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Abstract
The interleukin-1 receptor like ST2 has emerged as a potential drug discovery target since it was identified as the recep-
tor of the novel cytokine IL-33, which is involved in many inflammatory and autoimmune diseases. For the treatment of 
such IL-33-related disorders, efforts have been made to discover molecules that can inhibit the protein–protein interactions 
(PPIs) between IL-33 and ST2, but to date no drug has been approved. Although several anti-ST2 antibodies have entered 
clinical trials, the exploration of small molecular inhibitors is highly sought-after because of its advantages in terms of oral 
bioavailability and manufacturing cost. The aim of this study was to discover ST2 receptor inhibitors based on its PPIs with 
IL-33 in crystal structure (PDB ID: 4KC3) using virtual screening tools with pharmacophore modeling and molecular dock-
ing. From an enormous chemical space ZINC, a potential series of compounds has been discovered with stronger binding 
affinities than the control compound from a previous study. Among them, four compounds strongly interacted with the key 
residues of the receptor and had a binding free energy <  − 20 kcal/mol. By intensive calculations using data from molecular 
dynamics simulations, ZINC59514725 was identified as the most potential candidate for ST2 receptor inhibitor in this study.
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Introduction

Interleukin (IL)-33 is a new member of the IL-1 superfam-
ily that plays important roles in human innate and adaptive 
immune responses via interaction with its ST2 receptor [1]. 
IL-33 activates a variety of immune cells involved in type 2 
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immune responses and allergic inflammations, including T 
helper  (TH2) cells, mastocytes, eosinophils, basophils, type 
2 innate lymphoid cells (ILC2s), regulatory T cells (Tregs), 
dendritic cells and alternatively activated macrophages 
(AAMs) [2]. ST2 stands for “suppression of tumorigenic-
ity 2” [3] and belongs to the interleukin-1 receptor (IL-1R) 
family. ST2 was an orphan receptor for many years and has 
been extensively researched in the context of inflammatory 
and autoimmune diseases. IL-33 can now be considered a 
functional and specific ligand of the ST2 receptor. ST2 exists 
in two major isoforms, including a membrane-bound form 
(ST2L) and a soluble form (sST2). ST2L is constitutively 
expressed primarily on the surface of hematopoietic cells 
and combines with the interleukin-1 receptor accessory pro-
tein (IL-1RAcP) to form the transmembrane IL-33 receptor 
[4, 5].

ST2 release in response to myocardial infarction has long 
been used as a biomarker for diagnosis [3, 6]. Recently, the 
IL-33/ST2 pathway has been shown to be strongly involved 
in inflammatory and autoimmune diseases. ST2 plays a criti-
cal part in controlling airway inflammations and relates to 
 TH2-mediated allergic inflammations inducing acute exac-
erbations in asthmatic patients [7]. In these patients, levels 
of ST2 and IL-33 were found to increase in sera and tissues 
[7, 8]. IL-33 acts as an epithelial-mesenchymal cytokine 
that binds to ST2 receptor and controls airway inflamma-
tory responses; thus, the IL-33/ST2 pathway provides a 
potential target for asthma treatment [8]. Besides, ST2 is 
associated with inflammatory bowel diseases such as ulcera-
tive colitis or Crohn’s disease, where the colonic mucosa 
sST2 level is significant higher in patients with active dis-
ease [9, 10]. IL-33 and ST2 receptor were also found to 
be strongly expressed in the vicinity of β-amyloid plaques 
and in brain glial cells of patients with Alzheimer’s disease 
[11]. For autoimmune conditions, ST2 plays a pivotal role 
in the development of various pathologies such as rheuma-
toid arthritis, systemic lupus erythematosus and multiple 
sclerosis [12–14].

Recently, when the COVID-19 pandemic raged and 
infected more than 250 million people with more than five 
million deaths [15], IL-33 and ST2 were also investigated for 
their association with this disease. IL-33 is hypothesized to 
be the cause of the imperfect cytokine storm in COVID-19. 
The IL-33/ST2 axis might decrease responses of antiviral 
interferons and induce viral inflammation and thrombosis 
in severe patients. IL-33 might drive pulmonary fibrosis in 
patients who survive severe COVID-19 [16].

Currently, no drug that inhibits the ST2 receptor or its 
IL-33 ligand is approved by the FDA for the treatment of 
related diseases. However, a number of studies to discover 
inhibitors of the IL-33/ST2 pathway, including biologics 
and small-molecule drugs, have been published. For almost 
a decade, reports seem to focus more on IL-33, including 

IL-33 neutralizing antibodies, IL-33 trap (complex of 
recombinant ST2 and IL-1RAcP), anti-IL-33 proteins and 
small molecules [17–22]. Recently, the ST2 receptor has 
become an attractive target for drug discovery. An sST2-neu-
tralizing monoclonal antibody has been introduced that can 
reduce inflammation and decrease acute graft-versus-host 
disease severity and mortality [23]. In particular, another 
anti-ST2 monoclonal antibody CNTO 7160 has been clini-
cal studied in healthy subjects and patients with asthma or 
atopic dermatitis [24].

With the increasingly elucidated role of the ST2 recep-
tor, the discovery of inhibitors for this receptor is essen-
tial. Small molecule therapy has several advantages over 
biological therapeutic agents, including easier administra-
tion, especially orally, superior tissue penetration, modifi-
able pharmacokinetic properties, lower production costs 
and higher uniformity between batches. Ramadan A. M. 
et al. have identified several small molecular inhibitors for 
the ST2 receptor with micromolar  IC50 by high-throughput 
screening from a database of 77,701 compounds [25]. In this 
study, we introduce an attempt to discover novel and stronger 
small molecular inhibitors for the ST2 receptor from a larger 
chemical space with millions of compounds using compu-
tational methods. By using rapid virtual screening methods 
including pharmacophore approach and molecular docking 
combined with intensive bioinformatics methods such as 
molecular dynamics simulations and MM/GBSA binding 
free energy calculations, a number of potential compounds 
have been identified with better binding modes and stronger 
affinities on the ST2 receptor than control compounds from 
the previous study.

Materials and methods

Database and virtual screening process

For virtual screening of small molecular inhibitors for the 
ST2 receptor, a workflow outlined in Fig. 1 was adopted. In 
this process, the ZINC database [26, 27] was used as a chem-
ical space to search for compounds with the ability to bind to 
the target.  ZINC12 is a large library of more than 22 million 
commercially available compounds with complete supplier 
information. Nevertheless, with such a huge number of com-
pounds, searching for biologically active candidates on this 
library requires an enormous amount of computing resources 
to generate conformations for each compound in the library. 
Luckily, Koes D. R. and Carlos J. C. have developed the 
ZINCPharmer tool for fast and efficient virtual screening 
through the ZINC library (http:// zinc12. docki ng. org) with 
more than available 200 million conformations [28]. After 
screening through the 3D-pharmacophore models, the com-
pounds that satisfied the model were subsequently screened 

http://zinc12.docking.org
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by molecular docking. Ligands were prepared by energy 
minimization using Molecular Operating Environment 
(MOE) 2015.10 software [29] with Amber10:EHT forcefield 
and energy gradient was set to RMS of 0.0001 kcal/mol/A2 
to obtain ready-to-dock structures. After being ranked by 
docking score and binding mode, the most potential com-
pounds bound to the ST2 receptor were explored through 
molecular dynamics simulated in complex with the protein 
to investigate their stability of binding and calculate the 
binding free energy using the MM/GBSA method. Further-
more, in order to better evaluate the potential compounds 
screened in this in silico study, a control compound iST2-1 
was used. iST2-1 is a small molecular inhibitor of ST2 
receptor discovered by Ramadan A. M. et al. with experi-
mental  IC50 value of 47.7 ± 5.0 μM [25].

Pharmacophore approach

In this study, the inhibitors for the ST2 receptor were 
designed using a structure-based 3D-pharmacophore 
approach because there is currently no published co-crys-
tallized structure of ST2 with its small molecular ligand. 
Therefore, 3D-pharmacophore models were constructed 
based on the interactions between the ST2 receptor with 
IL-33 in the protein complex with the PDB ID 4KC3 [1] 
at 3.27 Å resolution. This complex contains the extracellu-
lar domain of human ST2L expressed on the membranes of 
immune cells (Lys19 to Lys231) and the mature IL-33 with 
cytokine activity (Ser112 to Thr270). The two proteins bind 
to each other via Site 1 and Site 2 (Fig. 2A). Previous studies 

have shown that the Site 1 is highly conserved because of 
the rigidity of the domain 1 and 2. IL-33 binds to the ST2 
receptor first at the Site 1 composed of these two domains 
and leads to a conformational change of the domain 3. As 
a result, the Site 2 on the domain 3 of the ST2 receptor 
is more flexible than the Site 1 [1]. Therefore, this study 
focused on discovery of small molecular inhibitor for the 
ST2 receptor at Site 1. At this binding interface between the 
two proteins, the ST2 receptor interacts with IL-33 through 
residues shown in detail in Table S1. Using surface plasmon 
resonance (SPR), Liu X. et al. identified the residues that 
play an important role (hotspot residues) in this protein–pro-
tein interaction (PPI). When mutating the residues Glu144, 
Glu148, Asp149 and Asp244 on IL-33 (isolated and high-
lighted in Fig. 2B), the binding affinity constant between the 
ST2 receptor and IL-33 is markedly reduced [1]. Based on 
these four hotspot residues on IL-33, the seven correspond-
ing key residues on ST2 were identified and are highlighted 
in Fig. 2B, including Lys22, Arg35, Arg38, Gln39, Tyr119, 
Thr135 and Agr198.

