/jm030520f

    Article  CAS  PubMed  Google Scholar 

  255. Briard JG et al (2016) QSAR accelerated discovery of potent ice recrystallization inhibitors. Sci Rep 6:26403. https://doi.org/10.1038/srep26403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Kumar R et al (2015) An in silico platform for predicting, screening and designing of antihypertensive peptides. Sci Rep 5:12512. https://doi.org/10.1038/srep12512

    Article  PubMed  PubMed Central  Google Scholar 

  257. Wang T et al (2015) Quantitative structure–activity relationship: promising advances in drug discovery platforms. Expert Opin Drug Discov 10(12):1283–1300. https://doi.org/10.1517/17460441.2015.1083006

    Article  CAS  PubMed  Google Scholar 

  258. Geanes AR et al (2016) Ligand-based virtual screen for the discovery of novel M5 inhibitor chemotypes. Bioorg Med Chem Lett 26(18):4487–4491. https://doi.org/10.1016/j.bmcl.2016.07.071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Myint KZ et al (2012) Molecular fingerprint-based artificial neural networks QSAR for ligand biological activity predictions. Mol Pharm 9(10):2912–2923. https://doi.org/10.1021/mp300237z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Patra JC, Chua BH (2011) Artificial neural network-based drug design for diabetes mellitus using flavonoids. J Comput Chem 32(4):555–567. https://doi.org/10.1002/jcc.21641

    Article  CAS  PubMed  Google Scholar 

  261. Hu L, Chen G, Chau RM (2006) A neural networks-based drug discovery approach and its application for designing aldose reductase inhibitors. J Mol Graph Model 24(4):244–253. https://doi.org/10.1016/j.jmgm.2005.09.002

    Article  CAS  PubMed  Google Scholar 

  262. Khatri N, Lather V, Madan AK (2014) Diverse classification models for anti-hepatitis C virus activity of thiourea derivatives. Chemom Intell Lab Syst. https://doi.org/10.1016/j.chemolab.2014.10.007

    Article  Google Scholar 

  263. Torrent M et al (2011) Connecting peptide physicochemical and antimicrobial properties by a rational prediction model. PLoS ONE 6(2):e16968. https://doi.org/10.1371/journal.pone.0016968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Fjell CD et al (2009) Identification of novel antibacterial peptides by chemoinformatics and machine learning. J Med Chem 52(7):2006–2015. https://doi.org/10.1021/jm8015365

    Article  CAS  PubMed  Google Scholar 

  265. Sabet R et al (2012) Computer-aided design of novel antibacterial 3-hydroxypyridine-4-ones: application of QSAR methods based on the MOLMAP approach. J Comput Aided Mol Des 26(3):349–361. https://doi.org/10.1007/s10822-012-9561-2

    Article  CAS  PubMed  Google Scholar 

  266. Douali L, Villemin D, Cherqaoui D (2003) Neural networks: Accurate nonlinear QSAR model for HEPT derivatives. J Chem Inf Comput Sci 43(4):1200–1207. https://doi.org/10.1021/ci034047q

    Article  CAS  PubMed  Google Scholar 

  267. Murcia-Soler M et al (2004) Artificial neural networks and linear discriminant analysis: a valuable combination in the selection of new antibacterial compounds. J Chem Inf Comput Sci 44(3):1031–1041. https://doi.org/10.1021/ci030340e

    Article  CAS  PubMed  Google Scholar 

  268. AbdulHameed MD, Ippolito DL, Wallqvist A (2016) Predicting rat and human pregnane X receptor activators using Bayesian classification models. Chem Res Toxicol 29(10):1729–1740. https://doi.org/10.1021/acs.chemrestox.6b00227

    Article  CAS  PubMed  Google Scholar 

  269. Renault N et al (2013) Virtual screening of CB(2) receptor agonists from Bayesian network and high-throughput docking: structural insights into agonist-modulated GPCR features. Chem Biol Drug Des 81(4):442–454. https://doi.org/10.1111/cbdd.12095

    Article  CAS  PubMed  Google Scholar 

  270. Singh N et al (2012) QSAR classification model for antibacterial compounds and its use in virtual screening. J Chem Inf Model 52(10):2559–2569. https://doi.org/10.1021/ci300336v

