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Abstract
Malaria accounts for over two million deaths globally. To flatten this curve, there is a need to develop new and high potent 
drugs against Plasmodium falciparum. Some major challenges include the dearth of suitable animal models for anti-P. 
falciparum assays, resistance to first-line drugs, lack of vaccines and the complex life cycle of Plasmodium. Gladly, newer 
approaches to antimalarial drug discovery have emerged due to the release of large datasets by pharmaceutical companies. 
This review provides insights into these new approaches to drug discovery covering different machine learning tools, which 
enhance the development of new compounds. It provides a systematic review on the use and prospects of machine learning 
in predicting, classifying and clustering  IC50 values of bioactive compounds against P. falciparum. The authors identified 
many machine learning tools yet to be applied for this purpose. However, Random Forest and Support Vector Machines have 
been extensively applied though on a limited dataset of compounds.
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Introduction

New drug compounds active against pathogenic organisms 
or parasites are discovered through a very rigorous pro-
cess involving many stages and huge human and material 
resources input. Besides, drug discovery takes a long time 
(up to 12–15 years), making it difficult to introduce new 
drugs to combat emerging or resistant strains of existing 
diseases [1, 2]. This process involves the identification of 
candidates, synthesis, characterization, validation, optimiza-
tion, screening and assays for therapeutic efficacy. Since the 
introduction of Artificial Intelligence (AI), many processes 
have been made easier and faster than before, because of the 
ability of the models utilized to handle an unprecedented 
cache of data within a very short time [3]. Thus, the applica-
tion of AI to drugs and development is a welcome develop-
ment as it is expected to shorten the time to market many 
drug candidates found to be active against parasites and 
pathogenic organisms. A subunit of AI known as Machine 
Learning (ML) has been widely applied to Drug Discovery 
and Development (DDD) [4].

DDD pipelines are long, complex and depend on numer-
ous factors. ML approaches provide a set of tools that can 
improve discovery and data-driven decision-making for 
well-specified questions with abundant, high-quality data 
[5]. The growth of High Throughput Screening (HTS) data 
has increased the importance of ML tools at virtually all 
phases of drug discovery. ML has the potential to speed up 
the process and reduce failure rates in DDD [5]. These pat-
terns form the basis for building models that are effectively 
applied to prioritize compounds for the subsequent phases. 
ML techniques can assist in the identification of false leads 
at an early stage and also facilitate the understanding of 
structure–activity relationships (SARs) [6].

This paper presents a systematic review on the use and 
prospects of ML in predicting, classifying and clustering 
 IC50 values of compounds active against P. falciparum. 
Fundamentally, ML is the practice of using classification, 
regression or clustering algorithms to describe data, learn 
from it and then decide or predict about the future state of 
any new dataset. Classification is the process of recognizing, 
understanding and grouping ideas and objects into preset 
categories or sub-populations [2]. Using pre-categorized 
input training datasets, ML uses a variety of algorithms to 
classify future datasets as shown in Fig. 6A. Classification 
algorithms are predictive calculations used to assign data 
to preset categories by analyzing sets of training data [7]. 
Predictive computational models enable one to understand 
the correlation between descriptors and the biological prop-
erties (activities), that is, to computationally screen large 
molecular datasets thereby offering a possibility to improve 
the hit rate and thereby reducing the overall costs of drug 
discovery [8]. Due to the constant emergence of parasitic 
resistance to the current antimalarial drugs, the discovery 
of new drug candidates is a major global health priority [9, 
10]. Previous works in ML-based tropical diseases research, 
including malaria and other diseases, have shown effec-
tiveness in drug discovery [11]. In previous studies also, 
several algorithms have been employed in classifying the 
 IC50 value of compounds against P. falciparum including 
Decision Tree (DT), K-Nearest Neighbors (KNN), Artificial 
Neural Networks (ANN), PLS Discriminant Analysis (PLS-
DA). These approaches have shown statistical significance 
in performance [12].

Malaria as a global challenge

Global burden of malaria

Malaria remains one of the most life-threatening diseases 
caused by the blood-borne protozoan parasites of the genus 
Plasmodium. Five species of Plasmodium are known to 
cause one form of infection or the other to humans across 
the globe [13, 14]. According to the World Health Organisa-
tion (WHO), P. falciparum is the most deadly, most common 
causative agent and also the most prevalent species in sub-
Saharan Africa. Southeast Asia, Western Pacific, Eastern 
Mediterranean and Latin America are currently burdened 
by P. vivax [15]. Malaria due to P. ovale leads to life-threat-
ening symptoms but was previously considered benign. P. 
malariae, like P. ovale, malaria is not severe in humans, 
while P. knowlesi is the most prevalent species in Southeast 
Asia. Symptoms of malaria vary from species to species; 
however, paroxysms, anemia and headaches are common in 
all cases of human malaria infection. P. falciparum results 
in respiratory distress, deep capillaries blockade, cerebral 
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malaria and neurological disorders and eventual death, if 
untreated [16]. Malaria is transmitted through the saliva of 
the female anopheles mosquitoes. The transmission cascade 
is complex and involves both sexual and asexual stages in 
mosquitoes and humans [14].

The global trends in malaria incidences show some-
what dramatic, complex and highly unpredictable episodes. 
Malaria is still endemic in 87 countries with 29 countries 
accounting for about 95% of all recorded cases [15]. The 
leading most endemic countries—Nigeria, the Democratic 
Republic of Congo (DRC), Uganda, Mozambique and 
Niger—accounted for about 51% of all cases globally [15]. 
The WHO estimated that 409,000 malaria deaths occurred 
globally in 2019; 67% of which were recorded in under 
5 year old children, 95% in 31 countries and 23% in Nigeria 
alone [17]. Despite the global burden of malaria, it is esti-
mated that over a billion cases and millions of death have 
been averted in the last 20 years. A total of 82% of cases and 
94% of deaths were averted in sub-Saharan Africa alone. In 
most cases, pregnant women and children under 5 years are 
the worst hit [18, 19]. According to the WHO report, over 
12 million pregnancies were exposed to malaria infection 
during pregnancy; Central Africa, West Africa as well as 
East and Southern Africa recorded 40, 39 and 24% preva-
lence of exposure to malaria, respectively, in 2019 [15]. This 
high prevalence of exposure results in low birth weight in 
most cases. To save the future, there is a need to save chil-
dren under 5 years and pregnant women from the menace 
of malaria.