The 3D-pharmacophore models were built using the 
Pharmacophore Query Editor tool in MOE 2015.10 soft-
ware [29]. The pharmacophore hypothesis for ST2 receptor 
inhibitor was built based on two different strategies. The 
first method directly uses PPI between the ST2 receptor and 
IL-33 in Fig. 2B to generate the corresponding pharmacoph-
ore features. The described PPI-based drug design approach 
has led to the successful discovery for several drugs on the 
market [30, 31]. The second approach favors a de novo 
design, in which the pharmacophore model is constructed 

Fig. 1  Flowchart of virtual 
screening and computational 
analysis for discovery process of 
inhibitors for the ST2 recep-
tor. The database, software and 
web tools used in each step are 
shown in parentheses
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based on the observation of key residues on the interaction 
surface of the ST2 receptor and IL-33. This second approach 
was used to increase the success rate of finding inhibitors for 
this receptor. The obtained 3D-pharmacophore models were 
then uploaded to the ZINCPharmer tool (http:// zincp harmer. 
csb. pitt. edu) [28] for high-throughput virtual screening of 
small molecules with necessary steric and electronic features 
to ensure the optimal supramolecular interactions with ST2, 
thereby potentially inhibiting IL-33 activity by competing 
with this cytokine on the receptor.

Molecular docking

Because the structure of the ST2 receptor in the 4KC3 
complex was missing some residues due to weak electron 
densities, a homology model was built using the I-TASSER 
Online Server (https:// zhang lab. ccmb. med. umich. edu/I- 
TASSER) [32, 33] to reconstruct the structure of the receptor 
with the full range of amino acids. The homology structure 
was built based on the template of the ST2 receptor itself in 
the 4KC3 complex (chain B) [1]. The obtained homology 
models were evaluated by the values calculated and pro-
vided by I-TASSER including C-score, TM-score, Cluster 
Density and RMSD values   to choose the best structure [34]. 
In addition, the finest homology model was also evaluated 
and compared with the crystal structure by the Ramachan-
dran plot [35], Clashscore and MolProbity score calculated 
by MolProbity [36, 37]. The best homology structure of 
ST2 receptor was prepared using QuickPrep tool in MOE 

2015.10 software including the steps of hydrogen addition, 
protonate, tether and refinement and saved as *.pdb format. 
This prepared structure was then fed into the BioSolveIT 
LeadIT 2.1.8 software [38] to create the binding site. As 
no co-crystallized ligand with the ST2 receptor has yet 
been identified, the key residues were used as references to 
generate the binding site model. They were loaded into the 
docking program, and a binding site was generated by being 
expanded with a suitable radius. Finally, a molecular dock-
ing model was built and saved as *.fxx format to be applied 
for virtual screening.

The FlexX program embedded in LeadIT is used for 
molecular docking. The compounds, after being screened 
through 3D-pharmacophore models, were gathered into a 
library of ready-to-dock structures and imported into the 
LeadIT software. In this study, ligand binding was driven 
by a hybrid approach: enthalpy (classic triangle matching) 
and entropy (single interaction scan). The number of poses 
to keep was Top10, maximum number of solutions per frag-
mentation was set to 200, and maximum number of solution 
per iteration was set to 1000 [39].

The receiver operating curve (ROC) and predictiveness 
curve (PC) were analyzed with active and inactive com-
pounds to evaluate the molecular docking protocol [40, 41]. 
The active set contains 10 known ST2 inhibitors (their struc-
tures and  IC50 values are listed in Table S2) [25]. The inac-
tive set includes 500 decoy structures generated from these 
10 inhibitors using the Directory of Useful Decoys (DUD-E) 
server at http:// dude. docki ng. org [42]. Compounds from the 

Fig. 2  Protein–protein interac-
tions between the ST2 receptor 
and its ligand IL-33. A X-ray 
co-crystallized structure of 
ST2/IL-33 complex (PDB ID: 
4KC3) with magnified binding 
site 1. B Isolated key residues 
on the binding interface of the 
ST2 receptor (in magenta) and 
IL-33 (in green)

http://zincpharmer.csb.pitt.edu
http://zincpharmer.csb.pitt.edu
https://zhanglab.ccmb.med.umich.edu/I-TASSER
https://zhanglab.ccmb.med.umich.edu/I-TASSER
http://dude.docking.org
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two datasets were docked into the docking model of ST2, 
and the obtained docking scores were introduced into the 
Screening Explorer web tool (http:// stats. drugd esign. fr) for 
ROC analysis. The area under the ROC curve (ROC AUC) 
over 0.5 combined with a standardized total gain ( TG ) val-
ues (calculated from the PC) over 0.25 signifies that dock-
ing score variations are relevant in the discrimination of the 
active compounds [43].

Ligands that successfully docked into the ST2 receptor 
were ranked based on the docking score. Besides, detailed 
ligand–receptor interactions were also analyzed, includ-
ing hydrogen bonds, ionic bonds, arene–arene interactions, 
cation–arene interactions, arene–H interactions and van der 
Waals interactions. In particular, because the association 
between the ST2 receptor and IL-33 is a PPI, the interaction 
of ligands with the ST2 key residues has been scrutinized 
to find the most potential inhibitors that compete against 
the binding of IL-33 to the receptor. The interaction of each 
ligand with the ST2 receptor was examined using both the 
PoseView tool of the LeadIT 2.1.8 software and the Ligand 
Interactions tool of the MOE 2015.10 software. The analy-
sis and statistics of interaction types between ligands with 
the key residues were performed using the Protein Ligand 
Interaction Fingerprints (PLIF) tool of the MOE 2015.10 
software.

Molecular dynamics simulations

MD simulations were performed with the GROMACS 2020.6 
software [44, 45]. To save computation time, only domains 1 
and 2 of the ST2 receptor were carried out MD simulations. 
These are two highly conserved structural domains and make 
up the binding site with IL-33. The structure of protein was 
topology generated with the CHARMM-27 force field. Simul-
taneously, the conformation of the ligands with the best dock-
ing results was saved in *.mol2 format. Their topology was 
generated using the SwissParam online tool (http:// www. swiss 
param. ch) [46] and updated to the topology file of the protein 
to get the topology of the complex. The complex is placed in a 
dodecahedron simulation box with a distance of 10 Å between 
protein and box edges. The system was filled water solvent 
(TIP3P model) and electrically neutralized by the addition of 
an appropriate number of  Na+ or  Cl− ions (salt concentration 
was 0.15 M). The constructed system was energy minimized 
for 100 ps using the steepest descent minimization with a 
maximum force of 10 kJ/mol. The system was then equili-
brated by a NVT simulation for 100 ps to a temperature of 
300 K using the velocity rescaling thermostat [47], followed 
by a NPT equilibration for 100 ps to a pressure of 1 bar using 
the Parrinello–Rahman barostat [48]. Finally, the production 
of MD was performed using the velocity Verlet algorithm 
for the ST2 receptor in apoprotein state and complexes with 
ligands at a temperature of 300 K and a pressure of 1 bar. The 

LINCS algorithm was used to restrain the hydrogen bonds 
[49]. Besides, nonbonded interactions were truncated at 12 Å 
and the particle mesh Ewald method [50] was used to calculate 
long-range electrostatic interactions. The MD trajectories were 
saved every 0.01 ns.

After the MD production had been completed, data from the 
resulting trajectories were used to calculate the RMSD (root 
mean square deviation), RMSF (root mean square fluctuation), 
Rg (radius of gyration) and SASA (solvent-accessible surface 
area) values by GROMACS built-in commands to evaluate 
the stability of the complexes and the effect of ligands on the 
receptor when binding occurs. In particular, the occupancy of 
hydrogen bonds formation was also analyzed using the VMD 
software [51] to determine the interacting ability of ligands 
with the key residues. A hydrogen bond was defined by simple 
geometric criteria: a distance between hydrogen donor (D) and 
acceptor (A) atoms of < 3.5 Å and an angle D–H⋯A of > 120° 
[52]. Other interaction types were detected by the PLIF tool of 
the MOE 2015.10 software using fingerprint schemes included 
salt bridges, arene interactions (both with minimum thresholds 
of 0.5 kcal/mol) and surface contacts (within a minimum of 
20 Å2).

