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Abstract
Ebola virus is a deadly pathogen responsible for a frequent series of outbreaks since 1976. Despite various efforts from 
researchers worldwide, its mortality and fatality are quite high. For antiviral drug discovery, the computational efforts are 
considered highly useful. Therefore, we have developed an ’anti-Ebola’ web server, through quantitative structure–activity 
relationship information of available molecules with experimental anti-Ebola activities. Three hundred and five unique anti-
Ebola compounds with their respective  IC50 values were extracted from the ‘DrugRepV’ database. Later, the compounds 
were used to extract the molecular descriptors, which were subjected to regression-based model development. The robust 
machine learning techniques, namely support vector machine, random forest and artificial neural network, were employed 
using tenfold cross-validation. After a randomization approach, the best predictive model showed Pearson’s correlation 
coefficient ranges from 0.83 to 0.98 on training/testing  (T274) dataset. The robustness of the developed models was cross-
evaluated using William’s plot. The highly robust computational models are integrated into the web server. The ‘anti-Ebola’ 
web server is freely available at https:// bioin fo. imtech. res. in/ manojk/ antie bola. We anticipate this will serve the scientific 
community for developing effective inhibitors against the Ebola virus.
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Introduction

Ebola virus (EBOV) is a member of Filoviridae family 
also known as Zaire ebolavirus, on the basis of the origin 
country, i.e., Democratic Republic of Congo (formerly 
Zaire). EBOV is responsible for thousands of deaths due 
to its periodic outbreaks since 1976. According to the 
World Health Organization (WHO), the fatality rate of 
the EBOV outbreak varies from 25 to 90% (https:// www. 
who. int/ news- room/ fact- sheets/ detail/ ebola- virus- disea 
se). EBOV cases are mainly found in the region of sub-
Saharan Africa and pass-through animals like a bat, other 
nonhuman primates or any patient infected with EBOV. As 
per WHO, the EBOV outbreak is classified under level 3 
emergency due to its high mortality and fatality.

EBOV is a negative-stranded, enveloped, non-seg-
mented and helical single-stranded RNA with 19-kb 

nucleotides. It constitutes eight structural and one non-
structural proteins. The structural proteins include the 
nucleoprotein (NP), glycoprotein (GP), soluble glyco-
protein (sGP), RNA-dependent RNA polymerase (L) and 
four virion proteins (VP24, VP30, VP35, VP40) [1]. As 
EBOV is an RNA virus, thus the development of effective 
antivirals against EBOV is a very challenging task. Cur-
rently, Favipiravir, Remdesivir, ZMapp and INMAZEB are 
the four most commonly used anti-Ebola agents for the 
treatment of EBOV infection. Among them, Favipiravir 
and Remdesivir are the ‘experimental’ category drugs that 
inhibit the viral polymerases while the ZMapp is the mix-
ture of the three monoclonal antibodies, which are directed 
against the surface glycoproteins [2, 3]. INMAZEB, also 
known as REGN-EB3, is a mixture of three monoclonal 
antibodies, namely atoltivimab, maftivimab and odesiv-
imab. It is the first USFDA-approved therapeutics in 2020 

https://www.who.int/news-room/fact-sheets/detail/ebola-virus-disease
https://www.who.int/news-room/fact-sheets/detail/ebola-virus-disease
https://www.who.int/news-room/fact-sheets/detail/ebola-virus-disease
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against EBOV infection. The Favipiravir (6-fluoro-3-hy-
droxy-2-pyrazinecarboxamide) and Remdesivir (GS-5734) 
are in use as the broad-spectrum antiviral drugs. Initially, 
the Favipiravir was used to treat influenza virus, but now 
has been used against EBOV [4]. Likewise, anti-Ebola 
drug Remdesivir was also repurposed to inhibit murine 
hepatic virus (MHV), Middle East respiratory syndrome 
(MERS-CoV), severe acute respiratory syndrome (SARS-
CoV) and Nipah virus (NiV) [5].

Numerous computational studies are reported in the litera-
ture to highlight the use of machine learning in drug develop-
ment against various pathogens. Todeschini R et al. described 
the importance of molecular descriptors in the process of 
designing the efficient drugs [6, 7]. Hansch C et al. explained 
the importance of physicochemical parameters in the quan-
titative structure–activity relationship (QSAR) analysis [8]. 
Matta CF explored the role of biophysical and biological 
properties in the formulation of QSAR models [9]. Toussi CA 
et al. design the Ser/Thr-protein kinase inhibitors by using 
machine-trained elastic networks [10]. However, our group 
previously implemented the machine learning approaches to 
develop computational methods to predict the antiviral com-
pounds against various viruses like flaviviruses, Nipah virus 
and coronaviruses as AVCpred [11], anti-Flavi [12] and anti-
Nipah [13] and anti-corona [14], respectively. Recently, we 
have developed a comprehensive repository of experimentally 
validated repurposed drugs against 23 viruses (including Ebola 
virus) responsible for causing epidemics/pandemics [15].