Malaria prevention and control 
through investments in research

To prevent malaria and checkmate re-infection, several pro-
grams were designed in the past. One of such programs is 
the High Burden High Impact (HBHI) approach launched by 
the WHO in 2018 [15]. Though the launching and/or imple-
mentation was disrupted in some high burden countries due 
to the ravaging COVID-19 pandemic, these programs have 
been fruitful in some cases. For instance, from 2000 to 
2019, the prevalence of P. falciparum malaria in Cambodia, 
Myanmar, Vietnam, Thailand and China was reduced by 
97%, while countries previously certified malaria-free did 
not have any transmission or re-infection [17]. However, a 
global outlook showed that 20 more countries were added 
to the list of endemic countries within the period under 
review. Unfortunately, there are also disjointed data on sub-
Saharan Africa’s improvement, but reports suggest a total 
of 215 million cases in 2019 up from 204 million in 2000 
[20]. However, malaria case incidence per 1000 population 
at risk reduced from 365 in 2000 to 225 in 2019 further 
reflecting the complexity in demographic data in such a 
rapidly growing population. Notwithstanding the effect of 

the COVID-19 pandemic, the HBHI approach has kicked 
off in 10 of 11 malaria-endemic countries in sub-Saharan 
Africa. The impact, however, is yet to be felt region-wide as 
the number of cases in the 11 HBHI countries in 2019 (156 
million) was similar to 2018 (155 million). Expectedly, the 
WHO Global Malaria Programme (GMP) foresees positive 
outcomes from this approach shortly following an aggressive 
commitment to adhere to the evidence-based recommenda-
tions developed by the WHO [15, 21].

More readily available options for malaria prevention 
and eradication are in the form of investments in malaria 
programs and research as contained in the Global Technical 
Strategy (GTS). The strategy is aimed at reducing mortality 
rate and malaria case incidence by 40, 75 and 90% in 2020, 
2025 and 2030, respectively, which, at the time of launching 
in 2015, did not take into consideration the potential disrup-
tion due to the COVID-19 pandemic. Several players such as 
Global Fund as well as Melinda and Gates Foundation had 
invested immensely in malaria programs for research and 
development of malaria drugs, vaccines, diagnostic tools and 
vector control products. Some of the investments had yielded 
what today have become milestones in malaria treatments 
and prevention.

Current malaria control and treatments strategies

Chemoprevention and chemotherapy are the two major 
approaches known to reduce the burden of malaria in 
humans. Chemoprevention involves vector control (indoor 
residual spraying and insecticide-treated mosquito nets), 
which is recommended by the WHO to prevent malaria 
transmission. Indoor Residual Spraying (IRS) with insecti-
cides is a powerful vector control approach, which involves 
spraying inside houses with insecticide once or twice a 
year. Sleeping under Insecticide-Treated Nets (ITN) reduces 
malaria cases by providing insecticidal effects and physical 
barriers to mosquitoes [22]. These chemopreventive meas-
ures are limited in application, coverage and effectiveness 
thus the reliance on the chemotherapeutic approach. Ever 
since the discovery and development of quinine from the 
Peruvian Amazon Cinchona species during the nineteenth 
century, several antimalarial drugs have come into exist-
ence for chemotherapeutic purposes [23]. The use of drugs 
for this purpose depends on prevalent Plasmodium species, 
demography, age, sex and the affected region. For example, 
travelers rely on chemoprophylaxis for the prevention of 
malaria. The WHO has recommended a minimum of three 
doses of intermittent sulfadoxine/pyrimethamine for preg-
nant women in endemic regions. For children under 5 years 
in the endemic region, during the season of high transmis-
sion, the administration of monthly courses of amodiaquine 
in addition to sulfadoxine/pyrimethamine is recommended 
[15]. Currently, ACTs have remained the first-line treatment 
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for malaria. These ACTs and other drugs are currently in use 
across different WHO regions, and their effectiveness has 
brought malaria prevention and treatment to where we cur-
rently are; a lot more still needs to be done to close the gap.

The previous and ongoing antimalarial discovery

Natural‑products inspired approach

Plant-based products have shown promising potential 
as antimalarial agents and are the source of the two most 
important antimalarial drugs currently in use. Quinine, 
the first antimalarial agent, was characterized in 1820 by 
French Chemists. It was isolated from the bark of Peruvian 
Amazon Cinchona calisaya and C. succirubra (Rubiaceae) 
for the treatment of P. falciparum malaria [24]. Despite the 
continual use of quinine in chemotherapy, its effectiveness 
is hampered by the toxicity when used for a long period. 
Another plant-based compound still in use is artemisinin, 
a sesquiterpene endoperoxide from Artemisia annua of the 
Asteraceae family. Artemisinin, an unusual endoperoxide 
sesquiterpene lactone, was isolated by Chinese Scientists 
in 1972 and has been in use against chloroquine-resistant 
P. falciparum [24]. Though an alternative to quinine, some 
problems are associated with artemisinin such as recrudes-
cence and high cost. The search for the ideal antimalarial 
drugs has continued, and several other compounds with anti-
malarial activity isolated from plants have been reviewed 
extensively [25–34].