Binding free energy calculation and per‑residue 
energy decomposition

The gmx_MMPBSA package was used for calculations based 
on the single trajectory of GROMACS with CHARMM-27 
forcefield [53]. This tool allows free energy calculations using 
MM/PBSA or GBSA (Molecular Mechanics/ Poisson-Boltz-
mann or Generalized Born Surface Area) methods. In this 
work, the snapshots sampled from the MD trajectory of each 
protein–ligand complex was used to carry out the binding free 
energy calculation using the MM/GBSA approach because of 
its low computational resource consumption. The dielectric 
constant of the solute, temperature and salt concentration were 
set to 1.0, 298 K and 0.15 M, respectively. The free energy 
(ΔGbind) for binding of the ligand to ST2 receptor to form the 
complex was calculated by Eq. (1) [54]:

The Eq. (1) can be decomposed into contributions of dif-
ferent interactions and expressed as:

in which:

(1)ΔGbind = ΔGcomplex −
(

ΔGreceptor + ΔGligand

)

(2)ΔGbind = ΔH − TΔS = ΔEMM + ΔGsolv − TΔS

(3)
ΔEMM = ΔEbond + ΔEangle + ΔEdihedral + ΔEvdW + ΔEele

(4)ΔGsolv = ΔGGB + ΔGSA

http://stats.drugdesign.fr
http://www.swissparam.ch
http://www.swissparam.ch
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where ΔEMM , ΔGsolv and −TΔS are the changes in the gas 
phase molecular mechanics energy, solvation free energy and 
conformational entropy upon ligand binding, respectively. 
ΔEbond , ΔEangle and ΔEdihedral are internal bonded energy 
terms, and they are suppressed for fixed geometries before 
and after binding. ΔEvdW and ΔEele are the nonbonded van 
der Waals and electrostatic interaction energy, respectively. 
ΔGsolv is the sum of the polar contribution ΔGGB (electro-
static solvation energy) and the nonpolar contribution ΔGSA 
between the solute and the continuum solvent. The polar 
contribution was calculated using GB-OBC1 model [55, 56], 
while the nonpolar energy was estimated using the solvent-
accessible surface area (SASA) [54].

Results and discussion

Pharmacophore model as a rapid virtual screening 
tool

Two 3D-pharmacophore models were constructed based 
on PPI of the ST2 receptor with IL-33. The Ph-ST2i-1 
model was built by mimicking the properties of hotspot 
residues on IL-33 to search for small molecular struc-
tures that compete against IL-33 for binding to the ST2 
receptor. Specifically, the Ph-ST2i-1 model, consisting of 
five pharmacophore points, accurately mimicked the way 
that the hotspot residues Glu144, Glu148, Asp149 and 
Asp244 on IL-33 (Fig. 3A) interact with the ST2 recep-
tor. This model includes 5 features: F1:Ani (anionic), 
F2:Ani, F3:Ani, F4:Don (hydrogen donor) and F5:Acc 

(5)ΔGSA = � ⋅ SASA + b
(hydrogen acceptor). However, small molecules that are 
suitable to become drug candidates are often difficult to 
satisfy a pharmacophore model with too many charged 
points. Therefore, two anionic points that were far apart 
in the three-dimensional space F1:Ani and F2:Ani were 
constrained to “at least one” property.

In addition, a second 3D-pharmacophore model was built 
manually as a de novo design, in which the key residues of 
the ST2 receptor corresponding to the hotspot residues of 
IL-33 were used, including Lys22, Arg35, Arg38, Gln39, 
Tyr119, Thr135 and Arg198. Besides, the other residues 
located in the central of the binding site such as Gln23, 
Gln39, Met118, Ile136 and Leu138 were also considered for 
potential interactions. The Pharmacophore Query tool was 
used to show all potential interactions that can be generated 
by these residues. Interactions directed to the binding site 
(where ST2 interacts with IL-33) were selected to create the 
pharmacophore points according to the “pair-rule” principle. 
For example, Lys22 has a sidechain −  NH2 group that can 
donor hydrogen bonds (Don), a pharmacophore feature Acc 
(hydrogen bond acceptor) will be placed on the projection 
of the nitrogen atom. Using this approach, another 5-point 
pharmacophore model was built with the features: F1:Acc, 
F2:Acc, F3:Don, F4:Don, F5:Acc and F6:Acc (Fig. 3B).

These two models were then uploaded to ZINCPharmer 
[28] to rapidly screen through the  ZINC12 library for com-
pounds with appropriate properties to bind the ST2 receptor. 
A database of more than 200 million conformations was vir-
tually screened through the two pharmacophore hypotheses. 
This resulted in 1778 compounds satisfying the models, of 
which 1438 satisfied the Ph-ST2i-1 model (Table S3) and 
349 satisfied the Ph-ST2i-2 model (Table S4) (9 compounds 
satisfied both models). These compounds were further 

Fig. 3  Two obtained 3D-pharmacophore models generated by A mimicking the hotspot residues of IL-33 and B mimicking the corresponding 
key residues on the ST2 receptor
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screened by molecular docking as the second funnel of the 
drug discovery procedure.

Molecular docking model and virtual screening

There were five homology models of ST2 receptor built by 
I-TASSER Online Server with evaluation parameters pre-
sented in Table S5, in which the model HS-1 was assessed as 
the best structure with C-score, TM-score and cluster density 
of 0.71, 0.81 ± 0.09 and 0.55, respectively. The ST2 structure 
in the HS-1 model is superposed with its structure in the 
crystal complex and shown in Figure S1 with an RMSD of 
1.242 Å. The Ramachandra plot of ST2 protein structure in 
the 4KC3 complex and in the homology model is shown in 
Figure S2 and Figure S3, respectively. Although the HS-1 
model had a lower number of residues in favored regions 
and in allowed regions (78.5 and 92.5%) than the crystal 
structure (93 and 99.3%), this model had some better evalu-
ation parameters when analyzed with MolProbity (Table S6) 
like clashscore and MolProbity score. The clashscore is the 
number of serious issues (number of overlaps > 0.4 Å per 
atoms) [36]. The all-atom clashscore of HS-1 model was sig-
nificantly better than the crystal structure (4.31 compared to 
21.18) and was rated 96th percentile ranking versus a PDB 
sample of structures at similar resolutions by MolProbity. As 
a combination of the clashscore, percentage Ramachandran 
not favored and percentage bad sidechain rotamers, Mol-
Probity score is a single number that represents the quality 
of protein [57]. In this study, the MolProbity score of the 
HS-1 homology structure was considered to be better than 
the crystal structure (35th rank versus 9th percentile).

The HS-1 homology structure was selected and prepared 
using the QuickPrep tool of the MOE 2015.10 software. 
The binding site was determined by extending a radius of 
12 Å from the locations of the key residues Lys22, Arg35, 
Arg38, Gln39, Tyr119, Thr135 and Arg198. The obtained 
molecular docking model is illustrated in Fig. 4A. It can be 
seen that this is a relatively wide and deep binding site with 
a rich positive charge surface. A small molecule that binds 
to this cavity and blocks the positively charged residues of 
the ST2 receptor is expected to potentially inhibit the bind-
ing of IL-33 to this receptor. The docking protocol has been 
implemented for active and inactive datasets. Using ROC 
and PC analysis, performance of the model was validated 
with an ROC AUC of 0.754 (> 0.5) and a TG value of 0.384 
(> 0.25). The ROC and predictiveness curves are shown in 
Figure S4.

All compounds satisfied the pharmacophore models were 
structurally prepared and saved to a ligand library in *.sdf 
format for docking into the aforementioned binding site. 
As a result, 1755 compounds (98.7%) were successfully 
docked to the ST2 receptor and 23 compounds (1.3%) were 
not docked. The list of these compounds and their docking 
score are presented in Tables S3 and S4. Most of the suc-
cessfully docked compounds had negative docking scores 
(1748 compounds) and are shown in the distribution graph 
in Figure S5A. There are 1253 compounds docked to ST2 
with scores <  − 19.26 kJ/mol, which was the docking score 
of the best docking pose of the control compound iST2-1. 
Notably, 6 ligands strongly bound to the ST2 receptor with 
docking scores <  − 40 kJ/mol and 249 ligands bound to the 
receptor with docking scores <  − 30 kJ/mol (Figure S5B).