Furthermore, various computational approaches have been 
tried to identify repurposed or novel leads against EBOV. 
Anantpadma M et al. developed Bayesian machine learn-
ing models and identified three active molecules, namely 
tilorone, pyronaridine and quinacrine against EBOV [16]. 
Kwofie SK et al. used pharmacoinformatics and molecular 
docking approach to prioritize 19 compounds against EBOV 
after screening 7675 natural products [17]. Zhao Z et al. used 
a molecular dynamics approach to screen all FDA-approved 
drugs and finalized 15 potent drug candidates against EBOV 
[18]. Ekins et al. integrated Bayesian machine learning mod-
els to filter out potential lead compounds against EBOV [19]. 
However, most of the drug repurposing approach was done 
by various in vitro and in vivo assays, e.g., minigenome assay 
[20], GIP/HIV core pseudovirus with firefly luciferase reporter 
gene [21], HIV pseudovirions with high-throughput assay [22] 
and many more. However, any dedicated web server to identify 
the promising drug candidates is not available in the literature. 
In the current study, we have developed a machine-learning-
based pipeline named ’anti-Ebola’ for the identification of 
inhibitors against Ebola virus.

Methods

Data collection

The anti-Ebola predictor was developed using the data of 
EBOV inhibitors available from our recently published 
‘DrugRepV’ database [15]. There are 868 compounds 
reported in this database, which were experimentally vali-
dated for anti-Ebola activities. However, we have selected 
only those molecules whose antiviral activities are given 
in terms of  IC50/EC50 so as to develop regression-based 
models. Further, we used strict quality control filters like 
 IC50/EC50 uniqueness, SMILES, assays, etc., to finalize 
our dataset. Finally, we obtained 305 unique inhibitors 
with the respective half-maximal inhibitory concentration 
 (IC50/EC50) values from our database [15]. The  IC50/EC50 
values were converted into the negative logarithm of half-
maximal inhibitory concentration  (pIC50) using formula:

where  IC50 is in the form of dimensionless activity that can 
be approximated numerically as molar concentrations. The 
higher  pIC50 indicates exponentially greater potency. The 
 pIC50 is used for the designing of various regression-based 
prediction algorithms [12, 13, 23]. Overall methodology of 
the anti-Ebola is available in Fig. 1.

Data preparation

The chemical name was used to extract the chemical infor-
mation like simplified molecular-input line-entry system 
(SMILES), which was then converted to 3D-SDF using 
obabel software [24]. Finally, the 3D-SDF is used to cal-
culate the molecular descriptor and fingerprints.

For running the machine learning algorithm, the overall 
dataset (305) was divided into training/testing  (T274) and 
independent validation  (V31) datasets using randomization 
approaches in six sets [13, 25, 26].

PaDEL descriptor

The 3D-SDF structures were used for the calculation of 
1D, 2D and 3D molecular descriptors as well as finger-
prints. The PaDEL software is used for calculation of all 
the 17,968 descriptors available in the software [27]. Fur-
ther, to take only relevant features and to rule out the pos-
sibility of overfitting of the model, we performed feature 
selection.

(1)pIC50 = − log10
(
IC50(M)

)
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Feature selection

Feature selection is an important step to extract the most 
relevant features, remove irrelevant features and help to 
achieve high accuracy of the developed models [28, 29]. 
The feature selection was done using the support vec-
tor regression (SVR) implemented using libsvm using 
a parameter to control the number of support vectors. 
Finally, we extracted the most relevant 50 features out of 
17,968 descriptors (Supplementary Table S2).

Ten fold cross‑validation

The tenfold cross-validation was used to develop the pre-
dictive models. In the tenfold cross, training/testing  (T274) 
was divided equally into ten sets. Initially, the nine datasets 
were combined for training and the remaining one set for 
testing to finally calculate the model performance. Likewise, 
all the sets get a chance to become the testing set; however, 
the average performance of all the testing sets represents 
the overall performance of the model. Further, the perfor-
mance of the developed model was cross-evaluated using 
the independent dataset, which was not used during training 
and testing.