Synthetic and semi‑synthetic approach

Following the characterization of Cinchona alkaloid, qui-
nine in 1820 for the treatment of complicated P. falciparum 
malaria, several other 4-aminoquinolines were synthesized 
based on the quinine ring nucleus. One of the 4-aminoqui-
nolines was chloroquine, which is cheap and less toxic and 
has been a component of the global malaria eradication cam-
paign. However, P. falciparum chloroquine-resistant strains 
were discovered in Latin America and Southeast Asia and 
have spread to most of the WHO endemic regions. Like qui-
nine, artemisinin modification has led to the synthesis of 
several high potent analogues for further development [35]. 
In a study, some compounds primarily sulfonamides sourced 
from the Glaxo-Smithkline (GSK) selectively inhibited the 
in vitro growth of P. falciparum at the submicromolar level 
 (IC50, µM, 0.16–0.89). The inhibition, however, did not cor-
relate with the known carbonic anhydrase enzyme inhibi-
tion by primary sulfonamides [36]. SAR was established 
for 1,2,3-triazole-naphthoquinone analogues synthesized by 
a Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition reac-
tion against chloroquine-sensitive P. falciparum F-32 Tan-
zania [37]. It was found that the nature of substituents on the 

aromatic ring greatly influenced the antiprotozoal activity 
and further confirmed that the enzyme PfDHODH was the 
target of these compounds. Violacein, an indole pigment 
synthetically engineered from E. coli, was found to signifi-
cantly affect the P. falciparum actin cytoskeleton [38]. Many 
traditional methods of antimalarial drug discovery such as 
optimization of existing therapy, analogue of existing ther-
apy, drug resistance reversers and active compounds against 
new targets are known. These approaches have been replaced 
by modern methods such as target and ligand based.

The computer‑aided drug design approach

Traditionally, the High Throughput Screening (HTS) method 
is used in drug discovery and it involves extensive experi-
mental testing of a library of compounds against selected 
targets. It is a time-consuming and very expensive approach 
to drug discovery. The computational (virtual) approach has 
replaced HTS and involves in silico screening of large data-
sets for hit identification and subsequent design and opti-
mization. This approach also enables the identification of 
compounds yet to be synthesized or commercially available 
[34, 39].

(A) Ligand‑based approach

The ligand-based approach in drug discovery is designed to 
retrogressively analyze biological activity data, and different 
ligand-based approaches have been developed and validated 
to understand the nature of structural or chemical param-
eters involved in the antimalarial activity. Previous studies 
had applied Quantitative Structure–Activity/Property Rela-
tionship (QSAR/QSPR) in understanding the contribution 
of different structural features to the antimalarial activities 
and further predicted the activities of yet-to-be synthesized 
molecules [40–42]. Specifically, the applicability of the 
ligand-based approach has been tested on several synthetic 
prodiginines, 3-carboxyl-4(1H)-quinolone analogues, side-
chain modified 4-amino-7-chloroquinolines, artemisinin 
derivatives, 7-substituted-4-aminoquinoline derivatives, 
4-anilinoquinolines, quinine-based active agents as well 
as several natural products [34]. The flowchart of build-
ing a typical 3D-QSAR model is shown in Fig. 1. Typi-
cally, the low-energy conformers of a dataset for building 
a robust QSAR/QSPR are subjected to alignment based 
on the biophore hypothesis. This is followed by modeling, 
internal validation of the model and prediction of untested 
compounds. The approach (Fig. 1) also provides contouring 
from the model’s coefficient of regression for the futuristic 
design of potential new bioactive molecules or modification 
of available molecules for a better activity. This approach 
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becomes more relevant where drug targets are not available 
or unknown.

(B) Structure‑based approach

The structure-based approach involves a drastic reduction 
in the number of compounds in chemical space to a few 
hits having properties suitable for interacting with the tar-
get receptor. In this approach, a 3D structure of the target 
or a homologous protein must be known, several of which 
are available and freely accessible at the protein data bank 
(PDB, pdb.org). The workflow for the structure-based 
approach is shown in Fig. 2.

The first and critical step involved in the structure-
based approach is the identification and validation of 
targets involved in the pathogenesis of malaria. Several 
targets have been identified in Plasmodium species for 
structure-based drug design as shown in Fig. 2 [43–48]. 
These targets were routinely used in the identification of 
single-target therapy where one antimalarial drug is used 
throughout malaria treatment. This form had led to the 
emergence of resistance. Recently, a multi-targeting hybrid 
approach that involves the modulation of several targets by 
one compound has been developed [49–53]. This involves 
artemisinin-based hybrid, quinoline-based hybrids, pacli-
taxel-based hybrids and target-based approaches via HTS 
in hybrid design [34].

Fig. 1  Workflow for ligand-
based drug discovery (LMD—
low mode dynamic; AM1—
Austin model 1 Hamiltonian). 
Four major steps: dataset pre-
treatment, alignment, modeling 
and visualization are important 
here

Fig. 2  Workflow for a structure-
based drug discovery approach 
(binding modes and mecha-
nisms of molecules to specific 
amino acid residues of the 
receptor targets are obtained in 
this approach)
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The gap in malaria prevention and treatment

Despite the plethora of approved antimalarial drugs, natural 
products-inspired and synthetic compounds so far identified 
as antiplasmodial, malaria still ranks closely with tuberculo-
sis and HIV/AIDS. Various malaria prevention approaches 
have suffered some setbacks in recent years. Even though 
over 46% of Africans were protected from malaria by ITN 
in 2019, ITN coverage was stopped in 2016. More so, IRS 
protection has consistently declined from 5% in 2010 to 2% 
in 2019 across many WHO regions. The decline in protec-
tion was attributed to resistance developed by Plasmodium 
to pyrethroid IRS, which has forced countries to switch to 
more expensive insecticides.

Another gap widely documented is the issue of resistance 
to standard antimalarial drugs. The resistance of Plasmo-
dium to chemotherapeutic agents was first observed in the 
1950s and 1960s in chloroquine and sulfadoxine/pyrimeth-
amine, thus reversing initial gains made in malaria control 
efforts [54, 55]. Similarly, partial resistance to artemisinin 
due to PfKelch13 mutations has been reported and it is still 
under study. These gaps have further been widened by the 
emergence of the severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV2), causing COVID-19, which had 
spread to all malaria-endemic countries resulting in over 30 
million cases and 1 million deaths as of March 2021 [15].