Fig. 4  A Molecular docking model of ST2 receptor identified from 
its key residues using LeadIT software. B The top 20 hit compounds 
suggested by docking results (carbon atoms in gray) are located in 

the binding site with the presence of the seven key residues (carbon 
atoms in magenta)
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When considering the control compound, iST2-1 was 
identified as the lead inhibitors in the study of Ramadan 
A. M. et al. (Figure S6). Previous study has shown that 
iST2-1 can bind to ST2 at various sites [25]. In the bind-
ing site determined by our study, iST2-1 also bound at two 
separate sites when analyzing the 10 docked poses as shown 
in Figure S6A. This is explained by its small and flexible 
structure (with molecular weight of 378.43 g/mol and 6 
rotatable bonds). iST2-1 in poses 1, 2 and 9 bound to the 
receptor in the pocket formed by Lys22, Arg38, Gln39 and 
Tyr119, while the remaining poses are found in the vicinity 
of Tyr119, Thr135 and Arg198. The two poses having the 
best binding mode with key residues are shown in Figure 
S6B and S6C. In particular, iST2-1 in pose 2 accepted two 
hydrogen bonds from Arg35 and donated a hydrogen bond 
to Asp137, while in pose 3 it accepted two hydrogen bonds 
from Arg198 and formed arene-H bonds to Tyr119, Pro134 
and Thr135. Notably, most of formed hydrogen bonds are 
due to the aromatic nitro group of iST2-1.

Because the 3D-pharmacophore models were built based 
on the key residues of PPI between the ST2 receptor and 
IL-33, the number of ligands that interacted with these resi-
dues in the binding site was counted and illustrated by the 
graphs in Figure S7A to further evaluate the performance 
of the 3D-pharmacophore models. Fingerprints analysis of 
protein–ligand interaction showed that key residues of ST2 
receptor such as Lys22, Arg35, Tyr119, Thr135 and Arg198 
formed interactions with a significant proportion with 
ligands (46, 51, 46, 45 and 71%, respectively). More spe-
cifically, these residues formed many hydrogen bonds and 
salt bridges with the docked ligands (Figures S7B and S7C). 
These results demonstrated that a large number of ligands 
bound to the ST2 receptor exactly on the key residues as 
designed in the 3D-pharmacophore model. The residues 
Lys22, Arg35 and Arg198 were centers for hydrogen bond-
ing as well as strong ionic interactions. Thus, 3D-pharma-
cophore models could accelerate the identification of com-
pounds with suitable physicochemical properties for binding 
to the ST2 receptor from the great database as ZINC.

In an effort to identify the most potential in silico inhibi-
tors for the ST2 receptor, the 20 ligands with the most nega-
tive docking scores and satisfying Lipinski’s rule of five [58] 
were selected for further investigation using MD simula-
tions. For comparison, the two best binding conformations 
of control compound iST2-1 have also been carried out 
MD simulations with the same time. The chemical struc-
tures of 20 compounds and their properties are presented in 
Table S7. The docking scores of these 20 top hit compounds 
and their interactions with receptors in the docking pose are 
summarized in Table 1 and detailed in Table S8. All 20 of 
these ligands have docking scores <  − 35 kJ/mol and bind to 
at least three key residues of the ST2 receptor primarily by 
hydrogen bonds and arene-H bonds. Figure 4B shows all of 

these ligands neatly bind to the specified binding site (Site 
1) on the receptor with the presence of the key residues. 
Interestingly, all of these 20 potential inhibitors satisfied the 
3D-pharmacophore Ph-ST2i-1 model, the one with many 
anionic features. This suggests that potent and strong inhibi-
tors of ST2 require negatively charged functional groups 
such as –COO− or –NO2 for interacting with the positively 
charged surface of the receptor. In particular, similar to the 
control compound iST2-1, aromatic nitro groups were found 
in 18 hit compounds. This is actually logical because these 
ligands were found by a PPI-based pharmacophore model 
and they are mimetic small molecules of IL-33 with nega-
tive charges.

Molecular dynamics simulations and binding 
free energy calculations help identify the top hit 
compounds

First, MD simulations were performed with a simulation 
time of 20 ns for the ST2 receptor in the apoprotein form 
(without ligand) and in complexes with 20 investigated 
ligands or the control compound iST2-1. These short MD 
trajectories were used to analyze the stability of protein, 
ligands, their interactions and binding free energy, after 
which the most potential candidates can be selected.

Stability of the receptor–ligand complexes

The RMSD values of the carbon backbone were used to 
evaluate the overall stability of the proteins (Table 2). The 
results indicated that most complexes of the ST2 recep-
tor with ligands had average RMSD values smaller than 
the apoprotein (3.29 ± 1.15 Å) except for ZINC02065976, 
ZINC08911140, ZINC31554431, ZINC32690934 and 
ZINC40659148. However, when observing the time graph 
of RMSD of the complexes versus the apoprotein (Figure 
S8), all 20 complexes had smaller RMSD fluctuations than 
did the apoprotein (< 2 Å) after the fluctuating time and then 
reached equilibrium. The apoprotein appeared to be stable 
from 0 to 10 ns, but then RMSD values fluctuated strongly 
toward the end of simulation time (20 ns). For iST2-1, the 
complex of ST2 receptor with its conformation in docking 
pose 2 was very stable, but RMSD values of the complex of 
its pose 3 tended to increase at the end of MD simulations.

In addition, the solvent accessible surface areas (SASA) 
were calculated to monitor the possible changes in the sol-
vation environment upon ligand binding. SASA of protein 
has always been considered as a decisive factor in protein 
folding and stability studies [59]. Generally, the increased 
value of the protein SASA during simulation indicates struc-
tural relaxations and therefore reduced protein stabilities 
[60]. The mean values of SASA of complexes are shown 
in Table 2, and a graph showing their change over time is 
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shown in Figure S9. In general, the mean SASA of the ST2 
receptor in the form of apoprotein and complexes with 20 
ligands did not change much (about 110  nm2). The bind-
ing of ligands does not greatly affect the protein structure; 
it could even stabilize the structure. With the exception 
of ZINC02065976, ZINC32690934 and ZINC40659148, 
all ST2 receptor in complexes with the remaining ligands 
and iST2-1 had smaller SASA than that of the apoprotein 
(110.40 ± 1.04  nm2).

Furthermore, the radius of gyration  (Rg) of the protein 
was also calculated (the mean is shown in Table 2 and the 
graph over time in Figure S10).  Rg is considered an indicator 
of protein structure compactness [61]. When a ligand binds 
to the protein, a conformational change occurs that will alter 
the radius of gyration. Understanding the  Rg will further 
help in predicting the compactness and binding patterns of 
the drug and protein [62]. The ST2 receptor in the apopro-
tein form has an  Rg of 19.02 ± 0.35 Å and in its complexes 
with 20 ligands or iST2-1 had the  Rg of approximately or 
below this value. These results indicated that the protein was 
stable during 20 ns of MD simulations.

Stability of the binding site and the 20 ligands

The stability of the binding site is determined by the RMSF 
of the alpha carbons of the residues. RMSF values calculated 
from all MD trajectories of 20 complexes were overlapped 
with that of the apoprotein presented in Figure S11A with 
the key residues in the binding site highlighted. The sepa-
rate RMSF plot of each complex overlapped with that of 
the apoprotein is shown in Figure S12. It can be seen that 
the residues Lys22, Arg35, Arg38, Gln39, Tyr119, Thr135 
and Arg198 all have stable fluctuations with an RMSF 
of < 2 Å, and there is no significant difference in complexes 
and apoprotein state. Interestingly, however, the binding of 
the ligands to the protein leads to the stabilization of the 
β-loop from Tyr50–Gln60 with the RMSF decreasing from 
about 1–6 Å and slightly increasing the fluctuation of β-loop 
from Lys107–Leu117 with the RMSF increased from about 
0.5–2 Å (Figure S11B).

The average RMSD values of heavy atoms of each ligand 
in Table 2 and the RMSD–time plot in Figure S13 help iden-
tify highly stable ligands during the 20 ns MD simulations. 