Machine learning techniques

In the current study, we implemented the three types of 
MLTs, i.e., support vector machine, random forest and 

artificial neural network techniques to develop predictive 
models.

Support vector machine is a supervised machine 
learning method which is used for both regression and 
classification-based problems. SVM constructs a set of 
hyperplanes which can be used to detect the regression/
classification task. It is very effective for high-dimensional 
spaces [30]. Different kernel functions can be used as a 
decision function. The main objective of the SVM is to 
find the hyperplane in N-dimensional (N is the number of 
features) space which identifies the data points. Random 
forest is an ensemble machine learning technique and has 
been extensively used for both classification and regres-
sion problems. It functions by making decision trees from 
the training dataset, and the output would be in the form 
of mean prediction [31]. Artificial neural network is the 
organization of the connected units/nodes generally known 
as artificial neurons, which is analogous to the neurons 
in the human brain. The neural networks consist of input 
layer, output layer and hidden layers, which are used to 
transform the input to the reasonable output [32].

Performance measure

The performance of the developed model was analyzed 
through Pearson’s correlation coefficient (PCC), mean 
absolute error (MAE) and root mean absolute error 
(RMSE).
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Fig. 1  Overall methodology used to develop anti-Ebola predictor



1639Molecular Diversity (2022) 26:1635–1644 

1 3

In eqns (2), (3) and (4), n, Epred

i
 and  Eact

i
 are the size 

of the test set, predicted and actual efficiencies of Ebola 
inhibition, respectively.

Applicability domain

The robustness of the developed model was evaluated 
using William’s plot. William’s plot depicts the relation-
ship between standardized residuals and leverage. The 
leverage (h) is set as a warning threshold (h*) of 3*p/n; in 
it the p is 1 + the number of finally used descriptors and 
n is the size of the training dataset. However, the stand-
ardized residuals threshold was ± 3σ [33]. The predictive 
model was robust if most data points lie within the warn-
ing threshold [13].

Chemical analysis

We performed the analysis of the anti-Ebola compounds to 
check their chemical diversity. The diversity was checked by 
the multidimensional scaling (MDS) with a similarity score 
of 0.4. The cluster map was constructed through Chem-
mineR software [34]. Further, the chemical dendrogram 
was formed using the Scaffoldhunter software through the 
chemical Fingerprints [35].

Web server

The best performing predictive models are implemented in 
the form of web server ’anti-Ebola.’ The front end of the 
web server is designed using HTML, CSS and PHP while 
the backend of the web server is constructed using python, 
perl and javascript.
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Results

Performance of QSAR models

Among the six randomized training/testing  (T274) datasets, 
the best QSAR model displayed a PCC of 0.83, 0.98 and 
0.95 for SVM, RF and ANN machine learning techniques, 
respectively, on the best performing dataset (Table 1). Cross-
validation of the training/testing dataset was done using 
independent validation  (V31) dataset and showed the PCC 
values of 0.65, 0.62 and 0.64 for SVM, RF and ANN corre-
spondingly (Table 1). The performance of all the remaining 
five training/testing and independent validation datasets is 
provided in Supplementary Table S1.

Applicability domain

While plotting William’s plot, we found that most of the data 
points of both training/testing and validation data lie within 
the warning threshold, showing that the developed model 
is robust. We found the h* is 1.21, 1.25 and 1.18, while 
the 3σ is 2.0, 1.9, 1.0, respectively, for SVM (Fig. 2a), RF 
(Fig. 2b) and ANN (Fig. 2c). Both the h* and the 3σ were 
plotted as a warning threshold in William’s plot. William’s 
plot shows the relationship between standardized residuals 
and leverage (Fig. 2).

Chemical analysis

We performed an analysis of the anti-Ebola chemicals to 
explore the chemical variability. For the same, we used the 
multidimensional scaling (MDS) whose distance matrix was 
calculated by ‘all-against-all’ comparison of compounds 
through atom pair similarity measures (Fig. 3a). Further, 
the generated similarity scores were transferred into the dis-
tance values through the cmdscale method. The cluster map 
shows the diversity up to 320 clusters with the similarity 
cutoff of 0.4. Further, the chemical dendrogram was also 
constructed to check the details of the chemical scaffolds 
using the EstateNumericalFingerprint (largest fragment, 
deglycosilated) physicochemical properties. It showed that 
the highest number of the molecules, i.e., 55, comes under 

Table 1  Table depicting the 
performance of training/
testing (T274) and independent 
validation data set (V31) for the 
support vector machine, random 
forest and artificial neural 
network

