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Abstract
Blocking the main replicating enzyme, 3 Chymotrypsin-like protease  (3CLpro) is the most promising drug development 
strategy against the SARS-CoV-2 virus, responsible for the current COVID-19 pandemic. In the present work, 9101 drugs 
obtained from the drug bank database were screened against SARS-CoV-2  3CLpro prosing deep learning, molecular docking, 
and molecular dynamics simulation techniques. In the initial stage, 500 drug-screened by deep learning regression model 
and subjected to molecular docking that resulted in 10 screened compounds with strong binding affinity. Further, five com-
pounds were checked for their binding potential by analyzing molecular dynamics simulation for 100 ns at 300 K. In the final 
stage, two compounds {4-[(2s,4e)-2-(1,3-Benzothiazol-2-Yl)-2-(1h-1,2,3-Benzotriazol-1-Yl)-5-Phenylpent-4-Enyl]Phenyl}
(Difluoro)Methylphosphonic Acid and 1-(3-(2,4-dimethylthiazol-5-yl)-4-oxo-2,4-dihydroindeno[1,2-c]pyrazol-5-yl)-3-(4-
methylpiperazin-1-yl)urea were screened as potential hits by analyzing several parameters like RMSD, Rg, RMSF, MMPBSA, 
and SASA. Thus, our study suggests two potential drugs that can be tested in the experimental conditions to evaluate the 
efficacy against SARS-CoV-2. Further, such drugs could be modified to develop more potent drugs against COVID-19.
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Introduction

During the past decades, humans have faced a great chal-
lenge of several viral infections like HIV, Influenza, her-
pes, etc. The recent outbreak of SARS-CoV-2 has posed 
a great concern on human existence all over the world [1]. 
The intrinsic morbidity and mortality as well as the related 
deaths because of respiratory illness, make SARS-CoV-2 
a major and recurrent global public health concern. The 
SARS-CoV-2 (Family-Coronaviridae) virus is enveloped, 
positive-sense, and has a single-stranded RNA genome of 
30 kb which encodes more than 20 proteins. Proteins of 
SARS-CoV-2 can be grouped into structural proteins and 
non-structural proteins. Among many reported drug targets, 
3C-like protease  (3CLpro) or main protease  (Mpro) is consid-
ered an important drug target [2] because it cleaves poly pro-
tein pp1a and pp1ab to create functional proteins. An RNA-
dependent RNA polymerase, a helicase, a single-stranded 
RNA-binding protein, an exoribonuclease, an endoribonu-
clease, and a 2′-O-ribose methyltransferase are among the 11 
proteins which are cleaved by  3CLpro to yield distinct func-
tional proteins [3]. Thus  3CLpro is required for coronavirus 
replication, and it is also not found in host cells, making it a 

suitable target for antiviral medicines [4]. Moreover, 3C-like 
protease is considered as a key enzyme for the survival and 
growth of the virus [5].

According to WHO, there are currently more than 50 
COVID-19 vaccine candidates in trials. However, they can 
pose some safety risk and the efficacies rate of these vac-
cines are 95% for COVID-19 mRNA vaccine BNT162b2 
(Pfizer), 70.4% for ChAdOx1 nCoV-19 vaccine/AZD1222 
(AstraZeneca) vaccine, 78% for sinovac, 94.1% for mRNA-
1273 vaccine (Moderna), and 81% for Covaxine (Bharat 
Biotech), respectively [6]. In India, two vaccines Covishield 
and Covaxine have been given approval for India's immuni-
zation program and the efficacy of vaccines are 81%. Despite 
all these, the treatment of SARS-CoV-2 is still challenging 
because of emerging mutations and unexplained complica-
tions in many patients. Moreover, due to continue mutations, 
SARS-CoV-2 is developing new strains which are more dan-
gerous than previous ones. So keeping this problem in mind 
we need to discover new drugs for the future challenges.

Thus, in the currents situations of world pandemic, the 
development of novel antiviral drugs is much needed to pro-
vide successful treatment. Since the synthesis of new drugs 
is very challenging, we conducted the repurposing of drugs 
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available in the Drug bank database against SARS-CoV-2 
enzyme  3CLpro for novel testable hypotheses for systematic 
drug repurposing [7].

We anticipate that the results of this research may be 
helpful in the discovery of novel drug candidates against 
SARS-CoV-2.

Material and methods

Sequence alignment and basic local alignment 
search tool (BLAST)

Sequence alignment was done to determine the suitability 
of inhibitor dataset of 3C-like protease of SARS-CoV-1 
for screening inhibitors against 3C-like protease of SARS-
CoV-2. Therefore, sequence alignment was carried by 
BLASTp tool (https:// blast. ncbi. nlm. nih. gov/ Blast. cgi? 
PAGE= Prote ins) using sequence 3C-like protease of SARS-
CoV-1 and SARS-CoV-2. FASTA format of both protein 
sequences was downloaded from the protein databank data-
base (PDB-ID 2GZ7 for SARS-CoV-1 and PDB-ID 6W63 
for SARS-CoV-2) and subjected for BLAST.

Predictive modeling by deep learning

In this study, a deep learning algorithm was prepared to 
develop a predictive model for the screening of novel com-
pounds against COVID-19. A predictive model was devel-
oped from deep learning online server (http:// deeps creen 
ing. xielab. net) [8]. The CHEMBL3927 dataset was used to 
build the predictive model, which included the  IC50 value for 
inhibiting the activity of SARS coronavirus 3C-like protease. 
SARS-CoV-2 datasets were unavailable against  3CLpro, so in 
this study we used CHEMBL3927 dataset which is a set of 
inhibitors for  3CLpro of SARS-CoV-1 that was preprocessed 
for molecular vectorization by using PubChem fingerprint 
which generated 881 fingerprints using PaDEL software [9]. 
In deep learning algorithm, deep recurrent neural networks 
(RNN) were used to construct a regression model using 
Pubchem fingerprints. Various models were developed by 
manually optimized hyperparameters such as learning rate, 
epoch, batch size, number of neurons, and hidden layer. 
For the creation of models, ReLU (y = (max(0,1)) activa-
tion function was used for hidden layers, while the sigmoid 
function was used for the output layer.