    Article  CAS  PubMed  Google Scholar 

  271. Liu L-l et al (2014) Novel Bayesian classification models for predicting compounds blocking hERG potassium channels. Acta Pharmacol Sin 35(8):1093–1102. https://doi.org/10.1038/aps.2014.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Vijayan RSK et al (2009) Combinatorial library enumeration and lead hopping using comparative interaction fingerprint analysis and classical 2D QSAR methods for seeking novel GABAA α3 modulators. J Chem Inf Model 49(11):2498–2511. https://doi.org/10.1021/ci900309s

    Article  CAS  PubMed  Google Scholar 

  273. Ekins S et al (2013) Bayesian models leveraging bioactivity and cytotoxicity information for drug discovery. Chem Biol 20(3):370–378. https://doi.org/10.1016/j.chembiol.2013.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Prathipati P, Ma NL, Keller TH (2008) Global Bayesian models for the prioritization of antitubercular agents. J Chem Inf Model 48(12):2362–2370. https://doi.org/10.1021/ci800143n

    Article  CAS  PubMed  Google Scholar 

  275. Bender A, Mussa HY, Glen RC (2005) Screening for dihydrofolate reductase inhibitors using MOLPRINT 2D, a fast fragment-based method employing the naïve Bayesian classifier: limitations of the descriptor and the importance of balanced chemistry in training and test sets. J Biomol Screen 10(7):658–666. https://doi.org/10.1177/1087057105281048

    Article  CAS  PubMed  Google Scholar 

  276. Xia X et al (2004) Classification of kinase inhibitors using a Bayesian model. J Med Chem 47(18):4463–4470. https://doi.org/10.1021/jm0303195

    Article  CAS  PubMed  Google Scholar 

  277. Chen JJ, Visco DP (2017) Identifying novel factor XIIa inhibitors with PCA-GA-SVM developed vHTS models. Eur J Med Chem 140:31–41

    Article  CAS  PubMed  Google Scholar 

  278. Chen JJ, Visco DP (2017) Developing an in silico pipeline for faster drug candidate discovery: virtual high throughput screening with the Signature molecular descriptor using support vector machine models. Chem Engg Sci 159:31–42

    Article  CAS  Google Scholar 

  279. Fang X, Bagui S, Bagui S (2017) Improving virtual screening predictive accuracy of Human kallikrein 5 inhibitors using machine learning models. Comput Biol Chem 69:110–119. https://doi.org/10.1016/j.compbiolchem.2017.05.007

    Article  CAS  PubMed  Google Scholar 

  280. Zakharov AV et al (2016) QSAR Modeling and prediction of drug–drug interactions. Mol Pharm 13(2):545–556. https://doi.org/10.1021/acs.molpharmaceut.5b00762

    Article  CAS  PubMed  Google Scholar 

  281. Svetnik V et al (2003) Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci 43(6):1947–1958. https://doi.org/10.1021/ci034160g

    Article  CAS  PubMed  Google Scholar 

  282. Ma J et al (2015) Deep neural nets as a method for quantitative structure–activity relationships. J Chem Inf Model 55(2):263–274. https://doi.org/10.1021/ci500747n

    Article  CAS  PubMed  Google Scholar 

  283. Martin EJ et al (2017) Profile-QSAR 2.0: kinase virtual screening accuracy comparable to four-concentration IC(50)s for realistically novel compounds. J Chem Inf Model 57(8):2077–2088. https://doi.org/10.1021/acs.jcim.7b00166

    Article  CAS  PubMed  Google Scholar 

  284. Shamsara J (2019) A random forest model to predict the activity of a large set of soluble epoxide hydrolase inhibitors solely based on a set of simple fragmental descriptors. Comb Chem High Throughput Screen 22(8):555–569. https://doi.org/10.2174/1386207322666191016110232

    Article  CAS  PubMed  Google Scholar 

  285. Simeon S, Jongkon N (2019) Construction of quantitative structure activity relationship (QSAR) models to predict potency of structurally diversed Janus kinase 2 inhibitors. Molecules. https://doi.org/10.3390/molecules24234393

    Article  PubMed  PubMed Central  Google Scholar 

  286. Marchese Robinson RL et al (2017) Comparison of the predictive performance and interpretability of random forest and linear models on benchmark data sets. J Chem Inf Model 57(8):1773–1792. https://doi.org/10.1021/acs.jcim.6b00753