*MAE, mean absolute error; RMSE, root mean absolute error; PCC, Pearson’s correlation coefficient; 
SVM, support vector machine; RF, random forest; ANN, artificial neural network

Ebola Training/Testing dataset Independent Validation dataset

Algorithm Dataset MAE RMSE PCC MAE RMSE PCC

SVM T274 +  V31 0.33 0.47 0.83 0.48 0.66 0.65
RF T274 +  V31 0.19 0.28 0.98 0.52 0.63 0.62
ANN T274 +  V31 0.23 0.29 0.95 0.76 0.97 0.64
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the parent chemical with benzene ring (Fig. 3b). Further-
more, 32 molecules consisted of pyridine parent molecules. 
Remaining information of all the anti-Ebola molecules is 
provided in Fig. 3b.

Web server

The web server ’anti-Ebola’ is freely available at: https:// 
bioin fo. imtech. res. in/ manojk/ antie bola. It contains the pre-
dictor, where the input query can be provided in the form 
of a SDF and the output displayed as a tabular form with 
information of SMILES, predicted  IC50 in μM along with 
its structure. To make our web server more informative, we 
have also provided the important drug-like properties of 
the input query. We used filter-it software to calculate these 
drug-likeness properties. It includes the drug-likeness prop-
erties, namely Lipinski acceptor, Lipinski donor, H-bond 
acceptors, H-bond donor, molecular weight, logP, rotatable 
and rigid bonds, formal charges and molecular formula. The 
H-bond acceptor shows the number of hydrogen bond accep-
tors; it includes an aromatic N with no connected H atoms, 
no amide nitrogen and which doesn’t possess any positive 
charge; an aliphatic N with no connected H atoms as well 
as no positive charge on it; any O atom without any positive 
charge; and a thionyl sulfur atom. The H-bond donor shows 
the number of hydrogen bond donors and includes any H 
bonded to a N; any H bonded to an O; and any H bonded to 
a S. Lipinski acceptor refers to the Lipinski H-bond acceptor 
like any N or O atom which may or may not be connected 
to any H atom. Lipinski donor denotes the Lipinski H-bond 
donor e.g., each H-atom connected to N or O. Here, Lipin-
ski’s rule of five is the rule of thumb to determine the drug 
likeness of a compound. It indicates whether the compound 
has certain biological, chemical, pharmacological activities 
appropriate for human consumption.

Case study

We have checked the utility of our web server by predicting 
the  IC50/EC50 values of the already identified promising hits 
from other studies. We used an anti-Ebola SVM predictive 
model to predict anti-EBOV activity of these lead molecules. 
For example, Zheng et al. identified Indinavir, Maraviroc, 
Abacavir, etc. as good anti-EBOV compounds [18]. Interest-
ingly, our predictive model also predicts high inhibition effi-
cacy of Indinavir  (IC50 0.03uM), Maraviroc  (IC50 0.30uM), 
Abacavir  (IC50 1.27uM). Likewise, Anantpadma A et al. 
identified three effective anti-EBOV drugs, namely Tilorone, 
Pyronaridine and Quinacrine with  Kd values of 0.73 uM, 
7.34uM and 7.55 uM [16]. These three lead molecules also 

Fig. 2  Applicability domain of the anti-Ebola compounds presented 
by William’s plot. a random forest, b support vector machine, c artifi-
cial neural Network

https://bioinfo.imtech.res.in/manojk/antiebola
https://bioinfo.imtech.res.in/manojk/antiebola
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show potential inhibition efficacy by our ‘anti-Ebola’ web 
server such as Tilorone  (IC50 1.95uM), Pyronaridine  (IC50 
0.50uM) and Quinacrine  (IC50 0.002uM). Thus, these find-
ings further validate the utility of our prediction algorithm.

Discussion

Ebola is a dreadful pathogen, which is responsible for caus-
ing epidemics in the past, with a high mortality rate [36]. 
There is a need for developing effective anti-Ebola agents. In 
this endeavor, intervention of the computational approaches 
would accelerate the research in the field [16]. Therefore, 
in the current study, we provided machine learning-based 
prediction models to identify novel and effective anti-Ebola 
compounds. Apart from that, we also analyzed the chemical 
diversity of the available Ebola inhibitors.