Model evaluation

The validation of deep learning models was done using sev-
eral statistical matrixes. In this analysis, regression algo-
rithm was considered to develop deep learning models, and 
we used various statistical parameters such as R squared 

(R2), Mean squared error (MSE), Root MSE (RMSE), and 
Mean absolute error (MAE) to evaluate model efficiency.

where yi = Observed value. ŷ = Predicted value. y = Mean 
value.

Protein preparation

The Protein Data Bank (https:// www. rcsb. org) server was 
used to obtain the crystal structure of  3CLpro (PDB-ID 
6W63) that is bound with X77 a potent non-covalent inhibi-
tor of SARS-COV-2 [10]. Further, using PyMOL software, 
all water molecules, ions, and ligands were removed from 
the protein structure, and then, hydrogen atoms were added 
to the protein using MGL Tools [11]. Reference molecule 
N-(4-tert-butylphenyl)-N-[(1R)-2-(cyclohexylamino)-2-
oxo-1-(pyridin-3-yl)ethyl]-1Himidazole-4-carboxamide 
(X77) (PubChem ID-145998279), were downloaded from 
PubChem server.

Molecular docking and visualization

The analysis of molecular docking calculation was con-
ducted by Autodock Vina using PyRx open-source software 
(GUI version 0.8) [11] to obtain a population of possible 
orientations and binding energy of compounds at the active 
sites of the protein. Molecular docking analysis was first 
carried out with a reference molecule to verify the docking 
procedure using coordinates: X = − 23.05, Y = 13.32, and 
Z = − 29.93 with dimensions of the grid box 25 × 25 × 25 Å 
against 6W63. After that, virtual screening with ligand mol-
ecules was carried out with protein and the result of molecu-
lar docking was extracted. For further study, the best confir-
mation of the compounds with lower binding energy than the 
reference molecule was selected. Finally, Lig plot + v.1.4.5 
software was used to confirm molecular interactions between 
protein–ligand complexes, including hydrogen bonds and 
the bond lengths.
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Molecular dynamics simulations

The obtained complexes from molecular docking were sub-
jected to MD simulations using the GROMACS 5.0.7 [12] 
package after a comprehensive screening study. Topologies for 
protein and protein–ligand complexes were produced using the 
CHARMM 36 force field [13]. All of the complexes and single 
protein structures were solvated in the water model after the 
topology file was created, and these structures were neutralized 
by adding ions. Furthermore, these structures were relaxed 
using an energy minimization approach involving the steep-
est descent Algorithm and the Verlet cut-off scheme that was 
run for 50,000 cycles at 10 kJ/mol. The equilibration step of 
protein and ligands complex was performed on NVT (constant 
volume) as well as NPT (constant pressure) for 100 ps trajec-
tory period. After equilibration step, the simulation analysis 
was calculated at 300 K temperature and 1 atm pressure using 
2 fs time step for a 100 ns. The trajectory files produced were 
used to visualize the deviation of each protein and complex 
in order to determine the system's stability in a water envi-
ronment. To investigate the deviation between protein and 
ligand complexes Root mean square variance (RMSD), Root 
mean square fluctuation (RMSF), Radius of gyration (RG), 
hydrogen bonds, Solvent accessible surface area (SASA), and 
Principal component analysis (PCA) were used. Further, we 
calculated the interaction energy between protein and ligands 
to calculate the strength between protein and ligand. Further-
more, Molecular Mechanics Poisson–Boltzmann Surface Area 
(MM-PBSA) method was used to calculated the total binding 
free energy using g_mmpbsa package in GROMACS 5.0.7 
software, the free solvation energy (polar + non-polar solvation 
energies), and potential energy (electrostatic + Van der Waals 
interactions) of each protein–ligand complex for last 30 ns time 
period [14].

Functional group analysis

The functional group’s frequency analyses of all compounds 
were calculated by R (version 3.4.3) software using the library 
of “ChemmineR” [15]. Nine functional groups Ester group 
(RCOOR), Carbonyl group (RCOR), Nitrile (RCN), Primary 
amine  (RNH2), Carboxyl group (RCOOH), Hydroxyl group 
(ROH), Ether group (ROR), Secondary amine  (R2NH), and 
Tertiary amine  (R3N), and Aromatic groups and rings were 
analyzed of hit compounds and compared with reference 
compounds.

Results

BLAST results

With coverage of 100 percent query sequence, BLAST 
results showed that  3CLpro of SARS-CoV-1 has 96.08% 
identity to  3CLpro of SARS-CoV-2 (Fig. S1). The 96.08% 
identity suggests that there is enough functional similarity 
between SARS-CoV-1 and SARS-CoV-2. Therefore, dataset 
of inhibitors of  3CLpro of SARS-CoV-1 can be used for pre-
screening a broad dataset of drugs for repurposing against 
 3CLpro of SARS-CoV-2.

Predictive modeling and virtual screening

As a result of the high similarity in structure between SARS-
CoV-1 and SARS-CoV-2  3CLpro enzymes and the lack of 
a dataset against SARS-CoV-2, we used the SARS-CoV-1 
dataset for deep learning prescreening of a wide library of 
drug bank datasets. In this study, we created ten models with 
various hyperparameters, which were manually optimized 
and analyzed using statistical parameters (Table S1), and the 
best model (Number 4) was chosen from all of them whose 
learning rate was 0.01, Epochs was 80, batch size was 16, 
hidden layers was 3, and neuron numbers were 2000, 700, 
200, and the activation function was ReLU, Drop out was 
0, and output function was sigmoid. Compared with other 
models, the best model displayed a reasonable range of sta-
tistical parameters and provided good results with a 0.26 loss 
value, a 0.72 R2 value, 0.26 MSE value, 0.51 RMSE value, 
and a 0.41 MAE value (Fig. S2). Furthermore, the best deep 
learning model for virtual screening was developed based 
on the dataset of Drug bank compounds. The best-predicted 
model screened 500 compounds, which were then subjected 
to molecular docking.