Table 1  Docking score and interactions with residues in the binding site of the ST2 receptor of the top 20 hit compounds and the control com-
pound iST2-1

HBD hydrogen bond donor, HBA hydrogen bond acceptor. The abbreviations in parentheses indicate the role of residues in hydrogen bonding 
between them and the ligands

Compounds Docking 
score (kJ/
mol)

Interacting residues

ZINC01951267 − 36.83 Lys22 (HBD), Cys133 (HBA), Thr135 (HBD), Asp137 (HBD and HBA), Arg198 (HBD)
ZINC02065976 − 37.30 Lys22 (HBD), Arg35 (HBD), Asp137 (HBD and HBA), Arg198 (HBD)
ZINC02876200 − 42.07 Lys22 (HBD), Trp25 (HBD), Met118 (HBD), Pro134 (HBD), Arg198 (HBD)
ZINC08444471 − 41.43 Lys22 (HBD), Arg35 (HBD and HBD), Arg38 (HBD), Gln39 (HBA)
ZINC08821844 − 38.01 Lys22 (HBD), Trp25 (arene-H), Tyr119 (arene-H), Arg198 (HBD)
ZINC08911140 − 37.31 Lys22 (HBD), Thr135 (HBD), Arg198 (HBD)
ZINC09090269 − 38.34 Arg35 (HBD), Cys36 (HBA), Gln39 (HBD), Thr135 (HBD), Arg198 (HBD)
ZINC16933127 − 36.53 Lys22 (HBD), Ser24 (HBA), Trp25 (HBA), Thr135 (arene-H), Arg198 (HBD)
ZINC20527417 − 39.14 Arg38 (HBD), Gln39 (HBA), Cys133 (HBA), Pro134 (arene-H), Thr135 (arene-H), Asp137 (HBA), Arg198 

(HBD)
ZINC31554431 − 37.14 Lys22 (HBD), Arg35 (HBD and HBA), Asp137 (HBD), Arg198 (HBD)
ZINC32690934 − 36.86 Lys22 (HBD), Arg35 (HBD), Cys36 (HBA), Pro37 (HBD), Gln39 (HBA), Thr135 (arene-H), Arg198 (HBD)
ZINC39869848 − 38.30 Lys22 (HBD), Arg35 (HBD), Cys36 (HBA), Arg38 (HBD), Gln39 (HBD and HBA), Arg198 (HBD)
ZINC40622701 − 36.02 Arg35 (HBD), Cys36 (HBA), Gln39 (HBA), Asp137 (HDA), Arg198 (HBD)
ZINC40658091 − 37.28 Arg35 (HBD and HBA), Arg38 (HBD), Gln39 (HBD and HBA), Thr135 (HBD), Asp137 (HBA)
ZINC40658929 − 46.03 Lys22 (HBD), Ser24 (HBA), Trp25 (HBD), Arg198 (HBD)
ZINC40659076 − 44.77 Lys22 (HBD), Ser24 (HBA), Trp25 (HBD), Arg198 (HBD)
ZINC40659148 − 41.76 Lys22 (HBD), Ser24 (HBA), Trp25 (HBD), Arg198 (HBD)
ZINC40659221 − 37.83 Lys22 (HBD), Ser24 (HBA), Trp25 (HBD), Arg198 (HBD)
ZINC59502934 − 38.20 Lys22 (arene-H), Ser24 (HBD), Trp25 (HBD), Tyr119 (HBD), Arg198 (HBD)
ZINC59514725 − 37.13 Lys22 (HBD), Trp25 (HBD), Arg35 (HBD), Arg38 (HBD), Gln39 (HBD), Asp137 (HBA)
iST2-1 (pose 2) − 18.45 Arg35 (HBD), Asp137 (HBA)
iST2-1 (pose 3) − 17.80 Tyr132 (arene-H), Pro134 (arene-H), Thr135 (arene-H), Arg198 (HBD)
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High RMSD values reveal large conformational changes 
of the ligands during MD simulations. Most of the ligands 
had mean RMSD values < 2 Å except for ZINC02065976, 
ZINC02876200, ZINC20527417 and ZINC40659148.

Analysis of MM/GBSA binding free energy 
and the hydrogen bonds that occurred 
during the trajectories sampled in the 20 ns MD simulations

Binding free energies between ST2 receptor and the 20 
selected ligands were calculated based on data from 201 
frames of the 20 ns MD trajectories (from frame 1 to 2001 
with interval of 10). The binding capacity of these ligands 
can be compared by the MM/GBSA ΔGbind values shown 
in the graph in Fig. 5. The ΔGbind values and energy com-
ponents are presented in Table S9. It is clear that all 20 
complexes have negative binding free energy. In particu-
lar, the six complexes of ZINC08821844, ZINC08911140, 
ZINC16933127, ZINC40658091, ZINC59502934 and 
ZINC59514725 have the remarkable ΔGbind of <  − 20 kcal/
mol, suggesting their stable binding to the receptor. Mean-
while, iST2-1 only has the ΔGbind of pose 2 and pose 3 
conformations of − 7.28 ± 3.96 and − 2.97 ± 4.05  kcal/
mol, respectively. Evaluation of the ΔGbind can help 

unambiguously identify the most potential receptor inhib-
itors. However, the aim of this study was to discover the 
small molecules that inhibit the PPI of the IL-33/ST2 com-
plex by binding strongly and specifically at the location of 
the key residues on the ST2 receptor. Therefore, the interac-
tion of each ligand with these residues should be carefully 
considered to identify top hit compounds.

The number of hydrogen bonds formed between the 20 
ligands and the receptor was calculated from the trajectories 
of 20 ns MD simulations using the VDM software (Fig-
ure S14). Their mean values in Table S10 indicate that the 
five ligands that interacted most strongly with the recep-
tor are ZINC08911140, ZINC16933127, ZINC20527417, 
ZINC40658091 and ZINC59514725. This result contrib-
utes to the explanation for their good binding free energy 
as mentioned above. As the object of this study was to find 
compounds that interact with the key residues of IL-33/
ST2 PPIs, the percentage occupancy of hydrogen bonds 
was also investigated (Table  S10). With the exception 
of ZINC31554431, most ligands act as hydrogen bond 
acceptors from ST2 receptor residues. By comparing the 
frequency of hydrogen bond forming, the four ligands 
ZINC08911140, ZINC16933127, ZINC40658091 and 
ZINC59514725 were identified as the most potent inhibitors 

Table 2  Mean and standard 
deviation of protein backbone 
RMSD, solvent accessible 
surface area (SASA), radius of 
gyration (Rg) and ligand RMSD 
values calculated from the data 
of 20 ns MD trajectories of 
the ST2 receptor in apoprotein 
form and in complexes with 
20 investigated ligands and 2 
docking poses of the control 
compound iST2-1

Complex RMSD of protein 
 Cbackbone (Å)

SASA  (nm2) Rg (Å) RMSD of heavy 
atoms of ligand 
(Å)

Apoprotein 3.29 ± 1.15 110.40 ± 1.04 19.02 ± 0.35
ZINC01951267 2.60 ± 0.31 110.16 ± 1.02 18.57 ± 0.19 1.12 ± 0.32
ZINC02065976 4.58 ± 0.60 110.91 ± 1.11 19.20 ± 0.28 2.80 ± 0.64
ZINC02876200 2.76 ± 0.29 109.95 ± 1.11 18.43 ± 0.16 2.44 ± 0.71
ZINC08444471 3.08 ± 0.45 110.36 ± 1.17 18.62 ± 0.27 1.93 ± 0.49
ZINC08821844 3.28 ± 0.43 110.31 ± 1.19 19.23 ± 0.16 1.68 ± 0.19
ZINC08911140 4.15 ± 0.91 108.91 ± 1.12 19.10 ± 0.29 0.62 ± 0.27
ZINC09090269 3.03 ± 0.40 109.80 ± 1.06 18.96 ± 0.20 1.58 ± 0.47
ZINC16933127 3.04 ± 0.45 110.24 ± 1.12 18.30 ± 0.19 1.92 ± 0.43
ZINC20527417 2.31 ± 0.28 109.75 ± 1.23 18.65 ± 0.15 2.54 ± 0.60
ZINC31554431 4.31 ± 0.67 109.84 ± 0.99 19.14 ± 0.22 1.90 ± 0.29
ZINC32690934 3.72 ± 0.43 111.44 ± 0.99 19.22 ± 0.19 1.66 ± 0.28
ZINC39869848 3.11 ± 0.44 109.80 ± 1.22 18.68 ± 0.28 1.96 ± 0.39
ZINC40622701 3.30 ± 0.48 109.09 ± 1.08 18.96 ± 0.19 1.69 ± 0.24
ZINC40658091 3.07 ± 0.41 109.50 ± 1.29 18.74 ± 0.14 1.60 ± 0.28
ZINC40658929 2.79 ± 0.34 109.08 ± 1.06 18.94 ± 0.18 1.60 ± 0.42
ZINC40659076 2.23 ± 0.23 108.71 ± 1.15 18.87 ± 0.15 1.92 ± 0.63
ZINC40659148 3.74 ± 0.68 111.05 ± 1.61 19.12 ± 0.31 2.02 ± 0.42
ZINC40659221 3.00 ± 0.46 110.23 ± 1.02 18.78 ± 0.18 1.91 ± 0.36
ZINC59502934 2.57 ± 0.31 109.36 ± 1.03 18.69 ± 0.17 1.79 ± 0.25
ZINC59514725 3.27 ± 0.41 108.82 ± 1.09 18.24 ± 0.31 1.34 ± 0.25
iST2-1 (pose 2) 2.72 ± 0.25 108.80 ± 1.45 18.56 ± 0.21 2.01 ± 0.63
iST2-1 (pose 3) 2.81 ± 0.74 110.07 ± 1.11 18.82 ± 0.24 1.69 ± 0.65
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of the ST2 receptor because they strongly interacted with 
key residues by hydrogen bonding at very high occupancy. 
The iST2-1 formed hydrogen bonds with the key residues 
with low frequency (< 10%) in both conformations even 
though they did in molecular docking. This suggests that 
iST2-1 may have moved out of the binding cavity during 
the simulation. Meanwhile, ZINC08911140 interacted 
with Arg198 and Tyr119 by hydrogen bond acceptor atoms 
with a total frequency of 275.48 and 18.23%, respectively. 
ZINC16933127 received hydrogen bonding from Arg35 
with a total frequency of 187.17% and with other key resi-
dues such as Lys22, Thr135 and Arg198 with a frequency 
of 40.86, 55.65 and 19.78%, respectively. ZINC40658091 
formed hydrogen bonds with Lys22, Arg35 and Tyr119 with 
a frequency of 61.84, 225.32 and 47.05%, respectively. In 
particular, ZINC59514725 exhibited potential as a strong 
inhibitor of the ST2 receptor when interacting with five over 
the seven key residues Lys22, Arg35, Agr38, Gln39 and 
Thr135 with hydrogen bond forming frequencies of 98.10, 
259.45, 36.36, 83.47 and 19.73%, respectively. These four 
ligands also have stable protein binding free energy with 
a ΔG