We implement three MLTs like SVM, RF and ANN to 
develop effective predictive models. SVM, RF and ANN 
are the machine learning techniques that work on different 
principles. For example, the SVM is a nonlinear algorithm, 
RF works with a decision tree group of algorithms, and 
the ANN is a neural networks-based algorithm. Various 
researchers have used these techniques in numerous stud-
ies [37–40]. Likewise, we had also used these techniques 
to develop predictive algorithms like QSPpred [25], VIR-
siRNApred [41], AVP-IC50Pred [42], anti-flavi [12] and 
many more. For the development of the high-quality pre-
dictive models, we extracted the highly relevant features 
out of the 17,968 (1D, 2D, 3D and fingerprints) features 
from the available anti-Ebola compounds. Among the 
three MLTs, the PCC of the SVM, RF and ANN ranges 
from 0.83 to 0.98. Further, we checked the robustness 
of the developed models by constructing William’s plot 
(applicability domain). Further, we implemented the 
developed models in the form of a web server named ‘anti-
Ebola’ (https:// bioin fo. imtech. res. in/ manojk/ antie bola/). 
The implementation of the predictive models in the form 
of a web server makes them easily accessible for the users. 
Apart from that, we analyzed the chemical diversity of the 
available EBOV inhibitors. We noticed that the available 

anti-Ebola molecules showed high chemical diversity. 
However, the highest (55) amount of the molecules are 
derivatives of the benzene parent compound, followed by 
the 32 molecules which are the derivative of the pyridine 
heterocyclic ring. This is an important approach based on 
the implementation of the MLTs on the available experi-
mentally validated anti-Ebola molecules. Thus, our study 
would be very important for identification of the new and 
promising anti-Ebola agents. Researchers can use our web 
server to identify the promising repurposed drug candi-
dates also.

Few researchers performed computational studies for 
the identification of repurposed drugs against EBOV. These 
computational studies include the use of Bayesian machine 
learning models, molecular simulations, molecular docking, 
etc. [16, 17, 19]. These studies used different datasets as 
input like natural products, FDA-approved drugs and small 
active molecules from repositories. However, our study is 
different from these approaches, as we have incorporated 
three different MLTs for the prediction of anti-EBOV agents. 
For the development of the predictive models, we used the 
experimentally validated anti-EBOV compounds which are 
chemically diverse. Furthermore, our predictive models are 
incorporated as a web server which is not available with 
any of the previously published computational approaches 
for EBOV.

The frequent outbreaks of EBOV with high mortality 
and fatality rate are serious concerns worldwide. As EBOV 
is a dangerous infectious pathogen and comes under the 
Biosafety Level-4 (BSL-4) category, it requires a highly 
specialized laboratory to work. Therefore, designing an 
anti-Ebola agent is a challenging task. Thus, the interven-
tion of computational approaches would be of great help in 
speeding up the identification of effective EBOV inhibitors. 
In this endeavor, we have developed the machine learning-
based QSAR regression model ’anti-Ebola.’ We will update 
the web server on a yearly basis or whenever a significant 
amount of data is available. Thus this ’anti-Ebola’ web 
server would be helpful to researchers to predict Ebola 
inhibitors and the antiviral therapeutic development.

https://bioinfo.imtech.res.in/manojk/antiebola/
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Funding This work was supported by the grants from the CSIR-
Institute of Microbial Technology, Council of Scientific and Industrial 
Research (CSIR) (OLP0501, OLP0143 and STS0038).

Declarations 

Conflict of interest The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that 
could be construed as a potential conflict of interest.

References

 1. Beniac DR, Booth TF (2017) Structure of the Ebola virus glyco-
protein spike within the virion envelope at 11 Å resolution. Sci 
Rep 7:46374. https:// doi. org/ 10. 1038/ srep4 6374

 2. Lee JS, Adhikari NKJ, Kwon HY et al (2019) Anti-Ebola therapy 
for patients with Ebola virus disease: a systematic review. BMC 
Infect Dis 19:376. https:// doi. org/ 10. 1186/ s12879- 019- 3980-9

 3. Keller MA, Richard Stiehm E (2000) Passive Immunity in Preven-
tion and Treatment of Infectious Diseases. Clin Microbiol Rev 
13:602–614. https:// doi. org/ 10. 1128/ cmr. 13.4. 602

 4. Guedj J, Piorkowski G, Jacquot F et al (2018) Antiviral efficacy of 
favipiravir against Ebola virus: A translational study in cynomol-
gus macaques. PLoS Med 15:e1002535. https:// doi. org/ 10. 1371/ 
journ al. pmed. 10025 35

 5. Lo MK, Feldmann F, Gary JM, et al (2019) Remdesivir (GS-5734) 
protects African green monkeys from Nipah virus challenge. Sci 
Transl Med 11:eaau9242. https:// doi. org/ 10. 1126/ scitr anslm ed. 
aau92 42