Molecular docking and visualization

To verify the docking protocol the reference molecule 
(X77) was re-docked with a protein. The results of the 
re-docking showed that the reference molecule X77 was 
fully superimposed on a co-crystallized reference mol-
ecule (Fig.  1), with an RMSD of 0.62. The Reference 
compound X77 had a − 8.4  kcal   mol−1 binding energy 
and showed interaction with His163, Gly143, Glu166, 
and Cys145. Ten compounds’ binding energy was lower 
as compare to reference compound, and it was observed 
that {4-[(2s,4e)-2-(1,3-Benzothiazol-2-Yl)-2-(1h-1,2,3-
Benzotriazol-1-Yl)-5-Phenylpent-4-Enyl]Phenyl}(Dif-
luoro)Methylphosphonic Acid was showing hydrogen 
bonds with Gln192, Thr190, Arg188, and Met165 with the 
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− 10.4 kcal  mol−1 binding energy, Ergotamine was inter-
acting with Gln166 and Gln189 with the − 9.7 kcal  mol−1 
binding energy, PF-03882845 forms hydrogen bonds with 
Phe140 with the − 9.7 kcal   mol−1 binding energy, Bro-
mocriptine was found to be interacting with Thr190 with 
the − 9.4 kcal  mol−1 binding energy, 1-(3-(2,4-dimethylth-
iazol-5-yl)-4-oxo-2,4-dihydroindeno[1,2-c]pyrazol-5-yl)-
3-(4-methylpiperazin-1-yl)urea was made hydrogen bonds 
with His164 with the − 9.4 kcal   mol−1 binding energy, 
Omipalisib was interacting with Tyr54, Glu166, and Thr24 
with the − 9.3 kcal  mol−1 binding energy, (1 s)-1-(1h-indol-
3-ylmethyl)-2-(2-pyridin-4-yl-[1,7]naphtyridin-5-yloxy)-
ehylamine forms hydrogen bonds with Gln166, Phe140, 
and His41 with the − 9.3  kcal   mol−1 binding energy, 
2-(2f-Benzothiazolyl)-5-Styryl-3-(4f-Phthalhydrazidyl)
Tetrazolium Chloride makes hydrogen bonds with Ser144 
and Cys145 with the − 9.3  kcal   mol−1 binding energy, 
MK-7622 was made hydrogen bonds with Glu166, Ser144, 
His163, and Cys145 with the − 9.3 kcal   mol−1 binding 

energy, SGX-523 was found to be interacting with Phe140 
with the − 9.3 kcal  mol−1 binding energy (Fig. 2) (Table 1).

Molecular dynamics simulation (MDS)

In this study, we conducted MDS to evaluate the sta-
bility of  3CLpro ligand complexes and to find deeper 
insight into conformation and structural changes 
of the top-ranking lead compounds as a final fil-
ter for the selection of hit compounds. The top five 
compounds {4-[(2s,4e)-2-(1,3-Benzothiazol-2-Yl)-
2-(1h-1,2,3-Benzotriazol-1-Yl)-5-Phenylpent-4-Enyl]
Phenyl}(Difluoro)Methylphosphonic Acid, Ergotamine, 
PF-03882845, Bromocriptine, and 1-(3-(2,4-dimethyl-
thiazol-5-yl)-4-oxo-2,4-dihydroindeno[1,2-c]pyrazol-
5-yl)-3-(4-methylpiperazin-1-yl)urea which showed 
good binding energy as compared to reference were 
subjected to MD simulation and two compounds 

Fig. 1  a 3D structure of protein and reference complex b The 3D structure of super-imposition of the docked reference molecule (X77) with its 
X-ray crystal structure c The 2D structure of super-imposition of the docked reference molecule (X77) with its X-ray crystal structure
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{4-[(2s,4e)-2-(1,3-Benzothiazol-2-Yl)-2-(1h-1,2,3-Ben-
zotriazol-1-Yl)-5-Phenylpent-4-Enyl]Phenyl}(Difluoro)
Methylphosphonic Acid and 1-(3-(2,4-dimethylthiazol-
5-yl)-4-oxo-2,4-dihydroindeno[1,2-c]pyrazol-5-yl)-3-(4-
methylpiperazin-1-yl)urea confirmed good stability with 
 3CLpro for the 100 ns simulation in term of RMSD, RMSF, 
SASA, Rg, and PCA.

Root mean square deviation

The Root Mean Square Deviation (RMSD) calculation of 
all complexes with protein was calculated to analyze the 
deviation of compounds for 100 ns trajectory period. The 
RMSD plot of all protein–ligand complexes  (3CLpro-X77, 
 3CLpro-{4-[(2s ,4e)-2-(1,3-Benzothiazol-2-Yl)-2- 

Fig. 2  Hydrogen bonds and hydrophobic bond interactions between protein complexes derived from virtual docking. The green color indicates 
hydrogen bonds and red color shows hydrophobic bonds with an amino acid of  3CLpro
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(1h-1,2,3-Benzotriazol-1-Yl)-5-Phenylpent-4-Enyl] 
Phenyl}(Dif luoro)Methylphosphonic Acid,  and 
 3CLpro-1-(3-(2,4-dimethylthiazol-5-yl)-4-oxo-2,4- 
dihydroindeno[1,2-c]pyrazol-5-yl)-3-(4-methylpiperazin-
1-yl)urea) showed their stability with protein. In this study, 
the average value of RMSD is 0.181 nm (green), 0.189 nm 
(blue), respectively, as compared to the reference 0.17 nm 
(red) (Table 2). As a result, the analysis of the RMSD plot 
revealed that protein and complexes achieved good stabil-
ity in 100 ns and produced a stable trajectory for further 
investigation. Rg, RMSF, SASA, hydrogen bonds, interac-
tion energy, and principal component analysis were also per-
formed for the 100 ns trajectory period (Fig. 3a).