    Article  CAS  PubMed  Google Scholar 

  287. Speck-Planche A, Kleandrova VV, Cordeiro MN (2013) New insights toward the discovery of antibacterial agents: multi-tasking QSBER model for the simultaneous prediction of anti-tuberculosis activity and toxicological profiles of drugs. Eur J Pharm Sci 48(4–5):812–818. https://doi.org/10.1016/j.ejps.2013.01.011

    Article  CAS  PubMed  Google Scholar 

  288. Speck-Planche A, Cordeiro MN (2013) Simultaneous modeling of antimycobacterial activities and ADMET profiles: a chemoinformatic approach to medicinal chemistry. Curr Top Med Chem 13(14):1656–1665. https://doi.org/10.2174/15680266113139990116

    Article  CAS  PubMed  Google Scholar 

  289. Speck-Planche A, Cordeiro MN (2014) Simultaneous virtual prediction of anti-Escherichia coli activities and ADMET profiles: a chemoinformatic complementary approach for high-throughput screening. ACS Comb Sci 16(2):78–84. https://doi.org/10.1021/co400115s

    Article  CAS  PubMed  Google Scholar 

  290. Kleandrova VV et al (2016) Enabling the discovery and virtual screening of potent and safe antimicrobial peptides. Simultaneous prediction of antibacterial activity and cytotoxicity. ACS Comb Sci 18(8):490–498. https://doi.org/10.1021/acscombsci.6b00063

    Article  CAS  PubMed  Google Scholar 

  291. Speck-Planche A, Dias Soeiro Cordeiro MN (2017) Speeding up early drug discovery in antiviral research: a fragment-based in silico approach for the design of virtual anti-hepatitis C leads. ACS Comb Sci 19(8):501–512. https://doi.org/10.1021/acscombsci.7b00039

    Article  CAS  PubMed  Google Scholar 

  292. Viña D et al (2009) Alignment-free prediction of a drug–target complex network based on parameters of drug connectivity and protein sequence of receptors. Mol Pharm 6(3):825–835. https://doi.org/10.1021/mp800102c

    Article  CAS  PubMed  Google Scholar 

  293. Speck-Planche A et al (2012) Chemoinformatics in multi-target drug discovery for anti-cancer therapy: in silico design of potent and versatile anti-brain tumor agents. Anticancer Agents Med Chem 12(6):678–685. https://doi.org/10.2174/187152012800617722

    Article  CAS  PubMed  Google Scholar 

  294. Speck-Planche A, Cordeiro M (2017) Fragment-based in silico modeling of multi-target inhibitors against breast cancer-related proteins. Mol Divers 21(3):511–523. https://doi.org/10.1007/s11030-017-9731-1

    Article  CAS  PubMed  Google Scholar 

  295. Dahl GE et al (2021) Multi-task neural networks for QSAR predictions. arXiv:1406.1231

  296. Zakharov AV et al (2019) Novel consensus architecture to improve performance of large-scale multitask deep learning QSAR models. J Chem Inf Model 59(11):4613–4624. https://doi.org/10.1021/acs.jcim.9b00526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Kwon S et al (2019) Comprehensive ensemble in QSAR prediction for drug discovery. BMC Bioinformatics 20(1):521. https://doi.org/10.1186/s12859-019-3135-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Liu SH et al (2018) Bayesian varying coefficient kernel machine regression to assess neurodevelopmental trajectories associated with exposure to complex mixtures. Stat Med 37(30):4680–4694. https://doi.org/10.1002/sim.7947

    Article  PubMed  PubMed Central  Google Scholar 

  299. Maric NP et al (2016) Improving current treatments for schizophrenia. Drug Dev Res 77(7):357–367. https://doi.org/10.1002/ddr.21337