 6. Todeschini R, Consonni V (2009) Molecular Descriptors for 
Chemoinformatics: Volume I: Alphabetical Listing / Volume II: 
Appendices, References. John Wiley & Sons

 7. Todeschini R, Consonni V (2009) Molecular Descriptors for 
Chemoinformatics, 2 Volume Set: Volume I: Alphabetical List-
ing / Volume II: Appendices, References. Wiley-VCH

 8. Hansch C, Leo A, Pomona College Albert Leo (1995) Exploring 
QSAR.: Fundamentals and applications in chemistry and biology. 
Amer Chemical Society

 9. Matta CF (2014) Modeling biophysical and biological properties 
from the characteristics of the molecular electron density, elec-
tron localization and delocalization matrices and the electrostatic 
potential. J Comput Chem 35:1165–1198. https:// doi. org/ 10. 1002/ 
jcc. 23608

 10. Toussi CA, Haddadnia J, Matta CF (2021) Drug design by 
machine-trained elastic networks: predicting Ser/Thr-protein 
kinase inhibitors’ activities. Mol Divers 25:899–909. https:// doi. 
org/ 10. 1007/ s11030- 020- 10074-6

 11. Qureshi A, Kaur G, Kumar M (2017) AVCpred: an integrated web 
server for prediction and design of antiviral compounds. Chem 
Biol Drug Des 89:74–83. https:// doi. org/ 10. 1111/ cbdd. 12834

 12. Rajput A, Kumar M (2018) Anti-flavi: A Web Platform to Pre-
dict Inhibitors of Flaviviruses Using QSAR and Peptidomimetic 

Approaches. Front Microbiol 9:3121. https:// doi. org/ 10. 3389/ 
fmicb. 2018. 03121

 13. Rajput A, Kumar A, Kumar M (2019) Computational Identifica-
tion of Inhibitors Using QSAR Approach Against Nipah Virus. 
Front Pharmacol 10:71. https:// doi. org/ 10. 3389/ fphar. 2019. 00071

 14. Rajput A, Thakur A, Mukhopadhyay A et al (2021) Prediction of 
repurposed drugs for Coronaviruses using artificial intelligence 
and machine learning. Comput Struct Biotechnol J 19:3133–3148. 
https:// doi. org/ 10. 1016/j. csbj. 2021. 05. 037

 15. Rajput A, Kumar A, Megha K et al (2021) DrugRepV: a compen-
dium of repurposed drugs and chemicals targeting epidemic and 
pandemic viruses. Brief Bioinform 22:1076. https:// doi. org/ 10. 
1093/ bib/ bbaa4 21

 16. Anantpadma M, Lane T, Zorn KM et al (2019) Ebola Virus Bayes-
ian Machine Learning Models Enable New in Vitro Leads. ACS 
Omega 4:2353–2361. https:// doi. org/ 10. 1021/ acsom ega. 8b029 48

 17. Kwofie SK, Broni E, Teye J et al (2019) Pharmacoinformatics-
based identification of potential bioactive compounds against 
Ebola virus protein VP24. Comput Biol Med 113:103414. https:// 
doi. org/ 10. 1016/j. compb iomed. 2019. 103414

 18. Zhao Z, Martin C, Fan R et al (2016) Drug repurposing to target 
Ebola virus replication and virulence using structural systems 
pharmacology. BMC Bioinformatics 17:90. https:// doi. org/ 10. 
1186/ s12859- 016- 0941-9

 19. Ekins S, Freundlich JS, Clark AM, et al (2015) Machine learn-
ing models identify molecules active against the Ebola virus. 
F1000Res 4:1091. https:// doi. org/ 10. 12688/ f1000 resea rch. 7217.3

 20. Edwards MR, Pietzsch C, Vausselin T et al (2015) High-Through-
put Minigenome System for Identifying Small-Molecule Inhibi-
tors of Ebola Virus Replication. ACS Infect Dis 1:380–387. 
https:// doi. org/ 10. 1021/ acsin fecdis. 5b000 53

 21. Wang Y, Cui R, Li G et al (2016) Teicoplanin inhibits Ebola pseu-
dovirus infection in cell culture. Antiviral Res 125:1–7. https:// 
doi. org/ 10. 1016/j. antiv iral. 2015. 11. 003

 22. Cheng H, Lear-Rooney CM, Johansen L et al (2015) Inhibition of 
Ebola and Marburg Virus Entry by G Protein-Coupled Receptor 
Antagonists. J Virol 89:9932–9938. https:// doi. org/ 10. 1128/ JVI. 
01337- 15