Root mean square fluctuation (RMSF)

The local changes of compounds, as well as the protein chain 
residues, were analyzed using the Root Mean Square Fluc-
tuation (RMSF) measurement at a particular temperature 
and pressure.

During the 100 ns trajectory period, there were very 
few variations in the constituent residues of  3CLpro 
and all the protein–ligand complexes  (3CLpro-X77, 
 3CLpro-{4-[(2s,4e)-2-(1,3-Benzothiazol-2-Yl)-2-(1h-1,2,3 
-Benzot r i azo l -1 -Yl ) -5 -Phenylpen t -4 -Enyl ]Phe -
ny l } ( D i f l u o r o ) M e t hy l p h o s p h o n i c  A c i d  a n d 
 3CLpro-1-(3-(2,4-dimethylthiazol-5-yl)-4-oxo-2,4 
-dihydroindeno[1,2-c]pyrazol-5-yl)-3-(4-methylpip-
erazin-1-yl)urea), which were plotted to compare the 
flexibility of each residue in the protein and the com-
plex. Figure 3b depicts all complexes fluctuations were 
under 0.2 nm but 1-(3-(2,4-dimethylthiazol-5-yl)-4-oxo-
2,4-dihydroindeno[1,2-c]pyrazol-5-yl)-3-(4-methylpipera-
zin-1-yl)urea showed a fluctuation of more than 0.25 nm in 
45, 46, 277, and 278 residues. At the starting point, all com-
plexes showed fluctuation but these residues are not involved 
in hydrogen bonds as shown in the lig plot; hence, they can 
be neglected. In conclusion, it indicated that fluctuation in 
residues of complexes is significantly similar as compared 
to reference resulting in less fluctuation and good stability.

Table 1  Drug compounds name and their binding energy against  3CLpro

S. no. Drug bank ID Compounds name Binding 
Energy (kcal 
 mol−1)

1 Reference X77 − 8.4
2 DB04285 {4-[(2s,4e)-2-(1,3-Benzothiazol-2-Yl)-2-(1h-1,2,3-Benzotriazol-1-Yl)-5-Phenylpent-4-Enyl]Phenyl}

(Difluoro)Methylphosphonic Acid
− 10.0

3 DB00696 Ergotamine − 9.7
4 DB11814 PF-03882845 − 9.7
5 DB01200 Bromocriptine − 9.4
6 DB07622 1-(3-(2,4-dimethylthiazol-5-yl)-4-oxo-2,4-dihydroindeno[1,2-c]pyrazol-5-yl)-3-(4-methylpiperazin-1-yl)

urea
− 9.4

7 DB12703 Omipalisib − 9.3
8 DB07204 (1 s)-1-(1h-indol-3-ylmethyl)-2-(2-pyridin-4-yl-[1,7]naphtyridin-5-yloxy)-ehylamine − 9.3
9 DB01897 2-(2f-Benzothiazolyl)-5-Styryl-3-(4f-Phthalhydrazidyl)Tetrazolium Chloride − 9.3
10 DB12897 MK-7622 − 9.3
11 DB06314 SGX-523 − 9.3

Table 2  The average values of RMSD, RG, SASA, and Interaction energy of protein and Protein–ligand complexes and Hydrogen numbers of 
Protein–ligand complexes

Complex Average 
RMSD 
(nm)

Average 
Rg (nm)

Average Solvent 
Accessible Surface 
 (nm2)

Interaction 
energy (kJ 
 mol−1)

Hydro-
gen 
numbers

3CLpro-X77(Ref) 0.17 1.88 149.2 − 137.521 4
3CLpro-{4-[(2s,4e)-2-(1,3-Benzothiazol-2-Yl)-2-(1h-1,2,3-

Benzotriazol-1-Yl)-5-Phenylpent-4-Enyl]Phenyl}(Difluoro)Methyl-
phosphonic Acid

0.181 1.88 148.40 − 186.60 5

3CLpro-1-(3-(2,4-dimethylthiazol-5-yl)-4-oxo-2,4-dihydroindeno[1,2-
c]pyrazol-5-yl)-3-(4-methylpiperazin-1-yl)urea

0.189 1.88 152.01 − 131.07 4
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Transformation in the accessibility of solvent

The solvent accessible surface area (SASA) parameter 
calculation was performed to measure the proportion of 
the protein surface that was reached by water solvent dur-
ing MDS. SASA can predict the extent of the conforma-
tional changes that occur during interaction energy simu-
lation [16]. Figure 3c shows the plot of SASA value vs. 
time for all the protein–ligand complexes  (3CLpro-X77, 
 3CLpro-{4-[(2s,4e)-2-(1,3-Benzothiazol-2-Yl)-2-(1h-1,2,3 
-Benzot r i azo l -1 -Yl ) -5 -Phenylpen t -4 -Enyl ]Phe -
ny l } ( D i f l u o r o ) M e t hy l p h o s p h o n i c  Ac i d ,  a n d 
 3CLpro-1-(3-(2,4-dimethylthiazol-5-yl)-4-oxo-2,4 
-dihydroindeno[1,2-c]pyrazol-5-yl)-3-(4-methylpipera-
zin-1-yl)urea). The average SASA of protein–ligand com-
plexes is 148.40  nm2 (green) and 152.01  nm2 (blue) as 
compared to the reference 149.2   nm2 (red) through the 
molecular dynamics simulation of 100 ns trajectory period 
(Table 2). All the complexes showed a very similar value 
of SASA as the reference  3CLpro complex. From the SASA 

analysis, we have concluded that  3CLpro-ligand complexes 
are relatively stable.