    Article  CAS  PubMed  Google Scholar 

  300. Marunnan SM et al (2017) Development of MLR and SVM aided QSAR models to identify common SAR of GABA uptake herbal inhibitors used in the treatment of schizophrenia. Curr Neuropharmacol 15(8):1085–1092. https://doi.org/10.2174/1567201814666161205131745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Hsu KC, Wang FS (2017) Model-based optimization approaches for precision medicine: a case study in presynaptic dopamine overactivity. PLoS ONE 12(6):e0179575. https://doi.org/10.1371/journal.pone.0179575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Luo M et al (2014) Application of quantitative structure-activity relationship models of 5-HT1A receptor binding to virtual screening identifies novel and potent 5-HT1A ligands. J Chem Inf Model 54(2):634–647. https://doi.org/10.1021/ci400460q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Luo M, Reid TE, Wang XS (2015) Discovery of natural product-derived 5-HT1A receptor binders by cheminfomatics modeling of known binders, high throughput screening and experimental validation. Comb Chem High Throughput Screen 18(7):685–692. https://doi.org/10.2174/1386207318666150703113948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Tan X et al (2020) Automated design and optimization of multitarget schizophrenia drug candidates by deep learning. Eur J Med Chem 204:112572. https://doi.org/10.1016/j.ejmech.2020.112572

    Article  CAS  PubMed  Google Scholar 

  305. Jebapriya S et al (2019) Support vector machine for classification of autism spectrum disorder based on abnormal structure of corpus callosum. Int J Adv Comput Sci Appl. https://doi.org/10.14569/IJACSA.2019.0100965

    Article  Google Scholar 

  306. Gabrielsen M et al (2014) Identification of novel serotonin transporter compounds by virtual screening. J Chem Inf Model 54(3):933–943. https://doi.org/10.1021/ci400742s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Löber S et al (2011) Recent advances in the search for D3- and D4-selective drugs: probes, models and candidates. Trends Pharmacol Sci 32(3):148–157. https://doi.org/10.1016/j.tips.2010.12.003

    Article  CAS  PubMed  Google Scholar 

  308. Sibley DR, Monsma FJ Jr (1992) Molecular biology of dopamine receptors. Trends Pharmacol Sci 13(2):61–69. https://doi.org/10.1016/0165-6147(92)90025-2

    Article  CAS  PubMed  Google Scholar 

  309. Simpson MM et al (1999) Dopamine D4/D2 receptor selectivity is determined by A divergent aromatic microdomain contained within the second, third, and seventh membrane-spanning segments. Mol Pharmacol 56(6):1116–1126. https://doi.org/10.1124/mol.56.6.1116

    Article  CAS  PubMed  Google Scholar 

  310. Wang Q et al (2010) Subtype selectivity of dopamine receptor ligands: insights from structure and ligand-based methods. J Chem Inf Model 50(11):1970–1985. https://doi.org/10.1021/ci1002747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. López L et al (2010) Synthesis, 3D-QSAR, and structural modeling of benzolactam derivatives with binding affinity for the D2 and D3 receptors. ChemMedChem 5(8):1300–1317. https://doi.org/10.1002/cmdc.201000101

    Article  CAS  PubMed  Google Scholar 

  312. Cho DI, Zheng M, Kim KM (2010) Current perspectives on the selective regulation of dopamine D2 and D3 receptors. Arch Pharm Res 33(10):1521–1538. https://doi.org/10.1007/s12272-010-1005-8

    Article  CAS  PubMed  Google Scholar 

  313. Carro L et al (2009) Synthesis and binding affinity of potential atypical antipsychotics with the tetrahydroquinazolinone motif. Bioorg Med Chem Lett 19(21):6059–6062. https://doi.org/10.1016/j.bmcl.2009.09.041

    Article  CAS  PubMed  Google Scholar 

  314. Huber D, Hübner H, Gmeiner P (2009) 1,1’-Disubstituted ferrocenes as molecular hinges in mono- and bivalent dopamine receptor ligands. J Med Chem 52(21):6860–6870. https://doi.org/10.1021/jm901120h

    Article  CAS  PubMed  Google Scholar 

  315. Han LY et al (2008) A support vector machines approach for virtual screening of active compounds of single and multiple mechanisms from large libraries at an improved hit-rate and enrichment factor. J Mol Graph Model 26(8):1276–1286. https://doi.org/10.1016/j.jmgm.2007.12.002

    Article  CAS  PubMed  Google Scholar 

  316. Li H et al (2007) Machine learning approaches for predicting compounds that interact with therapeutic and ADMET related proteins. J Pharm Sci 96(11):2838–2860. https://doi.org/10.1002/jps.20985