Worse still, no effective vaccine is available at the 
moment to fight malaria in humans. Many collaboration 
among global health funding bodies to develop vaccine has 
not yielded the desired result. Specifically, a vaccine against 
P. falciparum, RTSS/AS01E is developed and has shown 
40% effectiveness in preventing malaria infection. While 

efforts to develop a vaccine against Plasmodium species 
are ongoing, a new strategy is needed to tackle the ever-
changing landscape in malaria infection and treatment. One 
of such strategies is the use of ML tools.

The role of AI in malaria drug discovery

The need for the discovery of new malaria drugs cannot be 
overemphasized; this is because the P. falciparum parasites 
have successfully developed resistance against many drugs 
that are available [54, 55]. Malaria drug discovery involves 
the following stages: (1) target selection and validation; (2) 
compound screening and lead optimization; (3) pre-clinical 
studies and (4) clinical trials. Applying these steps in the 
traditional approach to drug discovery is very expensive 
and requires a lot of time; therefore, in recent times, drug 
discovery steps have focused on computational approaches 
[56]. The computational approaches to drug discovery use 
Artificial Intelligence techniques. In this section, we shall 
explore various Artificial Intelligence techniques in various 
steps of malaria drug discovery. Table 1 summarizes vari-
ous AI techniques used in various stages of malaria drug 
discovery [56].

In another study, other researchers presented various AI 
and ML techniques used in various stages of drug discovery, 
together with the methods and level of accuracy [72]. This 
is summarized in Table 2.

The same study in [72] also summarized various prob-
lems at various stages of drug discovery that various novel 
approaches to AI have been used to solve, and presented the 
summary (Fig. 3).

Table 1  Different AI tools used in various stages of malaria drug discovery

S/N AI tools name Description References

1 Chemputer Structured format for procedure documentation for chemical synthesis [57]
2 DeepChem Python-based AI platform for the prediction of drug discovery tasks [58]
3 DeepNeuralNet-QSAR Use for prediction of molecular activity [59]
4 DeepTox Use for prediction of toxicity [60]
5 DeltaVina A scoring feature for protein–ligand binding affinity rescoring [61]
6 Hit Dexter ML-based molecule prediction models for molecules that could react to biochemical assays [62]
7 Neural Graph Fingerprints Predicts properties of novel molecules [63]
8 NN Score Used for protein–ligand interaction and neural network-based scoring mechanism [64]
9 ODDT Cheminformatic and molecular toolkit [65]
10 ORGANIC Method for molecular generation to build molecule with desired characteristics [66]
11 PotentialNet Ligand-binding prediction of affinity based on a convolution neural network (CNN) [67]
12 PPB2 Polypharmacology prediction [68]
13 REINVENT Using RNN (recurrent neural network) and RL (reinforcement learning), molecular de novo 

architecture
[69]

14 SCScore Scoring feature for the assessment of molecular synthesis complexity [70]
15 SIEVE-Score An improved method of virtual screening based on structure via interaction energy-based learning [71]
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ML approach

ML is an aspect of Artificial Intelligence (AI), which helps 
you to acquire knowledge through experience. Experience 
in this context means data, while knowledge in this con-
text means the ability to solve a problem, which can be a 
prediction of the continuous  IC50 values of chemical com-
pounds against P. falciparum, prediction of the bioactive 
class of chemical compounds against P. falciparum, etc. 
The experience here is the use of a chemical dataset, with 
various descriptors to predict the anti-Plasmodium. ML 
tasks can be classified as a prediction of continuous val-
ues (regression), prediction of classes (classification) and 
grouping of similar data items (clustering).

ML as a clustering tool

The clustering algorithm is one of the unsupervised ML 
algorithms, which identifies groups of similar data in 
a dataset [73]. In the case of the molecular compounds 

dataset, clustering can be used to identify compounds that 
have similar chemical properties. Clustering dataset into 
groups of similar items can take any of the following:

(a) Exclusive clustering: The dataset belongs to only one 
group.

(b) Overlapping clustering: The dataset can belong to more 
than one group.

(c) Probabilistic clustering: The dataset belongs to any 
group with a known probability.

(d) Hierarchical clustering: The dataset is split into groups 
of similar data in a hierarchical manner. For example, 
the dataset can be split into two main groups, male and 
female. In each main group, it is refined into subgroups, 
like age groups, and each age group can be split into 
smaller subgroups, etc.

One classic ML clustering algorithm that is based on 
Euclidean distance is the K-means clustering algorithm. 
Figure 4 illustrates the exclusive clustering, while Table 3 
shows probability clustering.

Table 2  An overview of some studies that used AI for drug discovery [72]

Technique Application Method Accuracy

Deep learning Drug screening Using interactions between proteins and their corresponding ligands as DeepTox 
input values to predict drug toxicity

Very accurate

Neural networks Drug design Using a deep learning neural network to predict the structures of different proteins Very accurate
Reinforcement learning Drug screening Using a machine learning approach to finding an inhibitor molecule for a specific 

protein (DDR1)
Accurate

Neural networks Drug design Used artificial neural networks and deep learning to predict interactions between 
drugs and their targets

Very accurate

Neural networks Drug design Used neural networks which were integrated into a neural computer to design new 
small organic molecules