Radius of gyration

The Radius of gyration (Rg) analysis was done to assess 
the stability of protein–ligand systems by calculating the 
structural compactness along the MD trajectories [17]. The 
Rg calculation was also determined by the stably folded 
or unfolded of the protein and complexes system. In this 
study, 100 ns trajectories were used for the Radius of gyra-
tion analysis. The graph of Rg as a function of time for 
protein and all protein–ligand complexes  (3CLpro-X77, 
 3CL pro-{4-[ (2s ,4e) -2- (1 ,3-Benzoth iazol -2-Yl) -2 
-(1h-1,2,3-Benzotriazol-1-Yl)-5-Phenylpent-4-Enyl]
Phenyl}(Dif luoro)Methylphosphonic Acid,  and 
 3CLpro-1-(3-(2,4-dimethylthiazol-5-yl)-4-oxo-2,4 
-dihydroindeno[1,2-c]pyrazol-5-yl)-3-(4-methylpiperazin-
1-yl)urea) is shown in Fig. 3d. The average Rg value of 
complexes is 1.88 nm (green) and 1.88 nm (blue), respec-
tively, significant as compared to the reference 1.88 nm (red) 

Fig. 3  Binding stability analysis of the screened ligands dur-
ing 100  ns molecular dynamics simulation  (3CLpro-reference 
(Red),  3CLpro-{4-[(2s,4e)-2-(1,3-Benzothiazol-2-Yl)-2-(1h-1,2,3 
- B e n z o t r i a z o l - 1 -Y l ) - 5 - P h e n y l p e n t - 4 - E n y l ] P h e -
nyl}(Difluoro)Methylphosphonic Acid (green) and 

 3 C L p r o - 1 - ( 3 - ( 2 , 4 - d i m e t h y l t h i a z o l - 5 - y l ) - 4 - o x o - 2 , 4 
-dihydroindeno[1,2-c]pyrazol-5-yl)-3-(4-methylpiperazin-1-yl)urea 
(blue)) a Root Mean Square Deviation RMSD, b Root Mean Square 
Fluctuation RMS, c solvent accessible surface area (SASA) and d 
Radius of gyration (SASA)
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(Table 2). The result shows that all complexes have relatively 
similar and consistent values of Rg as compared to the native 
and reference which indicates that these are perfectively 
superimposed with each other and have good stability.

Calculation of interaction energy

The interaction energy calculation was carried out to 
estimate the free interaction energies associated with 
the  3CLpro-ligand complexes using the Parrinello-Rah-
man parameter of GROMACS. The average interac-
tion energy of all the complexes was observed in the 
acceptable range of − 99–− 200  kJ   mol−1. The inter-
action energy of reference complex,  3CLpro-X77 
was − 137.521  kJ   mol−1, and other complexes 
 3CLpro-{4-[(2s,4e)-2-(1,3-Benzothiazol-2-Yl)-2-(1h 
-1,2,3-Benzotriazol-1-Yl)-5-Phenylpent-4-Enyl]Phenyl}
(Difluoro)Methylphosphonic Acid were − 186.60 kJ  mol−1, 
and  3CLpro-1-(3-(2,4-dimethylthiazol-5-yl)-4-oxo-2,4 
-dihydroindeno[1,2-c]pyrazol-5-yl)-3-(4-methylpiperazin-
1-yl)urea was − 131.07 kJ  mol−1 showed better and sig-
nificantly good interaction energy than the reference com-
pound (Table 2). The interaction energy results validated the 
molecular docking results and indicated the screened drug 
compounds could bind to the  3CLpro favorably and can be 
used as a drug to treat COVID-19.

Analysis of hydrogen numbers

The hydrogen bond is essential in ligand binding to 
receptors because it affects drug specificity, metaboli-
zation, and adsorption. As a result, during the 100  ns 
simulation phase, the total number of hydrogen bonds 
that could be present in the complexes was estimated. 
Around four hydrogen bonds were observed in the ref-
erence complex  3CLpro-X77 while in complexes, five 
in  3CLpro-{4-[(2s,4e)-2-(1,3-Benzothiazol-2-Yl)-2-(1h 
-1,2,3-Benzotriazol-1-Yl)-5-Phenylpent-4-Enyl]Phe-
nyl}(Dif luoro)Methylphosphonic Acid and four in 
 3CLpro-1-(3-(2,4-dimethylthiazol-5-yl)-4-oxo-2,4 
-dihydroindeno[1,2-c]pyrazol-5-yl)-3-(4-methylpiperazin-
1-yl)urea (Table  2). The observed bonding parameters 
showed that all compounds were as effectively and closely 
bound to the  3CLpro as the reference compounds, X77.

Analysis of principal component in protein–ligand 
complexes

The projection of their own first (PC1) and second 
(PC2) eigenvector was used to examine the Gibbs 
energy landscape (Fig.  4a, b, c). Gibbs free energy 
landscape examines the path of fluctuation in the two 
structures for all Cα atoms of the free  3CLpro-X77, 

 3CLpro-{4-[(2s,4e)-2-(1,3-Benzothiazol-2-Yl)-2-(1h 
-1 ,2 ,3-Benzotr iazol-1-Yl)-5-Phenylpent-4-Enyl]
Phenyl}(Dif luoro)Methylphosphonic Acid,  and 
 3CLpro-1-(3-(2,4-dimethylthiazol-5-yl)-4-oxo-2,4 
-dihydroindeno[1,2-c]pyrazol-5-yl)-3-(4-methylpiperazin-
1-yl)urea complex, and the range of Gibbs energy value is 
0–12.5, 0–12, and 0–12.5, respectively. Lower energy is 
shown by a deeper blue color on the accompanying free 
energy contour diagram. The free energy spectrum was 
found to be identical to that of the reference compound. The 
stable conformational states of these molecules with protein 
were well demonstrated by these free energies.