bind
 of − 20.79 ± 4.56, − 20.92 ± 6.11, − 22.67 ± 8.96 

and − 36.92 ± 8.89 kcal/mol, respectively.
A rapid assessment for the physicochemical and ADMET 

properties of the 20 ligands was carried out by using the 
ADMETlab 2.0 web tool [63], and the predicted results are 
presented in Table S11. The four compounds mentioned 
above have potential for medicinal use because of their com-
pliance with the Lipinski and Pfizer rules, no PAINS (Pan 
assay interference compounds) alert, good or moderate oral 
absorption, no serious toxicity and ease of synthesis. There-
fore, 100 ns MD simulations were performed and analyzed 
to more closely investigate the binding processes of these 
top hit compounds. This process was also performed for the 
docking pose 2 of the control compound iST2-1 due to its 
better 20 ns MD simulation results (compared to pose 3).

Identify of the top hit compounds by long MD 
simulations

Similar to the 20 ns MD simulations, RMSD and RMSF 
profiles were also used to evaluate protein stability in four 
complexes. As illustrated in Fig. 6A, both the apoprotein and 
the four complexes have RMSD carbon backbone fluctua-
tions less than 2 Å. However, it can be seen that the complex 
of ZINC40658091 has a higher volatility than the other three 
complexes. Especially, complexes of ZINC16933127 and 
ZINC59514725 have a really low protein RMSD fluctuation 
(< 1 Å). These results were in perfect agreement with the 
protein RMSF plot (Fig. 6B), as these two ligands helped 
stabilize the loops on the secondary structure at domains 
1 and 2 of the ST2 receptor. When observing the stabil-
ity of each hit compounds through the RMSD values of 
their heavy atoms (Fig. 6C), the ligands reached high sta-
bility after about 40 ns. ZINC08911140, ZINC16933127 
and ZINC59514725 have RMSD ligands of just 0.5 Å. 
ZINC40658091 again exhibited instability at the end of the 
simulation time point although it has reached a prolonged 
equilibrium over a period of 40 − 90 ns. For the complex 
of iST2-1 with the receptor, the protein and ligand RMSD 
values fluctuated greatly (Fig. 6A, C) and revealed multiple 
translocations of this ligand in throughout 100 ns of MD 
simulations. The results of hydrogen bond analysis from 
the data of the last 50 ns of MD simulations in Table 3 and 
Fig. 6D show that the ligands formed an average of three to 
four hydrogen bonds with the protein. The maximum num-
ber of hydrogen bonds they have formed with the ST2 recep-
tor ranges from 7 to 10, while iST2-1 could only form up to 
four in a few frames.

The data from MD trajectories of the last half simula-
tion time were used for further analyses including interac-
tion frequency, binding free energy and per-residues energy 
decomposition. The ability to interact with key residues 

Fig. 5  MM/GBSA binding free 
energies calculated from 20 ns 
MD trajectories for the investi-
gated 20 ligands as they bound 
to the ST2 receptor
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was considered as an important criterion for assessing hit 
compounds in this study. The percentage of hydrogen bond 
occupancy of each ligand with the ST2 receptor was ana-
lyzed by the VMD software and is detailed in Table 3. Fur-
thermore, because the PPI of IL-33/ST2 is formed mainly 
by salt bridges between the hotspot residues, ionic interac-
tions between the ST2 receptor with the four small molecular 
ligands were of high interest to be investigated. Other types 
of interactions such as ionic interactions, arene interac-
tions and surface contacts were analyzed from 500 frames 
extracted from the last 50 ns of 100 ns MD simulations 

trajectories using the PLIF tool in the MOE 2015.10 soft-
ware and are detailed in Table 4. The results showed that all 
four ligands exhibit strong interactions with the key resi-
dues mainly by hydrogen bonding and salt bridges, while 
the interaction of iST1-1 is negligible. The two-dimensional 
diagrams in Fig. 7 more visually illustrate the interaction 
of ligand atoms with the ST2 residues. For easy tracking, 
the atoms of each ligand are numbered by their atom index 
in the MD simulations data. Some residues have a > 100% 
interaction forming frequency because they have multiple 
interactions of a single type with the same ligand atom. For 

Fig. 6  A Protein carbon backbone RMSD and B carbon alpha RMSF 
values of the ST2 receptor in apoprotein form and in complexes with 
the top four hit compounds and the control compound iST2-1 calcu-
lated using data of 100 ns trajectories of MD simulations. C Ligand 
heavy atom RMSD profiles estimated from the same MD trajectories. 

D Number of hydrogen bonds and E MM/GBSA binding free energy 
variation over time of the four ligands and iST2-1 when binding to 
the receptor calculated using the last 50 ns trajectories of 100 ns MD 
simulations



2671Molecular Diversity (2022) 26:2659–2678 

1 3

example, the arginine side chain has four hydrogen bond 
donors that can all hydrogen bond to a single acceptor of 
ligand as shown in Table 3.

ZINC08911140 interacted with the key residue Arg198 
by only its carboxylate group (–COmainO4−) via hydrogen 
and ionic bonds with a total frequency of 184.5 and 100.0%, 
respectively (Table 4 and Fig. 7A). In addition, this com-
pound also interacted with Lys27 by two similar interactions 
at the carboxylate group position with the frequency of 93.3 
and 96.2%, respectively. At the other end of the molecule, 

the nitro group (–N+O5O1−) formed weak hydrogen bonds 
with Lys130 and contacted by arene-arene stacking with 
Tyr132 with a frequency of 27.7 and 34.9%, respectively. 
The result suggests that ZINC08911140 seems to bind to the 
ST2 receptor by anchoring mainly on a local site of Lys127 
and Arg198. Similarly, ZINC40658091 (Fig. 7C) also binds 
to the receptor on a side of the molecule by accepting hydro-
gen bonds from Lys22, Arg35, and Arg38 on the same car-
boxylate group (–COmainO4−) with frequencies of 96.4, 93.3 
and 78.4%, respectively; hydrogen bonds donor with Ser21 

Table 3  Number and occupancy 
frequencies of hydrogen bonds 
of the top four hit compounds 
and the control compound 
iST2-1 calculated using the 
data of the last 50 ns of 100 ns 
simulations trajectories

Only interactions with a frequency greater than 10% are presented
The key residues are shown in bold

Compound Number of hydrogen 
bonds formed in each 
frame

Donor Acceptor Occupancy (%)

ZINC08911140 3.09 ± 1.12 ARG198-Side-NH1 LIG209-Side-O4 93.2
LYS127-Side-NZ LIG209-Main-O 49
LYS127-Side-NZ LIG209-Side-O4 44.3
ARG198-Side-NH2 LIG209-Side-O4 38
ARG198-Side-NH2 LIG209-Main-O 36.4
LYS130-Side-NZ LIG209-Side-O1 19.7
ARG198-Side-NH1 LIG209-Main-O 16.9