    Article  CAS  PubMed  Google Scholar 

  317. Mahe P, Vert J-P (2009) Virtual screening with support vector machines and structure kernels. Comb Chem High Throughput Screen 12(4):409–423. https://doi.org/10.2174/138620709788167926

    Article  CAS  PubMed  Google Scholar 

  318. Cha MY et al (2003) QSAR studies on piperazinylalkylisoxazole analogues selectively acting on dopamine D3 receptor by HQSAR and CoMFA. Bioorg Med Chem Lett 11:1293–1298. https://doi.org/10.1016/s0968-0896(02)00617-x

    Article  CAS  Google Scholar 

  319. Audouze K, Nielsen E, Peters D (2004) New series of morpholine and 1,4-oxazepane derivatives as dopamine D4 receptor ligands: synthesis and 3D-QSAR model. J Med Chem 47(12):3089–3104. https://doi.org/10.1021/jm031111m

    Article  CAS  PubMed  Google Scholar 

  320. Clark R, Abrahamian E (2008) Using a staged multi-objective optimization approach to find selective pharmacophore models. J Comp Aided Mol Design 23:765–771. https://doi.org/10.1007/s10822-008-9227-2

    Article  CAS  Google Scholar 

  321. Salama I et al (2007) Structure–selectivity investigations of D2-like receptor ligands by CoMFA and CoMSIA guiding the discovery of D3 selective PET radioligands. J Med Chem 50(3):489–500. https://doi.org/10.1021/jm0611152

    Article  CAS  PubMed  Google Scholar 

  322. Zhang J et al (2012) A two-step target binding and selectivity support vector machines approach for virtual screening of dopamine receptor subtype-selective ligands. PLoS ONE 7(6):e39076. https://doi.org/10.1371/journal.pone.0039076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Tsoumakas GK, Vlahavas I (2010) Mining multi-label data. In: Maimon O, Rokach L (eds) Data mining and knowledge discovery handbook. Springer, New York, pp 667–685

    Google Scholar 

  324. Ma XH et al (2010) Virtual screening of selective multitarget kinase inhibitors by combinatorial support vector machines. Mol Pharm 7(5):1545–1560. https://doi.org/10.1021/mp100179t

    Article  CAS  PubMed  Google Scholar 

  325. Tsoumakas G, Katakis I (2007) Multi-label classification: an overview. Int J Data Warehousing Min (IJDWM) 3(3):1–13

    Article  Google Scholar 

  326. Schietgat L et al (2010) Predicting gene function using hierarchical multi-label decision tree ensembles. BMC Bioinformatics 11(1):2. https://doi.org/10.1186/1471-2105-11-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Boeckler F, Gmeiner P (2006) The structural evolution of dopamine D3 receptor ligands: structure–activity relationships and selected neuropharmacological aspects. Pharmacol Ther 112(1):281–333. https://doi.org/10.1016/j.pharmthera.2006.04.007

    Article  CAS  PubMed  Google Scholar 

  328. Zhang J et al (2009) Dopamine D1 receptor ligands: where are we now and where are we going. Med Res Rev 29(2):272–294. https://doi.org/10.1002/med.20130

    Article  CAS  PubMed  Google Scholar 

  329. Herm L et al (2009) N-Substituted-2-alkyl- and 2-arylnorapomorphines: novel, highly active D-2 agonists. Bioorg Med Chem 17:4756–4762. https://doi.org/10.1016/j.bmc.2009.04.047

    Article  CAS  PubMed  Google Scholar 

  330. Gueiffier C, Gueiffier A (2006) Recent progress in medicinal chemistry of D-4 Agonists. Curr Med Chem 13:2981–2993. https://doi.org/10.2174/092986706778521841

    Article  PubMed  Google Scholar 

  331. Overington J (2009) ChEMBL. An interview with John Overington, team leader, chemogenomics at the European Bioinformatics Institute Outstation of the European Molecular Biology Laboratory (EMBL-EBI). Interview by Wendy A. Warr. J Comput Aided Mol Des 23(4):195–198. https://doi.org/10.1007/s10822-009-9260-9

    Article  CAS  PubMed  Google Scholar 

  332. Durrant JD, McCammon JA (2010) Computer-aided drug-discovery techniques that account for receptor flexibility. Curr Opin Pharmacol 10(6):770–774. https://doi.org/10.1016/j.coph.2010.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Sun H (2008) Pharmacophore-based virtual screening. Curr Med Chem 15(10):1018–1024. https://doi.org/10.2174/092986708784049630