The analysis of PCA was performed to calculate the 
first few eigenvectors which are important for the overall 
motion of protein during MD simulation of  3CLpro-X77, 
 3CLpro-{4-[(2s,4e)-2-(1,3-Benzothiazol-2-Yl)-2-(1h 
-1 ,2 ,3-Benzotr iazol-1-Yl)-5-Phenylpent-4-Enyl]
Phenyl}(Dif luoro)Methylphosphonic  Acid and 
 3CLpro-1-(3-(2,4-dimethylthiazol-5-yl)-4-oxo-2,4 
-dihydroindeno[1,2-c]pyrazol-5-yl)-3-(4-methylpiperazin-
1-yl)urea. For this study, 40 eigenvectors were selected 
for the calculation of concerted motions. The eigenval-
ues and the corresponding eigenvector for all the pro-
tein–ligand complexes are presented in Fig. 4d. The first 
ten eigenvector accounts 74.52%, 69.01%, and 75.28%, 
motions in 100  ns simulation period for  3CLpro-X77, 
 3CLpro-{4-[(2s,4e)-2-(1,3-Benzothiazol-2-Yl)-2-(1h 
-1 ,2 ,3-Benzotr iazol-1-Yl)-5-Phenylpent-4-Enyl]
Phenyl}(Dif luoro)Methylphosphonic Acid,  and 
 3CLpro-1-(3-(2,4-dimethylthiazol-5-yl)-4-oxo-2,4 
-dihydroindeno[1,2-c]pyrazol-5-yl)-3-(4-methylpiperazin-
1-yl)urea, respectively. Further, a porcupine plot was gen-
erated by using the extreme projections on principal com-
ponent PC1 to visualize the movement directions captured 
by the eigenvectors (Fig. S3). In the porcupine plot, each 
Cα-atom has a cone pointing in the direction of the motion 
of the atom. The cone’s length reflects the amplitude of the 
motion, and the size of the cone indicates the number of such 
Ca-atom [18]. The top two eigenvectors are used for visu-
alizing the motion of the backbone atoms [19] that points 
to the direction and magnitude of selected eigenvectors. 
Although, there are might be some differences between the 
simulations concerning the motions. This result suggests that 
the properties of motions in three protein–ligand complexes 
were differently described by using the first two PCA. The 
direction of the arrow in each Cα atom represents the direc-
tion of motion, while the length of the arrow characterizes 
the movement strength. The porcupine plot represents the 
rotational movements that occur in the protein–ligand com-
plex during the simulation.

For PCA analysis, we selected the f irst 40 
eigenvectors for the calculation of concer ted 
motions for  the MD trajectory.  MTX (Red), 
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 3CLpro-{4-[(2s,4e)-2-(1,3-Benzothiazol-2-Yl)-2-(1h-1,2,3 
-Benzot r i azo l -1 -Yl ) -5 -Phenylpen t -4 -Enyl ]Phe -
nyl}(Difluoro)Methylphosphonic Acid (Green), and 
 3CLpro-1-(3-(2,4-dimethylthiazol-5-yl)-4-oxo-2,4 
-dihydroindeno[1,2-c]pyrazol-5-yl)-3-(4-methylpiperazin-
1-yl)urea (blue) showed the eigenvalues 5.5  nm2, 2.4  nm2, 
and 5.4  nm2, respectively, which has been obtained for all 
complexes by diagonalizing the covariance matrix of atomic 
fluctuations in decreasing order versus the corresponding 
eigenvector (Fig. 4d).

Further, a 2D projection plot was generated to ana-
lyze the dynamics of protein–ligand complexes via 
PCA. Hence, we used the first two principal components 
(PCs), i.e., PC1 and PC2 for analysis of the motions. 

Figure 4e displays the projection of two eigenvectors for 
reference compound, MTX (Red) as well as hit compounds 
 3CLpro-{4-[(2s,4e)-2-(1,3-Benzothiazol-2-Yl)-2-(1h-1,2,3 
-Benzot r i azo l -1 -Yl ) -5 -Phenylpen t -4 -Enyl ]Phe -
nyl}(Dif luoro)Methylphosphonic Acid (Green) and 
 3CLpro-1-(3-(2,4-dimethylthiazol-5-yl)-4-oxo-2,4 
-dihydroindeno[1,2-c]pyrazol-5-yl)-3-(4-methylpiperazin-
1-yl)urea (blue). In the 2D projection plot, the stable cluster 
is represented by the complex that occupies less phase space, 
while the non-stable cluster is represented by the complex 
that occupies more space. From the plot, it was found that 
all complexes occupied the same space as compared to the 
reference. Hence, all compounds complexes are stable pretty 
good for drug development.

Fig. 4  Gibbs free energy landscape of compounds (a)  3CLpro-X77 (b)  3CLpro- 
{4-[(2s,4e)-2-(1,3-Benzothiazol-2-Yl)-2-(1h-1,2,3-Benzotriazol- 
1-Yl)-5-Phenylpent-4-Enyl]Phenyl}(Dif luoro)Methylphospho-
nic Acid (c)  3CLpro-1-(3-(2,4-dimethylthiazol-5-yl)-4-oxo-2,4- 
dihydroindeno[1,2-c]pyrazol-5-yl)-3-(4-methylpiperazin-1-yl)urea  
and Principal Component Analysis (d) Plot of eigenvalues vs. first 40  
eigenvectors, (e) First two eigenvectors is describing the protein  

motion in phase space for all the complexes. The color code for all  
panels are protein-reference (Red),  3CLpro-{4-[(2s,4e)-2-(1,3-Benzothiazol 
-2-Yl)-2-(1h-1,2,3-Benzotriazol-1-Yl)-5-Phenylpent-4-Enyl]Phenyl} 
(Difluoro)Methylphosphonic Acid (Green) and  3CLpro-1-(3-(2,4 
-dimethylthiazol-5-yl)-4-oxo-2,4-dihydroindeno[1,2-c]pyrazol-5-yl)-
3-(4-methylpiperazin-1-yl)urea (blue)
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Average binding energy calculation of protein–
ligand complexes

The binding energy is a parameter of the ligand's affinity for 
a receptor that is measured using the MM-PBSA method by 
adding the polar, non-polar, and non-bonded interaction ener-
gies (Vander Waals and electrostatic interaction). The last 
30 ns of MD trajectories were used to measure binding free 
energies, which are shown in Table 3. The  3CLpro-X77(Ref), 
 3CLpro-{4-[(2s,4e)-2-(1,3-Benzothiazol-2-Yl)-2-(1h 
-1 ,2 ,3-Benzotr iazol-1-Yl)-5-Phenylpent-4-Enyl]
Phenyl}(Dif luoro)Methylphosphonic Acid,  and 
 3CLpro -1- (3-(2 ,4-dimethyl th iazol -5-yl ) -4-oxo-
2,4-dihydroindeno[1,2-c]pyrazol-5-yl)-3-(4-methylpiper-
azin-1-yl)urea showed − 50.699 kJ  mol−1, − 89.343, and 
− 54.648 kJ  mol−1 binding free energy, respectively. Hits 
compounds showed higher binding affinity as compared to 
the reference molecule. Based on the MM-PBSA results, we 
observed that all compounds had a strong binding affinity 
with  3CLpro in terms of binding energy.