Highly accurate

Fig. 3  Outcome of different 
novel approaches to AI

AI in 
Polypharmacology

AI in drug design

AI in drug
screening

AI in drug 
repurposing

Predicting drug-protein
Interactions

AI in de-novo drug design

Predicting the 3-D
of the target protein

Prediction of bioactivity

Prediction of toxicity

Predicting of
Physicochemical properties

Novel approaches of AI
in drug discovery
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The importance of clustering compounds by structural 
or property similarity cannot be overemphasized. It pro-
vides a powerful approach to correlating compound fea-
tures with bioactivity [7]. It can also be used for diversity 
analysis, for identifying compound redundancies and other 
biases in compound libraries [7]. Clustering has been used 
as an ML tool in analyzing molecular compound datasets 
for  IC50 values against P. falciparum. [3], extracted the 
three most common targets from MacrolactoneDB, which 
are P. falciparum (malaria) [3], Hepatitis C and T-cells. 
Cheminformatics analysis was conducted on them and an 
ML workflow was developed. Unsupervised hierarchical 
clustering was conducted using Euclidean distance. The 
purpose or basis of the clustering in [3] was to be able to 
identify compounds that share similar chemical properties 
but different structural fragments, which resulted in differ-
ent  IC50. Furthermore, clustering could help point to the 
importance or relevance of descriptors, based on whether 
they can cluster compounds with similar activities. The 
result of the clustering in [3] shows that the P. falciparum 
dataset has two clusters, which suggests two groups of 
compounds; each group shares similar chemical proper-
ties, but different structural fragments, which contributed 
to different  IC50 values. The relationship between this clus-
tering results in [3] and different structural fragments is 
the concept of Activity Cliff. This concept of Activity Cliff 
is very useful as a curative tool when preparing chemi-
cal datasets that have activity on P. falciparum. It can be 
used to separate chemical compounds with similar chemi-
cal properties but different  IC50 values on P. Falciparum, 

thereby leading to a high-quality chemical dataset. This 
was demonstrated in the study, using a clustering metric 
for similarity measurement (Tanimoto) of 0.87 and  IC50 
difference measure of 11.99 nM. This is called an Activity 
Cliff, because there is a great disparity between the  IC50 of 
the compounds, despite having similar structures [74]. The 
same clustering metric (Tanimoto) was used to measure 
the similarity between the training data and test data, to 
apply a semi-supervised ML framework [75]. However, 
another study [76] used the similarity measure (Tanimoto 
coefficient) that is greater than different threshold values 
for different fingerprint similarity searching methods, to 
search for compounds whose  IC50 against P. falciparum 
falls within specific values [76]. On the other hand, to 
avoid selection bias, clustering was used to establish even 
the assignment of chemical features into a training set and 
test set [77, 78]. This was done by dividing the molecules 
into clusters of ten molecules using hierarchical clustering. 
However, to select the most appropriate base model to be 
used to analyze a given chemical dataset, clustering was 
used to accomplish this [79]. To visualize the result of the 
clustering, the authors generated a chemical network of 
the compounds using Gephi. Each node of the chemical 
network was a micro-lactone ligand.

Activity Cliff

Activity Cliff is related to clustering compounds with 
similar structural properties. It has been defined as a pair 
of compounds with similar structural property, but with 
different potency (activity) against a known target [40]. 
Activity Cliff plays an important role in medicinal chem-
istry and chemo-informatics, because, in structure–activ-
ity relationship analysis and optimization, small chemical 
modification can be deduced from cliffs with high value 
in magnitude [40]. Furthermore, as part of the curative 
process, an activity cliff has been used to prepare a chemi-
cal dataset by removing pairs of compounds with high 
structural similarity but unexpectedly high activity differ-
ence [79]. This is to ensure that pairs of compounds with 
high structural similarity have similar activity on the target 
when using the dataset for QSAR. Based on the defini-
tion of activity cliff, four key components of activity cliff 
can be identified, which are: only a pair of compounds is 
considered, both compounds are active against the same 
known target, a structural similarity criterion must be 
specified, and potency difference criterion must be estab-
lished [40]. Tanimoto value is the commonly used measure 
for measuring the structural similarity index between two 
compounds, while  IC50 or Ki can be used for the potency 
measure of the two compounds.

Fig. 4  Example of exclusive clustering

Table 3  Example of probabilistic clustering

Instances Cluster 1 Cluster 2 Cluster 3

A 0.4 0.1 0.5
B 0.1 0.8 0.1
C 0.3 0.3 0.4
D 0.1 0.1 0.8
E 0.4 0.2 0.4
F 0.1 0.4 0.5
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Clustering algorithm for chemical compound datasets

Clustering has been used in the pharmaceutical industry to 
create different training datasets and test datasets as well 
[80], though the most commonly used clustering algorithm 
is Jarvis–Patrick’s (J-P) clustering algorithm for clustering 
molecules of a chemical dataset. However, it has its asso-
ciated problems, which include: it produces clusters that 
are either too large, in terms of the number of molecules in 
the clusters, but heterogeneous (small Tanimoto similarity 
value). It also produces clusters that are too small in terms 
of the number of molecules in the clusters but homogeneous 
(high Tanimoto similarity value) [80]. Based on these prob-
lems, other researchers [80] developed another clustering 
algorithm, which was able to create homogeneous clusters 
(high Tanimoto similarity value) and, at the same time, deal 
with either too small or too large molecules in each cluster. 
The clustering algorithm that he developed follows these 
three steps: (a) generation of daylight fingerprints (ASCII), 
(b) identification of potential cluster centroid and (c) mutual 
exclusion clustering.

The first step, Generation of Daylight Fingerprints, gener-
ates Fingerprints for each molecule in ASCII format in form 
of 0 and 1, using Daylight software, while the second step 
identifies the central molecule in each cluster (centroid). To 
determine the centroid, step 2 uses the specified Tanimoto 
similarity value to determine the number of neighbors of 
each molecule and arranges it in descending order, so that 
the molecule with the largest number of neighbors will be on 
top of the list, which will be the first centroid. Finally, step 3 
uses different iteration to determine the members of various 
clusters. It does this by computing the pairwise Tanimoto 
similarity value of the centroid molecule and other mol-
ecules. If the pairwise Tanimoto similarity value is greater 
than or equal to the Tanimoto value that is used for the clus-
tering, the molecule is taken as a member of the cluster and 
removed from the list. The next molecule in the list is taken 
as a centroid, the iteration continues. Any molecule that is 
still in the list at the end of the process is regarded as a 

singleton. The result of the clustering algorithm is illustrated 
in Fig. 5.

In Fig. 5, the members of cluster A have been collected 
together based on the pairwise Tanimoto value with centroid 
molecule colored red. Similarly, the members of cluster B 
have been collected together based on the pairwise Tanimoto 
value with the centroid molecule colored green. The mol-
ecule colored yellow is the singleton [73].