 23. Kalliokoski T, Kramer C, Vulpetti A, Gedeck P (2013) Compa-
rability of Mixed IC50 Data – A Statistical Analysis. PLoS ONE 
8:e61007. https:// doi. org/ 10. 1371/ journ al. pone. 00610 07

 24. O’Boyle NM, Banck M, James CA et al (2011) Open Babel: An 
open chemical toolbox. J Cheminform 3:33. https:// doi. org/ 10. 
1186/ 1758- 2946-3- 33

 25. Rajput A, Gupta AK, Kumar M (2015) Prediction and analysis of 
quorum sensing peptides based on sequence features. PLoS ONE 
10:e0120066. https:// doi. org/ 10. 1371/ journ al. pone. 01200 66

 26. Thakur A, Rajput A, Kumar M (2016) MSLVP: prediction of 
multiple subcellular localization of viral proteins using a support 
vector machine. Mol Biosyst 12:2572–2586. https:// doi. org/ 10. 
1039/ c6mb0 0241b

 27. Yap CW (2011) PaDEL-descriptor: an open source software to 
calculate molecular descriptors and fingerprints. J Comput Chem 
32:1466–1474. https:// doi. org/ 10. 1002/ jcc. 21707

 28. Hira ZM, Gillies DF (2015) A Review of Feature Selection and 
Feature Extraction Methods Applied on Microarray Data. Adv 
Bioinformatics 2015:198363. https:// doi. org/ 10. 1155/ 2015/ 
198363

 29. Rajput A, Thakur A, Sharma S, Kumar M (2018) aBiofilm: a 
resource of anti-biofilm agents and their potential implications in 
targeting antibiotic drug resistance. Nucleic Acids Res 46:D894–
D900. https:// doi. org/ 10. 1093/ nar/ gkx11 57

 30. Cortes C, Vapnik V (1995) Mach Learn 20:273–297. https:// doi. 
org/ 10. 1023/a: 10226 27411 411

 31. Petkovic D, Altman R, Wong M, Vigil A (2018) Improving 
the explainability of Random Forest classifier - user centered 

Fig. 3  Chemical analysis of anti-Ebola compounds. a Scatter plot 
showing the diversity of the 305 anti-Ebola compounds, b chemical 
dendrogram of the anti-Ebola compounds showing the chemical side 
chain similarity among them

◂

https://doi.org/10.1007/s11030-021-10291-7
https://doi.org/10.1038/srep46374
https://doi.org/10.1186/s12879-019-3980-9
https://doi.org/10.1128/cmr.13.4.602
https://doi.org/10.1371/journal.pmed.1002535
https://doi.org/10.1371/journal.pmed.1002535
https://doi.org/10.1126/scitranslmed.aau9242
https://doi.org/10.1126/scitranslmed.aau9242
https://doi.org/10.1002/jcc.23608
https://doi.org/10.1002/jcc.23608
https://doi.org/10.1007/s11030-020-10074-6
https://doi.org/10.1007/s11030-020-10074-6
https://doi.org/10.1111/cbdd.12834
https://doi.org/10.3389/fmicb.2018.03121
https://doi.org/10.3389/fmicb.2018.03121
https://doi.org/10.3389/fphar.2019.00071
https://doi.org/10.1016/j.csbj.2021.05.037
https://doi.org/10.1093/bib/bbaa421
https://doi.org/10.1093/bib/bbaa421
https://doi.org/10.1021/acsomega.8b02948
https://doi.org/10.1016/j.compbiomed.2019.103414
https://doi.org/10.1016/j.compbiomed.2019.103414
https://doi.org/10.1186/s12859-016-0941-9
https://doi.org/10.1186/s12859-016-0941-9
https://doi.org/10.12688/f1000research.7217.3
https://doi.org/10.1021/acsinfecdis.5b00053
https://doi.org/10.1016/j.antiviral.2015.11.003
https://doi.org/10.1016/j.antiviral.2015.11.003
https://doi.org/10.1128/JVI.01337-15
https://doi.org/10.1128/JVI.01337-15
https://doi.org/10.1371/journal.pone.0061007
https://doi.org/10.1186/1758-2946-3-33
https://doi.org/10.1186/1758-2946-3-33
https://doi.org/10.1371/journal.pone.0120066
https://doi.org/10.1039/c6mb00241b
https://doi.org/10.1039/c6mb00241b
https://doi.org/10.1002/jcc.21707
https://doi.org/10.1155/2015/198363
https://doi.org/10.1155/2015/198363
https://doi.org/10.1093/nar/gkx1157
https://doi.org/10.1023/a:1022627411411
https://doi.org/10.1023/a:1022627411411