Functional group analysis of hits compounds

The group frequency of vital functional groups was ana-
lyzed for both hit compounds (Table  S2). Among nine 
groups, five functional groups  R2NH (amine), followed by 
tertiary amines  (R3N), Carbonyl group (RCOR), rings, and 
aromatic were found in the 1-(3-(2,4-dimethylthiazol-5-yl)-
4-oxo-2,4-dihydroindeno[1,2-c]pyrazol-5-yl)-3-(4-methyl-
piperazin-1-yl)urea compound and only rings and aromatic 
groups were found in the {4-[(2s,4e)-2-(1,3-Benzothiazol-
2-Yl)-2-(1h-1,2,3-Benzotriazol-1-Yl)-5-Phenylpent-4-Enyl]
Phenyl}(Difluoro)Methylphosphonic Acid compound as 
compared to reference compounds. The reference com-
pound has four functional groups viz.,  R2NH (amine), fol-
lowed by tertiary amines  (R3N), rings, and aromatic; we 
observed from the functional group frequency that rings and 

Table 3  Table is showing the Van der Waal (VdW), two electrostatic (Elec.), polar salvation, SASA, the binding energy of Protein–Ligand Com-
plexes

Compounds name Polar energies

VdW 
Energy (kJ 
 mol−1)

Elec. 
Energy (kJ 
 mol−1)

Polar solva-
tion energy (kJ 
 mol−1)

SASA 
energy (kJ 
 mol−1)

Binding 
Energy (kJ 
 mol−1)

3CLpro-X77(Ref) − 106.678 − 5.561 77.043 − 15.503 -50.699
3CLpro -{4-[(2s,4e)-2-(1,3-Benzothiazol-2-Yl)-2-(1h-1,2,3-Benzotri-

azol-1-Yl)-5-Phenylpent-4-Enyl]Phenyl}(Difluoro)Methylphospho-
nic Acid

− 205.016 -20.117 157.411 − 21.622 − 89.343

3CLpro -1-(3-(2,4-dimethylthiazol-5-yl)-4-oxo-
2,4-dihydroindeno[1,2-c]pyrazol-5-yl)-3-(4-methylpiperazin-1-yl)
urea

− 131.559 − 34.761 126.782 − 15.109 − 54.648

aromatic groups are present in both hit molecules and refer-
ence molecules, but the number of these groups are higher in 
both hits compounds as compare to the reference molecule 
(Table S2).

Discussion

Drug repurposing is a novel idea to discover a potential drug 
against any disease very fast. Many studies have proven that 
drug repurposing is an effective strategy to find useful drug 
candidates for a different disease. In a current situation 
where the whole world is trying to find a solution to treat 
COVID-19, drug repurposing may be an effective tool to 
find a useful drug against COVID-19. A recent study also 
suggests that some drugs may be used to the treatment of 
COVID-19. Clinical trials have reported that some drugs 
like Chloroquine, Lopinavir, ritonavir may be useful to treat 
COVID-19. Chloroquine is an anti-malarial drug and in a 
recent study, it was found to inhibit the growth of SARS-
CoV-2 in vitro [15]. Another study conducted by Biot et al., 
2006, showed that Hydroxychloroquine, an analog of Chlo-
roquine has shown in vitro antiviral activity against SARS-
CoV-2 [20].

Before this study, many researchers have found several 
new drugs against  3CLpro receptors using a repurposing 
strategy. In a recent study of [21], they found Paritaprevir 
and Raltegravir have good binding energy against the  3CLpro 
receptor. In another study of [22], Ritonavir showed a higher 
binding affinity to  3CLpro receptor. Thus, continuing drug 
repurposing but using a different strategy, we have also 
found some new drugs against the  3CLpro receptor of the 
SARS-CoV-2 virus from the drug bank database containing 
9001 drugs. The screening of drug bank compounds was 
started with a deep learning model. Deep learning models 
were prepared on the basis of SARS-CoV-1  3CLpro receptor 
because sequence alignment results suggested that  3CLpro 
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receptor of SARS-CoV-1 and 2 shares 96.08% identity and 
data of SARS-CoV-1 can be used against SARS-CoV-2. 
Further, the best model showed its performance with loss 
(0.26), R2 value (0.72), MSE (0.26), RMSE (0.51), and MAE 
(0.41) functions. These functions help a network understand 
whether it is learning in the right direction. The lower value 
of loss MSE, RMSE, and MAE means the model is per-
fect. On other hand, the higher R2 value near “1” is best for 
the model. From our all “4” number model showed good 
performance among all models and selected for screening. 
Prescreening by deep learning resulted in 500 compounds 
which were narrow down up to 10 drugs by molecular dock-
ing based on binding affinity against the  3CLpro receptor.

The binding energy of all screened compounds was bet-
ter than reference compounds. Through these results, we 
can suggest these compounds can be used against  3CLpro 
receptor. Though currently, these drug compounds are used 
to treat some other diseases and some compounds are under 
the experimental stage. Studies found that Ergotamine is 
used for therapy to abort or prevent vascular headaches, 
e.g., migraine, migraine variants, hypertension [23, 24]. 
Bromocriptine is an approved drug and used for the treat-
ment of acromegaly, Parkinson's disease (PD), type 2 dia-
betes mellitus, idiopathic hyperprolactinemic disorder, 
and Neuroleptic malignant syndrome (NMS). Omipalisib, 
PF-03882845, MK-7622, and SGX-523drug compounds are 
not approved, but various studies have shown that Omipa-
lisib has been used against different types of cancer treat-
ment [25, 26] MK-7622 is used to treat Alzheimer's disease 
[27, 28]; PF-03882845 has been used as an antagonist [29, 
30]. Other compounds are in the experimental stage, but 
this study shows that these compounds can be used against 
coronavirus.