    Article  CAS  PubMed  Google Scholar 

  334. Sprous DG et al (2010) QSAR in the pharmaceutical research setting: QSAR models for broad, large problems. Curr Top Med Chem 10(6):619–637. https://doi.org/10.2174/156802610791111506

    Article  CAS  PubMed  Google Scholar 

  335. Willett P (2011) Similarity searching using 2D structural fingerprints. Methods Mol Biol 672:133–158. https://doi.org/10.1007/978-1-60761-839-3_5

    Article  CAS  PubMed  Google Scholar 

  336. Talevi A et al (2009) Combined virtual screening strategies. Curr Comput Aided Drug Des 5(1):23–37. https://doi.org/10.2174/157340909787580854

    Article  CAS  Google Scholar 

  337. Fulp J et al (2018) Structural insights of benzenesulfonamide analogues as NLRP3 inflammasome inhibitors: design, synthesis, and biological characterization. J Med Chem 61(12):5412–5423. https://doi.org/10.1021/acs.jmedchem.8b00733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Chen Z-D et al (2020) A novel artificial intelligence protocol to investigate potential leads for Parkinson’s disease. RSC Adv 10(39):22939–22958. https://doi.org/10.1039/D0RA04028B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Nedaie A, Najafi AA (2018) Support vector machine with Dirichlet feature mapping. Neural Netw 98:87–101. https://doi.org/10.1016/j.neunet.2017.11.006

    Article  PubMed  Google Scholar 

  340. Speybroeck N (2012) Classification and regression trees. Int J Public Health 57(1):243–246. https://doi.org/10.1007/s00038-011-0315-z

    Article  CAS  PubMed  Google Scholar 

  341. Carpenter KA, Huang X (2018) Machine learning-based virtual screening and its applications to Alzheimer’s drug discovery: a review. Curr Pharm Des 24(28):3347–3358. https://doi.org/10.2174/1381612824666180607124038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Kumar A, Srivastava G, Sharma A (2017) A physicochemical descriptor based method for effective and rapid screening of dual inhibitors against BACE-1 and GSK-3β as targets for Alzheimer’s disease. Comput Biol Chem 71:1–9. https://doi.org/10.1016/j.compbiolchem.2017.09.001

    Article  CAS  PubMed  Google Scholar 

  343. Chen Y et al (2015) Discovery of new acetylcholinesterase inhibitors with small core structures through shape-based virtual screening. Bioorg Med Chem Lett 25(17):3442–3446. https://doi.org/10.1016/j.bmcl.2015.07.026

    Article  CAS  PubMed  Google Scholar 

  344. Masand N et al (2015) Heterocyclic secretase inhibitors for the treatment of Alzheimer’s disease: an overview. Cent Nerv Syst Agents Med Chem 17(1):3–25. https://doi.org/10.2174/1570159X13666151029105752

    Article  Google Scholar 

  345. Gupta SP, Patil VM (2020) Recent studies on design and development of drugs against Alzheimer’s disease (AD) based on inhibition of BACE-1 and other AD-causative agents. Curr Top Med Chem 20(13):1195–1213. https://doi.org/10.2174/1568026620666200416091623

    Article  CAS  PubMed  Google Scholar 

  346. Bhardwaj M et al (2019) Anti-acetylcholinesterase derivatives: a privileged structural framework in drug discovery to treat Alzheimer’s disease. Curr Enzyme Inhibition 15:8–21. https://doi.org/10.2174/1573407215666190111150241

    Article  CAS  Google Scholar 

  347. Ambure P et al (2019) Identifying natural compounds as multi-target-directed ligands against Alzheimer’s disease: an in silico approach. J Biomol Struct Dyn 37(5):1282–1306. https://doi.org/10.1080/07391102.2018.1456975

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anand Gaurav or Vaishali M. Patil.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest, financial or otherwise.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, V., Gaurav, A., Masand, N. et al. Artificial intelligence and machine-learning approaches in structure and ligand-based discovery of drugs affecting central nervous system. Mol Divers 27, 959–985 (2023). https://doi.org/10.1007/s11030-022-10489-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10489-3

Keywords

Navigation