ZINC16933127 4.63 ± 1.36 ARG38-Side-NH1 LIG209-Side-O4 80.4
ARG38-Side-NH1 LIG209-Side-O1 72
ARG38-Side-NE LIG209-Side-O4 66.1
GLN39-Main-N LIG209-Side-O6 53.9
LIG209-Side-O5 GLN23-Main-O 39.8
ARG38-Side-NE LIG209-Side-O1 38.5
ARG96-Side-NH2 LIG209-Side-O4 19.4
LYS22-Side-NZ LIG209-Side-O3 17.2
LYS22-Side-NZ LIG209-Main-O 16
GLN39-Main-N LIG209-Side-O2 14.2
ARG96-Side-NH2 LIG209-Side-O1 11.7

ZINC40658091 4.15 ± 1.38 LIG209-Side-N2 SER21-Main-O 93.3
LYS22-Side-NZ LIG209-Side-O4 50.4
LYS22-Side-NZ LIG209-Main-O 46
ARG38-Main-N LIG209-Main-O 43.6
ARG38-Main-N LIG209-Side-O4 34.8
ARG35-Side-NH1 LIG209-Side-O4 27.3
ARG35-Side-NH1 LIG209-Main-O 24.8
ARG35-Side-NE LIG209-Side-O4 21.2
ARG35-Side-NH2 LIG209-Side-O4 13.2

ZINC59514725 4.46 ± 1.03 LYS22-Side-NZ LIG209-Side-O5 96.5
ARG35-Side-NE LIG209-Side-O5 89.9
ARG38-Side-NH1 LIG209-Main-O 59.8
ARG38-Side-NE LIG209-Main-O 55.1
ARG38-Side-NH1 LIG209-Side-O4 43.1
ARG38-Side-NE LIG209-Side-O4 38.3
ARG96-Side-NH2 LIG209-Main-O 12
ARG96-Side-NH2 LIG209-Side-O4 11.2

iST2-1 (pose 2) 0.40 ± 0.72 THR86-Main-N LIG209-Side-O2 10.3
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by the –N2H group with a frequency of 93.3%; and weak 
π-alkyl interaction with Lys19 with a frequency of 6.1%.

ZINC16933127 bound to the target more consistently 
and is demonstrated in its protein RMSD, RMSF and ligand 
RMSD plots (Fig. 6). The binding mode of this ligand is also 
more balanced at both sides of the molecule (Fig. 7B). This 
compound formed both hydrogen and ionic bonds with the 
two key residues Lys22 and Arg38 with high frequency. The 
structural core of molecule ZINC16933127 is (Z)-2-amino-
5-benzylidenethiazol-4(5H)-one. At the carboxylate group 
(–CO1O4−) of the 1-carboxylatoethoxy side branch, the 
ligand accepted the hydrogen bonding of Arg38 and Arg96 
with a frequency of 257 and 44.6%, respectively. This car-
boxylate group also formed ionic interactions with these two 
residues with a frequency of 99.2 and 37.4%, respectively 
(Table 4). At the 5-hydroxybenzoate ring, the oxygen atoms 
of the carboxylate group (–COmainO3−) accepted hydrogen 
bonds and formed salt bridges with Lys22 with a frequency 
of 32.2 and 35.4%, respectively, the −  O5H group donated 
hydrogen bond with Gln23 with a frequency of 39.8%, and 
the phenyl ring formed a weak π- alkyl contact with Lys22 
with a frequency of 21.4%. In addition, the key residue 

Gln39 also interacts with the central part of the molecule by 
hydrogen bonds with  O2 and  O6 atoms with a frequency of 
21.1 and 53.9%, respectively, and a π-alkyl interaction with 
phenyl ring with an occupancy of 23.4%.

In particular, ZINC59514725 (Fig. 7D) can be considered 
the best hit compound in this virtual screening study and 
could be a potential candidate for future ST2 receptor inhibi-
tors. ZINC59514725 is the diamide of 5-pivalamidoisoph-
thalic acid with two molecules of 3-aminobenzoic acid. It 
bound stably to the receptor on three key residues, including 
Lys22, Arg35 and Arg38. Looking back at the PPI between 
IL-33 and the ST2 receptor in Fig. 2, the interaction with 
these residues may enable ZINC59514725 to competitively 
bind to hotspot residues on IL-33 such as Glu148, Glu144 
and Asp244. These residues have been experimentally dem-
onstrated that their mutant form leads to an apparent change 
in binding affinity between ST2 and IL-33 (Fig. 2B). The 
two carboxylate groups at the ends of the ZINC59514725 
molecule show similarities to the two acidic and nega-
tively charged residues Glu144 and Glu148 of IL-33. The 
5-pivalamidoisophthalic acid center played as a linker and 
appropriate spacer that helped the two groups of acids to 

Table 4  Percentage occupancy 
of ionic interactions, arene 
interactions, and surface 
contacts formed between the 
ST2 receptor with the top four 
hit compounds and the control 
compound iST2-1 calculated 
by PLIF using extracted frames 
from the last half trajectories of 
100 ns MD simulations

Compound Ionic interaction Arene interaction Surface contact

Residue Occupancy (%) Residue Occupancy (%) Residue Occupancy (%)

ZINC08911140 Lys127 96.2 Met118 1 Met118 3.6
Arg198 100 Tyr119 3.8 Tyr119 3.4

Tyr132 34.9
ZINC16933127 Lys22 35.4 Lys22 21.4 Lys22 9

Arg35 2.8 Arg35 5.8 Arg35 15.6
Arg38 99.2 Gln39 23.4 Arg38 4.6
Arg96 37.4 Gln39 31.4

ZINC40658091 Lys22 97.8 Lys19 6.1 Lys19 5.9
Arg35 38.7 Lys22 15 Phe20 1

Gln23 3.2 Lys22 7.1
Tyr116 2 Trp25 2.4

Arg38 5.9
Tyr116 2.8
Tyr119 24.5

ZINC59514725 Lys19 3.6 Arg38 28.9 Arg38 56.3
Lys22 100 Gly40 3.8
Arg35 99.2
Arg38 99.6
Arg96 27.7

iST2-1 (pose 2) Tyr49 5 Tyr49 25.1
Ser51 1.2 Tyr50 6.2
Thr86 3 Tyr85 6.5
Ile88 2.1 Thr86 3.3

Ile88 2.1
Thr97 3.3
Tyr99 1.2
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have suitable spatial positions to interact with the basic 
and positively charged residues of the ST2 receptor. The 
–CO1O5− carboxylate group accepted three hydrogen bonds 
from Lys22 and Arg35 with a frequency of 96.5 and 107.9%, 
respectively, and also formed salt bridges with these residues 
with a frequency of 100.0 and 99.2%, respectively. In the 
remaining carboxylate group (–COmainO4−), ZINC59514725 
accepted four hydrogen bonds from Arg38 and Arg96 with a 
frequency of 196.3 and 38.0%, respectively, and also formed 
ionic interactions with these two residues with a frequency 
of 99.6 and 27.7%, respectively. Arg38 also formed a weak 
π-alkyl interaction with the phenyl group with a frequency of 
28.9%. The results suggested that ZINC59514725 is a very 
promising inhibitor for the ST2 receptor. The very low fluc-
tuations of ZINC59514725 (Fig. 6C) and its complex with 
the protein shown in Figs. 6A, B indicate a high stability of 
this compound in binding to the ST2 receptor.

Our 100-ns MD simulation study for iST2-1 compound 
has repeated results of Ramadan A. M. et al. [25] when two 
other binding sites of were found. Initially, the control com-
pound bound at the ST2/IL-33 interaction interface. But it 
has moved quickly to Pocket 1 and stayed there for 20 ns, 

then continued to move away from the protein for the next 
50 ns and finally bound stably in Pocket 2. These events 
are illustrated in Figure S15A. The flexibility of iST2-1 has 
resulted in its low frequency of interaction forming with 
specific residues (Tables 3, 4).

Binding mode of the four top hit compounds at the end 
time of 100 ns MD simulations is illustrated in Fig. 8. 
Because the binding surface of the ST2 receptor is quite 
wide, it can be seen that ZINC08911140 binds at a differ-
ent location than the other three ligands (Figure S15B). It 
bound to ST2 at the location with the presence of key resi-
dues such as Tyr119, Thr135 and Arg198. However, this 
ligand only interacted strongly with Arg198 by hydrogen 
bonds and salt bridges (Fig. 8A). The remaining ligands 
had almost the same binding pattern. They bound to the 
receptor at the location defined by the key residues such 
as Lys22, Arg35, Arg38 and Gln39. As a result, they have 
nearly identical binding modes at the end of the MD simu-
lations as illustrated in Figure S8B, C and D. However, 
as discussed above, ZINC40658091 only interacted with 
key residues at one side of the molecule and the opposite 
structural part has become very flexible. ZINC16933127 

Fig. 7  Schematic of detailed ligand atom interactions with the ST2 receptor residues
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and ZINC59514725 further proved to be more stable when 
their entire structures were fixed onto the ST2 receptor by 
strong hydrogen and ionic bonds. They have not moved 
away from the originally defined binding site and were 
becoming more tightly bound to the key residues as shown 
in Figure S15C and D.