However, most clustering algorithms have been imple-
mented as software tools. One such software tool is Chem-
Mine Tools, which is an online portal with the capability for 
some cheminformatic functions, like search, visualization, 
clustering, etc. [7]. ChemMine Tools provides five major 
functionalities, which include: data visualization, structure 
comparisons, similarity searching, compound clustering and 
prediction of chemical properties [7]. The similarity toolbox 
of ChemMine implements an algorithm that uses atom pairs 
as a structural descriptor and the widely used Tanimoto coef-
ficient as a similarity measure to compute similarity meas-
ures among compounds. Another feature of ChemMine is 
that it allows the use of other similarity coefficients like 
Tversky or Dice [7]. Furthermore, the clustering toolkit of 
ChemMine implements three clustering algorithms, which 
are: hierarchical clustering, Multi-Dimensional Scaling 
(MDS) and binning clustering [7]. Clustering by structural 
similarity requires that the similarity measure be computed 
by first generating the atom pair descriptors (features) for 
each compound, which is used to calculate the similarity 
matrix using the Tanimoto coefficient. While hierarchical 
clustering organizes the compounds by similarity using a 
tree structure, the MDS outputs the similarity information 
in a scatter plot. Though both methods do not assign the 
compounds to discrete similar groups, the assignment to a 
similar group is done later in the clustering process, using 
various post-processing approaches, like the tree cutting 
method [7]. On the other hand, the binning method clus-
tering provides the clustering groups using a user-defined 
similarity measure cut-off. The method allows the user to 
choose a similarity cut-off; afterwards, compounds that have 
a similarity measure that is greater than or equal to the cho-
sen similarity value will be assigned into groups [7].

In addition to ChemMine as a software tool for analyz-
ing chemical compounds dataset, there are other software 
tools with additional clustering functionalities; one of such 
is ChemmineR [81].

ML as a classification tool

A review of relevant literature showed some studies that 
applied ML approaches to predict activity against P. falci-
parum. In this section, relevant classification models were 
reviewed; six reviews identified SVM as the best classifica-
tion tool, four report identified Random Forest as the best 

Cluster A

Singleton

3

Cluster B

1

2

Fig. 5  Result of the clustering algorithm



3456 Molecular Diversity (2022) 26:3447–3462

1 3

modeling tools while the other eleven modeling tools were 
also identified as shown in Fig. 6B

RF algorithm

A study on varied drug-decorated nanoparticles organic 
compound/drug complexes used eight ML classifiers to pre-
dict activity against P. falciparum [8]. The dataset was based 
on 107 input features and 249,992 compounds, and the best 
model was RF (27 selected features) with a mean area under 
the Receiver Operating Characteristic curve (ROC) a value 
of 0.9921 _ 0.000244 (tenfold cross-validation) which is sta-
tistically significant. Janairo et al.introduced a 20 chemical 
descriptors predictive model (ML) employed to establish a 
relationship between the mosquito repellent activity of 33 
natural compounds using four classifiers. The optimized 
model through BTR (best performed) demonstrated a good 
predictive ability (r2 train = 0.93, r2 test = 0.66, r2 over-
all = 0.87) than other ML applied [82].

The RF algorithm showed a lower overall accuracy of 
0.75 in a QSAR study involving 323,201 compounds to 
identify the biological activity of new antimalarial against 
the apicoplast in P. falciparum with 179 descriptors [83]. 
The regression analysis showed an AUC of 70%, specific-
ity of 80% and a sensitivity of 40–50%. Egieyeh et al. [84] 
applied four ML algorithms (Optimization of SVMs, Naïve 
Bayesian, Voted Perceptron, Sequence Minimization and 
RF) on QSAR of 1155 natural products with an in vitro anti-
plasmodial activity using 76 descriptors. With an accuracy 
of 82.8% and an AUC of 0.91, this study appeared to be 
better predictive than the previous study [83] and could be 
attributed to the outrageous number of descriptors or poor 
correlation used in the former [83]. A study developed and 
evaluated a 97 QSAR model of 16 datasets to generate a 

predicted profile in bioactivity and cytotoxicity using dif-
ferent approaches (e.g., conformal prediction framework) to 
improve the prediction accuracy of models [85]. The result 
was evaluated by modeling the dataset with and without the 
addition of the predicted continuous bioactivity profiles; the 
efficacies of the final models improved with the addition of 
the predicted continuous bioactivity profiles.

SVM algorithm

The SVM is another ML algorithm used in support vec-
tor classification to find a hyperplane in both classification 
and regression analyses [86–88]. This algorithm has been 
applied in regression analysis for the prediction of biologi-
cal activity against P. falciparum. In a study, both linear 
and nonlinear SVM algorithms were built to classify 999 
compounds (inhibitors and non-inhibitors) for anti-prolif-
erative activity against P. falciparum using 383 descriptors 
[12]. The statistical validation showed performance with an 
accuracy of 83% and an AUC of 0.88. The predictive power 
of the optimized model shows that it may be effective in 
selecting potential hits in screening large libraries. A dataset 
of ~ 4750 compounds with activity against P. falciparum was 
subjected to four ML algorithms (SVM, RF, kNN and XGB) 
with 98 descriptors [89]. Both SVM and XGB performed 
better with ~ 85% on the independent test set. This finding 
further supported the work of [12] that the built models are 
efficient and may be potentially useful for facilitating the 
discovery of antimalarial agents [12]. With a slightly higher 
SVM prediction accuracy (R2 training 8.95 and R2 test 8.73), 
a study discovered a good 2D-QSAR model in a study 
involving 4750 compounds to identify antimalarial activities 
against P. falciparum using 15 descriptors [90]. The study 
also showed that GRNN prediction accuracies of 99.7% for 