1644 Molecular Diversity (2022) 26:1635–1644

1 3

approach. Pac Symp Biocomput 23:204–215. https:// doi. org/ 10. 
1142/ 97898 13235 533_ 0019

 32. Jain AK, Mao J, Mohiuddin KM (1996) Artificial neural networks: 
a tutorial. Computer 29:31–44. https:// doi. org/ 10. 1109/2. 485891

 33. Fechner N, Jahn A, Hinselmann G, Zell A (2010) Estimation of 
the applicability domain of kernel-based machine learning models 
for virtual screening. J Cheminform 2:2. https:// doi. org/ 10. 1186/ 
1758- 2946-2-2

 34. Cao Y, Charisi A, Cheng L-C et al (2008) ChemmineR: a com-
pound mining framework for R. Bioinformatics 24:1733–1734. 
https:// doi. org/ 10. 1093/ bioin forma tics/ btn307

 35. Schäfer T, Kriege N, Humbeck L et al (2017) Scaffold Hunter: a 
comprehensive visual analytics framework for drug discovery. J 
Cheminform 9:28. https:// doi. org/ 10. 1186/ s13321- 017- 0213-3

 36. Lahai JI (2017) The Ebola Pandemic in Sierra Leone. Palgrave 
Macmillan, Cham

 37. Jovic A, Bogunovic N (2011) Electrocardiogram analysis using 
a combination of statistical, geometric and nonlinear heart rate 
variability features. Artif Intell Med 51:175–186. https:// doi. org/ 
10. 1016/j. artmed. 2010. 09. 005

 38. You H, Ma Z, Tang Y et al (2017) Comparison of ANN (MLP), 
ANFIS, SVM and RF models for the online classification of heat-
ing value of burning municipal solid waste in circulating fluidized 

bed incinerators. Waste Manag 68:186–197. https:// doi. org/ 10. 
1016/j. wasman. 2017. 03. 044

 39. Yu S, Tao J, Dong B et al (2021) Development and head-to-head 
comparison of machine-learning models to identify patients 
requiring prostate biopsy. BMC Urol 21:80. https:// doi. org/ 10. 
1186/ s12894- 021- 00849-w

 40. Mirsadeghi L, Haji Hosseini R, Banaei-Moghaddam AM, Kavousi 
K (2021) EARN: an ensemble machine learning algorithm to pre-
dict driver genes in metastatic breast cancer. BMC Med Genomics 
14:122. https:// doi. org/ 10. 1186/ s12920- 021- 00974-3

 41. Qureshi A, Thakur N, Kumar M (2013) VIRsiRNApred: a web 
server for predicting inhibition efficacy of siRNAs targeting 
human viruses. J Transl Med 11:305. https:// doi. org/ 10. 1186/ 
1479- 5876- 11- 305

 42. Qureshi A, Tandon H, Kumar M (2015) AVP-IC50 Pred: Multiple 
machine learning techniques-based prediction of peptide antiviral 
activity in terms of half maximal inhibitory concentration (IC50). 
Biopolymers 104:753–763. https:// doi. org/ 10. 1002/ bip. 22703

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1142/9789813235533_0019
https://doi.org/10.1142/9789813235533_0019
https://doi.org/10.1109/2.485891
https://doi.org/10.1186/1758-2946-2-2
https://doi.org/10.1186/1758-2946-2-2
https://doi.org/10.1093/bioinformatics/btn307
https://doi.org/10.1186/s13321-017-0213-3
https://doi.org/10.1016/j.artmed.2010.09.005
https://doi.org/10.1016/j.artmed.2010.09.005
https://doi.org/10.1016/j.wasman.2017.03.044
https://doi.org/10.1016/j.wasman.2017.03.044
https://doi.org/10.1186/s12894-021-00849-w
https://doi.org/10.1186/s12894-021-00849-w
https://doi.org/10.1186/s12920-021-00974-3
https://doi.org/10.1186/1479-5876-11-305
https://doi.org/10.1186/1479-5876-11-305
https://doi.org/10.1002/bip.22703

	Anti-Ebola: an initiative to predict Ebola virus inhibitors through machine learning
	Abstract
	Graphic abstract

	Introduction
	Methods
	Data collection
	Data preparation
	PaDEL descriptor
	Feature selection
	Ten fold cross-validation
	Machine learning techniques
	Performance measure
	Applicability domain
	Chemical analysis
	Web server

	Results
	Performance of QSAR models
	Applicability domain
	Chemical analysis
	Web server
	Case study

	Discussion
	References