MM/GBSA binding free energy of the four top hit com-
pounds was calculated using data of the last 50 ns of 100 ns 
MD trajectories. The ΔG

bind
 of the ligands still had negative 

values (Table 5), and their variation over time is illustrated 
in Fig. 6E, in which ZINC16933127 and ZINC59514725 had 
stable binding free energy and possessed the most negative 
mean values of − 28.93 ± 6.66 and − 26.84 ± 5.07 kcal/mol, 
respectively. Even, the ΔG

bind
  of the two top hit compounds 

tends to decrease at the end of the simulation and reflects 
an increase in binding affinity. The ligands ZINC08911140 
and ZINC40658091 have higher ΔG

bind
 values, suggesting 

weaker binding. iST2-1 had a ΔG
bind

 value close to 0 kcal/
mol from 50 to  70 ns because it flew out of the protein and 
only reached negative value when returning to Pocket 2 from 
70  to 100 ns of MD trajectory.

To determine more clearly the contribution of resi-
dues in the interaction between the ST2 receptor and the 
ligands, the per-residue energy decomposition was car-
ried out; the results are presented in Table 6. As analyzed 
above, ZINC08911140 interacted mainly by hydrogen 
bonds and salt bridges with Arg198, leading to a large 
contribution of this residue in the binding free energy 
(− 7.11 kcal/mol). In addition, Tyr132 also contributed a 
significant amount of free energy (− 3.52 kcal/mol). Simi-
larly, Lys22, Arg35, Arg38 and Tyr119 also contributed for 
ZINC40658091 and ST2 receptor binding with free ener-
gies of − 6.11, − 3.91, − 2.56 and − 1.87 kcal/mol, respec-
tively. In the case of ZINC16933127, Arg38 contributed a 

Fig. 8  Visualization of binding 
mode of the four top hits at the 
end of the 100 ns MD simula-
tions in the presence of residues 
within a radius of 5 Å. Only 
residues that interact with the 
ligand are labeled

Table 5  Binding free energies of the four top hit compounds and the control compound iST2-1 bound to the ST2 receptor estimated by MM/
GBSA approach from the data of the last half trajectories of 100 ns MDs trajectories

Ligands ΔEvdW (kcal/
mol)

ΔEele (kcal/mol) ΔGGB (kcal/
mol)

ΔGSA (kcal/
mol)

ΔGgas (kcal/mol) ΔGsolv (kcal/
mol)

ΔGbind (kcal/
mol)

ZINC08911140  − 17.79 ± 4.04  − 236.52 ± 17.62 236.54 ± 14.39  − 3.76 ± 0.37  − 254.31 ± 16.53 232.78 ± 14.30  − 21.53 ± 5.34
ZINC16933127  − 25.19 ± 4.83  − 531.06 ± 37.41 531.75 ± 32.14  − 4.43 ± 0.38  − 556.25 ± 36.56 527.32 ± 31.97  − 28.93 ± 6.66
ZINC40658091  − 23.98 ± 4.94  − 316.28 ± 28.71 321.36 ± 24.14  − 4.36 ± 0.76  − 340.25 ± 28.37 317.00 ± 23.91  − 23.25 ± 8.39
ZINC59514725  − 17.28 ± 3.56  − 541.44 ± 30.68 535.54 ± 27.00  − 3.66 ± 0.24  − 558.72 ± 29.65 531.88 ± 26.92  − 26.84 ± 5.07
iST2-1  − 11.56 ± 8.47 72.72 ± 32.41  − 64.91 ± 28.76  − 1.71 ± 1.25 61.16 ± 27.21  − 66.62 ± 29.55  − 5.46 ± 4.68
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remarkable free energy of − 11.26 kcal/mol, along with other 
key residues such as Lys22, Arg35 and Gln39 with energies 
of − 1.99, − 2.05 and − 1.99 kcal/mol, respectively. Finally, 
ZINC59514725 still exhibited excellent binding to the 
ST2 receptor as the key residues Lys22, Arg35 and Arg38 
contributed significant free energy levels of − 5.03, − 5.88 
and − 8.92 kcal/mol, respectively. Moreover, the two key res-
idues Gln39 and Thr135 also contributed a part of the energy 
with values of − 0.65 and − 0.44 kcal/mol, respectively.

Thus, ZINC59514725 was identified as the best hit com-
pound within the scope of this study by analyzes such as 
stability of complexes and ligand, frequency of interactions 
occupancy, MM/GBSA binding free energy and per-residues 
energy decomposition. These results strongly suggested a 
promising lead compound for an inhibitory effect on the 
interaction between the ST2 receptor and IL-33. Further 
in vitro and in vivo experiments need to be performed to 
confirm the effect of this compound in the near future.

Conclusion

The association of the cytokine IL-33 with its ST2 receptor 
on the surface of blood cells leads to a cascade of immune 
responses and is implicated in many inflammatory and 
autoimmune diseases. PPIs between the two proteins have 
become an interesting target for new drug discovery projects 
to treat related diseases, even for COVID-19. However, the 
successful discovery of small molecule drugs that inhibit 
PPIs has never been easy because of its novelty and com-
plexity. X-ray crystallography and mutational studies have 
helped to elucidate the nature of PPIs between IL-33 and 
the ST2 receptor. These biological data became the basis for 
medicinal chemist to begin research on inhibitors of IL-33 
activity.

The drug discovery process is always time-consuming 
and very expensive. In this study, rational drug design 
methods helped to discover several molecules that have 

the ability to inhibit the ST2 receptor in silico. High-per-
formance screening methods such as pharmacophore mod-
eling and molecular docking have become effective fun-
nels for the initial search of compounds capable of binding 
on the target. Subsequently applied computational biology 
methods such as MD simulations and MM/GBSA binding 
free energy calculations supported the ranking and identi-
fication the most potential inhibitors for the ST2 receptor. 
In the era of big data, the huge  ZINC12 database with more 
than 22 million chemical structures corresponding to more 
than 200 conformations has been applied to search for 
compounds with desired activity. A series of compounds 
have exhibited better in silico binding ability to the ST2 
receptor than the control inhibitor iST2-1. ZINC08911140, 
ZINC16933127, ZINC40658091 and ZINC59514725 were 
identified as the four most potential hits demonstrated by 
their strong and stable interactions with the ST2 receptors. 
Calculations based on long MD simulations data revealed 
ZINC59514725 to be the most promising drug candidate 
with binding free energy of − 26.84 kcal/mol and abundant 
interactions with many key residues in PPIs of IL-33/ST2. 
These potential compounds will soon enter the next stages 
of drug discovery process. Successful discovery of the ST2 
receptor inhibitors will open a new hope for the treatment 
of inflammatory, autoimmune, infectious and neurodegen-
erative diseases with a completely new mechanism.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11030- 021- 10359-4.
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Table 6  Residues with a binding energy contribution calculated by per-residue energy decomposition

The analysis was performed for residues within 10 Å to the initially docked poses based on the MD frames used for MM/GBSA binding free 
energy calculations. The key residues are shown in bold

Ligands Interacting residues (per-residue energy in kcal/mol)

ZINC08911140 Met118 (− 1.67), Tyr119 (− 0.74), Ser120 (− 0.30), Thr121 (− 0.57), Lys130 (− 0.30), Tyr132 (− 3.52), Ile136 (− 0.14), 
Phe165 (− 0.61), Arg198 (− 7.11)

ZINC16933127 Lys22 (− 1.99), Gln23 (− 0.73), Ser24 (− 0.24), Val34 (− 0.41), Arg35 (− 2.05), Pro37 (− 1.12), Arg38 (− 11.26), Gln39 
(− 1.99), Ala100 (− 0.16)

ZINC40658091 Phe20 (− 0.62), Ser21 (− 1.12), Lys22 (− 6.11), Gln23 (− 0.90), Trp25 (− 0.80), Arg35 (− 3.91), Cys36 (− 0.29), Pro37 
(− 1.63), Arg38 (− 2.56), Leu117 (− 0.22), Met118 (− 0.25), Tyr119 (− 1.87)

ZINC59514725 Phe20 (− 0.33), Lys22 (− 5.03), Ser24 (− 0.13), Val34 (− 0.30), Arg35 (− 5.88), Arg38 (− 8.92), Gln39 (− 0.65), Gly40 
(− 1.25), Lys41 (− 0.32), Thr135 (− 0.44)

iST2-1 Trp48 (− 0.14), Cys87 (− 0.14), Arg96 (− 0.11), Thr97 (− 0.26)
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