Fig. 6  Classification of objects into two different categories (A) and 
distribution of the best performing ML algorithms based on the rel-
evant articles reviewed (B). In (a), datasets are classified based on 
similarity (blue or red color, circular or triangular shape) or dissim-
ilarity (blue and red colors or circular and triangular shapes); Deep 
Learning (DL), Boosted Trees Regression (BTR), J48 classifier (JC), 

Discriminant Functions (DF), XGBoost (XGB), Graph Convolutional 
Neural Networks (GCNN), Multilinear Regression (MLR), General 
Regression Neural Network (GRNN), Multivariate Analysis (MVA), 
C5.0 and Artificial Neural Networks (ANN) represent (X), Random 
Forest (RF) represents (Y), and Support Vector Machine (SVM) rep-
resents (Z)
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the training set (3887 compounds) and 88.9% for the test 
set (863 compounds). Similarly, a study evaluated 116,987 
antimalarial compounds against apicoplast formation using 
173 descriptors [91]. The R-caret package employed differ-
ent algorithms for the predictive model building including 
Generalized Linear Model (GLM), kNN), SVM, RF and 
C5.0 decision tree. The model validation showed that C5.0 
and SVM and RBF outperform others. The modeling of 277 
P. falciparum proliferation inhibitors and non-inhibitors with 
SVM using various descriptors showed 87% overall accu-
racy and an AUC of 0.73 [92].

QSAR ML algorithms

A structural descriptors-based QSAR model of anti-Plasmo-
dium liver stages bioactivity and prediction of physicochem-
ical parameters influencing intestinal absorption for 127 
compounds have been reported [93]. Seventeen drugs that 
were predicted to be active or inactive were selected for test-
ing against the hepatic stage of P. yoelii in vitro. Antiretrovi-
ral, antifungal and cardiotonic drugs were found to be highly 
active (nanomolar 50% inhibitory concentration values), 
and two ionophores completely inhibited parasite devel-
opment. The most active compounds against the hepatic 
stages of P. yoelii yoelii and P. falciparum were monensin 
and nigericin, with  IC50 of 10.3 nM, and the analysis was 
used to categorize the compounds into highly active, active 
and inactive groups according to their 50% inhibitory con-
centrations  (IC50). A more comprehensive MLR 2D-QSAR 
model to predict anti-P. falciparum activity of two datasets 
of organic compounds, each with an R2 of 0.84 and 0.89, 
has been demonstrated [94]. In addition to MLR, Santos 
et al. [95] had used 230 descriptors, PLS and PCR analysis 
to describe the QSAR of artemisinin and 20 derivatives and 
further predicted the antimalarial activity of 30 new arte-
misinin compounds unknown activity showing high statis-
tical significance. A higher dataset of 72 compounds with 
lower descriptors (39) was applied to build a QSAR model 
against the 3D7 P. falciparum strain, which identified 31 
potential antimalarial compounds [6]. Interestingly, another 
study demonstrated a 2D-QSAR model of 3133 compounds 
using 929 descriptors in which the study showed abysmal 
14.2% accuracy [96]. A similar study applied Artificial Neu-
ral Networks with Levenberg–Marquardt algorithm (non-
linear approach) on the anti-malarial activity of a set of 33 
imidazolopiperazine compounds against 3D7 and W2 strains 
[97]. Results showed the potential of the suggested model for 
the prediction of 3D7 activity and more acceptable than W2 
strain with R2

train = 0.947, R2
val = 0.959, R2

test = 0.920. The 
results of R2, MSE and leverage value showed that the pre-
diction ability of the ANN method for estimation of the anti-
malarial activity in imidazolopiperazine compounds is good 
and can be used as a virtual tool molecule to design more 

efficient compounds with activity against malaria (3D7 and 
W2 strains). An integrated application of ML algorithms, 
CoMFA analyses and molecular docking methods on a set of 
228 known triclosan and rhodanine inhibitors of P. falcipa-
rum enoyl acyl carrier protein reductase (PfENR) of poten-
tial antimalarial agents targeted to PfENR yielded accuracies 
for the training set and evaluation set are 94.18 and 57.14% 
for IB1 and 92.80 and 68.57% for Kstar, respectively [77]. 
Neves et al. [78] adopted deep learning to build binary and 
continuous 2D RDKit descriptors QSAR models based on 
large datasets for predicting the antiplasmodial activity and 
cytotoxicity of 413,855 untested compounds. The developed 
computational models were used to prioritize novel, active, 
and nontoxic compounds from virtual chemical libraries for 
experimental evaluation. Similarly, a researcher had devel-
oped an ML-based QSAR model to predict which molecules 
will block the malaria parasite's ion pump, PfATP4 [98]. 
The model was then employed to screen and classify the 
DrugBank database molecules and compounds coming from 
a proprietary marine molecules library.

Other ML algorithms

A deep learning-based algorithm (DeepMalaria) for anti-
P. falciparum activities features of 13,446 compounds and 
23 descriptors was demonstrated using their SMILES [99]. 
The algorithm predicted 72.3% of active compounds from 
the validation dataset and 87.8% of that of the test dataset 
with acceptable accuracy in an imbalanced setting showing 
significant predictive potentials to improve drug design and 
development. A study] reported a systematic review on the 
green synthesis of metal nanoparticles as a potential source 
of new antiplasmodial drugs [100]. Seven electronic data-
bases and 17 papers were included in the review. A very 
high proportion of the studies (82.4%) used plant leaves to 
produce nanoparticles (NPs) while three studies used micro-
organisms, including bacteria and fungi.

ML as a regression tool

There have been many reports on the use of regression anal-
ysis as an ML tool using different ML algorithms such as 
deep learning, Random Forest (RF), Boosted Trees Regres-
sion (BT), J48 classifier, DF2, SVM, XG boost, GCNN, 
Multilinear Regression (MR), GRNN, C5.0, ANN among 
others. In this regard, the regression tool is a predictive com-
putational model that enables one to understand the corre-
lation between chemical properties (descriptors) and their 
activities, i.e., to computationally screen large molecular 
datasets thereby offering a possibility to improve the hit rate 
and thereby reduce the overall costs of drug discovery. This 
has been applied extensively in the drug discovery of anti-
P. falciparum drug. Careful analysis of the result reported 
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by different authors shows that efficient computational pre-
dictive models help to screen large datasets in silico and 
could be potentially used to prioritize molecules for high-
throughput screens.