In addition, two drugs were selected based on MD 
simulation stability and binding energy. These two drugs 
namely {4-[(2s,4e)-2-(1,3-Benzothiazol-2-Yl)-2-(1h-1,2,3-
Benzotriazol-1-Yl)-5-Phenylpent-4-Enyl]Phenyl}(Difluoro)
Methylphosphonic Acid and 1-(3-(2,4-dimethylthiazol-
5-yl)-4-oxo-2,4-dihydroindeno[1,2-c]pyrazol-5-yl)-3-(4-
methylpiperazin-1-yl)urea have indicated good stability 
during 100 ns dynamics simulation trajectory periods, and 
residue of compounds also showed less fluctuation in RMSF 
results which means compounds and protein were bound 
strongly with each other at specific temperature and pres-
sure. Other calculations Rg, SASA, interaction energy, and 
PCA results indicated that these two compounds are sta-
ble with  3CLpro enzyme and showing their reliability as an 
inhibitor specific to  3CLpro. Rg calculation showed a little 
deviation that indicates that protein is compactly packed, and 
binding of compounds has not affect protein’s rigidity. In the 
present study, the Rg value has remained relatively consist-
ent throughout the MD simulation, which indicates that the 
protein is stably folded [31]. The calculation of SASA and 

hydrogen bond also supports the stable interaction of the 
ligands to the protein. The value of the interaction energy 
of protein–ligand complexes was also good. The interaction 
energy value indicates the strength of protein–ligand com-
plex systems. This study showed that all compounds have 
higher and significantly better interaction energy with pro-
tein as compared to reference compounds and also showed 
an acceptable range of interaction energy. Further, the analy-
sis of binding energy through MM-PBSA also indicated that 
compounds binding affinity to  3CLpro enzyme is better.

The functional groups that support the drug molecules’ 
lipid solubility are often known to as hydrophobic or lipo-
philic functional groups, e.g., Aromatic groups and rings. 
The present study showed that antiviral functional groups 
like  R2NH (amine) are abundant in hits compounds, fol-
lowed by carbonyl groups (RCOR), tertiary amines  (R3N), 
rings, and aromatic [32]. Amines groups have a mildly acidic 
and alkaline pH in the intestine and are easily ionized in the 
blood, they are called poor bases, and the most drugs have 
functional classes. These groups are adept at balancing ion-
ized and non-ionized states. Non-ionized forms are able to 
pass across cell membranes, while ionized forms have a high 
water solubility, allowing for intense protein–ligand inter-
actions [33]. On other hand, secondary amines have N–H 
groups and this group serve as a hydrogen bond donor that 
allowing the compound to bind strongly to the target protein 
[34]. In this study, the hit compound 1-(3-(2,4-dimethylth-
iazol-5-yl)-4-oxo-2,4-dihydroindeno[1,2-c]pyrazol-5-yl)-
3-(4-methylpiperazin-1-yl)urea has a higher frequency of 
amines. Other functional groups like aromatic rings gener-
ally involved in Van der Waals interactions with the binding 
site atoms and can be associate with an aminium (cation 
formed by protonation of an amine) or quaternary ammo-
nium ion through induced dipole interaction or hydrogen 
bonding [33]. The presence of rings and aromatics at higher 
numbers in hit compounds indicates the chemical diversity 
and their drug-like property. In the recent study of Nand 
et al., 2020 [32], it was also found that  R2NH,  R3N, rings, 
and aromatic groups were higher in reference and screened 
inhibitors compounds against  3CLpro of COVID-19. Various 
studies also showed that the structure of screened inhibi-
tors against COVID-19 similar to the current study screened 
compounds (Fig. S4) [35–38]. These compounds also have 
aromatic and ring groups which are also present in our 
study. It shows that our compounds can also be used against 
COVID-19.

Finally, as compared to another drug repurposing study, 
our screened compounds showed good stability with  3CLpro. 
In a study carried out by Elmezaven et al., 2020, drug com-
pounds showed higher fluctuation as compared to our com-
pounds with main protease enzymes [39]. In an another 
study done by Bharadwaj et al., 2020, doxycycline, tetra-
cycline, demeclocycline, and minocycline showed higher 
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fluctuation with  Mpro enzyme as compared to our compounds 
[40]. As compared to their study, our compounds exhibited 
better stability with  3CLpro enzyme. Therefore, we suggest 
that these compounds can be for further evaluated against 
coronavirus in in vitro and in vivo conditions.

Conclusion

The present study was carried to discover novel inhibi-
tor molecules against the  3CLpro enzyme of SARS-
CoV-2 by using computational techniques. This study 
can have an important impact on the treatment of the 
SARS-CoV-2 virus. This study showed two drugs namely 
{4-[(2s,4e)-2-(1,3-Benzothiazol-2-Yl)-2-(1h-1,2,3-Ben-
zotriazol-1-Yl)-5-Phenylpent-4-Enyl]Phenyl}(Difluoro)
Methylphosphonic Acid and 1-(3-(2,4-dimethylthiazol-
5-yl)-4-oxo-2,4-dihydroindeno[1,2-c]pyrazol-5-yl)-3-(4-
methylpiperazin-1-yl)urea could inhibit the activity of 
SARS-CoV-2 by targeting the  3CLpro enzyme. Thus from 
this study, we conclude these compounds can be utilized as 
potential antiviral candidates against COVID-19 infection. 
These novel molecules could be utilized for further inno-
vation and development of antiviral compounds against 
Coronavirus.
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