In a multi-parametric QSAR study to predict  IC50 and 
Log P for 5-N-acetyl-β-D-neuraminic acid, consisting of 
110 training sets and 50 test sets of compounds structurally 
related to 5-N-acetyl-β-D-neuraminic acid, polyAnalyst was 
used to develop the linear model using a stepwise linear 
regression algorithm [101]. The predicted  IC50 values pro-
vide good statistical measures for the correlation coefficient, 
standard deviation and standard error as 0.8545, 0.2932 and 
0.3815, respectively. Importantly, the model showed that a 
strong correlation exists between Log P and  IC50 of drug 
compounds. A dataset of 34 compounds and 8 descriptors 
was subjected to MLR analysis to construct a QSAR. This 
method produced higher R2 (0.9714–0.9909) and RMSEP 
of 0.0938 and 0.1819 compared with the method of Pushpa 
and co-workers [101]. In drug discovery of the transmis-
sion-blocking potential of 44 anti-malarial compounds in 
the mosquito feeding assay using P. falciparum male gam-
ete inhibition assay, [102] applied regression tool. Root 
Mean Square Error (RMSE) of 22.51% was obtained from 
the measured relationship between exflagellation inhibition 
(EI) and oocyst reduction [102]. The model provided  pIC50 
predictions in SMFA with high accuracy, and  IC50 values for 
11 compounds obtained in the exflagellation inhibition assay 
were correlated with  IC50 values in SMFA. Significantly, the 
result of the regression models gave  IC50 predictions results 
in SMFA that had high accuracy. However, it was stated that 
the small dataset (n = 44) used to build the model may render 
the result unreliable.

ML has also been successfully applied in epidemiological 
studies of malaria [103, 104]. The outbreak of malaria using 
six observed variables; a dataset of thirty-eight compounds 
collected from malaria samples of Maharashtra State with 
eight descriptors was used [105]. To determine the perfor-
mance of the model, logistic regression, random decision 
trees and Gaussian processes were used. The regression 
model as well as the Decision tree and Gaussian models was 
able to give 100% accuracy in predicting malaria outbreaks 
[106]. A combination of 8 ML algorithms (KNN, SVM, 
SVM linear, linear regression, linear discriminant analysis, 
DT and RF classifiers) to predict the effect of compound/
drug reactions that have antimalarial activity against Plas-
modium has been documented [8]. Findings showed that 
Random Forest classifiers gave a more accurate result than 
other learning algorithms.

Importantly, the top six ML algorithms—simple linear 
regression model, lasso, logistic regression, Support Vector 
Machines, multivariate regression algorithm and multiple 
regression algorithm—are commonly used in data mining 
and their applications in industry are well known.

Expert opinion and prospects

The available epidemiological data show that malaria, no 
doubt, is a disease of today and the future despite huge 
investment toward vaccine development and drug dis-
covery [107]. Available drugs have been overwhelmed 
by Plasmodium resistance and poor pharmacokinetic-
related limitations; this calls for an urgent need to explore 
more approaches. Natural products-derived compounds, 
synthetic and several modification attempts on existing 
drugs have not yielded the desired products. Despite huge 
deposits of potential antimalarial compounds in various 
databases, none has been transformed from such virtual 
spaces to the bedside; perhaps the goldmine strategies 
are yet to be exploited. The target of pharmaceutical and 
drug discovery scientists has always been to discover and 
develop new drugs that will ultimately benefit the patient 
within the shortest possible time and at an affordable cost. 
ML is a developing trend in the drug discovery industry. 
It is expected to revolutionize the drug discovery process 
by introducing efficiency that will lead to the discovery of 
new drugs at a shorter time and at a lower cost.

ML in drug discovery has come to stay and its applica-
tion in the discovery of anti-Plasmodium species drugs is 
emerging. The quagmire now is whether a game-changing 
ML approach has been explored, exploited or adopted. 
That is the crux of this systematic review. Several known 
ML algorithms have been applied in anti-Plasmodium spe-
cies drug discovery which resulted in acceptable statistical 
significance measures. With ML, the biodiversity which 
has been under threat because of several drug discovery 
programs can be conserved or handled with a more pre-
cise approach. There is a need for scaling down the ML 
technology to early-career DDD scientists so that soon, the 
tools used by ML specialists will become a norm in labo-
ratories involved in drug discovery and development. ML 
and its tools could also find use in downstream process-
ing of pharmaceuticals where current good manufacturing 
practices are expected to be religiously followed to ensure 
the production of consistently high-quality medicines that 
will meet regulators’ specifications.

Several ML tools were reviewed in this paper. Careful 
analysis of the literature reviewed in this paper indicated 
that Support Vector Machine (SVM) was the most highly 
favored tool followed by Random Forest. SVM has been 
widely applied in biological and other sciences with high 
accuracy. However, other machine learning tools identified 
in this study have been sparingly used and could serve as 
a good starting point for the discovery of game-changing 
antimalarial drugs. It is thus expected that the applica-
tion of this ML tool or its modification in the discovery 
of antimalarial and other drugs will progress rapidly in 
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the coming years considering the urgency needed for 
the discovery of new anti-infectives required to meet the 
healthcare needs of countries in the endemic regions of 
the world.

Conclusion

Malaria can be eradicated in sub-Saharan Africa by the 
combination of chemotherapy and chemoprevention. The 
emergence of resistance has continued to hamper chemo-
therapeutic approaches. However, emerging drug discov-
ery methods such as ML have continued to show potential 
for new molecules capable of circumventing many known 
challenges. Until total eradication is achieved, the search for 
vaccines and cures will continue to receive attention. Our 
team is currently working on the application of various ML 
algorithms to the discovery of potent, safe, affordable and 
deliverable molecules against P. falciparum.
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