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Abstract

A new series of (+)-(3-(3,5-dimethyl-1H-pyrazol-1-yl)-6-phenyl-6,7-dihydro-5H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-
7-yl)(phenyl)methanones were efficiently synthesized starting from 4-amino-5-hydrazinyl-4H-1,2,4-triazole-3-thiol 1, acetyl
acetone 2, various aromatic and heterocyclic aldehydes 3 and phenacyl bromides 4. All the newly synthesized compounds
were tested for their antiviral and antitumoral activity. It was shown that subtle structural variations on the phenyl moiety
allowed to tune biological properties toward antiviral or antitumoral activity. Mode-of-action studies revealed that the anti-
tumoral activity was due to inhibition of tubulin polymerization.
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Introduction

Heterocyclic structures are well-known components of vari-
ous biologically active compounds. Nitrogen-containing het-
ero aromatics [1-7], such as triazole and pyrazole are well
known to impart biological activity. Examples of marketed
drugs based on a 1,2,4-triazole scaffold include voriconazole
(an antifungal drug), forasartan (used for the treatment of
hypertension), sitagliptin (an antidiabetic drug) and letro-
zole (a non-steroidal aromatase inhibitor for the treatment
of breast cancer) (Fig. 1) [8]. In addition, a wide range of
1,2,4-triazole derivatives have been synthesized and tested in
a wide variety of biological assays, leading to the discovery
of anti-bacterial [9, 10], antiviral [11, 12], antifungal [13,
14], anti-inflammatory [15, 16], anti-proliferative [17, 18],
anti-convulsant [19], anti-oxidant [20] and anti-Parkinson
[21] triazole analogues. Pyrazole ring is another example
of a hetero aromatic scaffold, exhibiting a wide range of
biological properties. Examples of drugs based on a pyra-
zole scaffold that received marketing include celecoxib and
deracoxib (both cyclo-oxygenase-2 inhibitors), surinabant (a
cannabinoid receptor type 1 antagonist) and crizotinib (an
ALK inhibitor). However, a plethora of other activities, such
as anti-HIV [22, 23], anti-malarial [24], anti-oxidant [25],
anti-inflammatory [26], anti-bacterial [27, 28], anti-tumor
[29], anti-pyretic [30], anti-analgesic [31], anti-cancer [32]
and anti-leishmanial [33] activities have been associated
with the pyrazole scaffold.

Although sulfur-containing heterocyclic compounds were
found to have extensive biological applications, 1,3,4-thia-
diazines are explored to a much lesser extent in medicinal
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chemistry, when compared to 1,2,4-triazole and pyrazole
motifs. Thiadiazines are themselves showing good biological
activities [34-39].

Multi-component reactions (MCRs), also known as multi-
component assembly processes (MCAPS), are attractive syn-
thetic methodologies in medicinal chemistry. The synthetic
procedures in MCRs use mild reaction conditions and all, or
most, of the atoms from the various reactants contribute to
formation of the target compounds. The main advantages of
MCRs are their atom economy, eco-friendliness and the fact
that it allows to quickly generate structural diversity [40—44].

We recently reported the synthesis of [1, 2, 4]triazolo[3,4-
b][1,3,4]thiadiazines through the multi-component reaction
(MCR) process [45]. The presence of a hydrazino group in
these molecules offers the possibility to convert them into
pyrazole moieties. In view of the numerous biological appli-
cations of triazoles, pyrazoles and thiadiazines we became
interested in the synthesis of the title compounds. Final com-
pounds were subjected to a variety of assays in order to find
antiviral and/or antitumoral activity.

Results and discussions

The synthesis of the (+)-3-(1H-pyrazol-1-yl)-6,7-dihydro-
5H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine derivatives was
performed using a two-step, one pot procedure. In order to
optimize the chemistry, a model reaction was carried out
using 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole 1,
acetylacetone 2, 2,3-dimethoxybenzaldehyde 3 and 4-meth-
oxyphenacylbromide 4 as starting materials (Scheme 1).
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Fig. 1 Marketed drugs based on a 1,2,4-triazole and pyrazole scaffold
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Scheme 1 Model reaction. Reaction conditions: a 1 (1 mmol), 2 (1 mmol), 3 (1 mmol), EtOH, HCI (one drop), b 4 (1 mmol), TEA (3 mmol),

EtOH, reflux

Table 1 Screening of the base catalyst

Entry Solvent Base Temp. (°C) Time (h) Yield (%)
of (+)-5a

1 EtOH - 70 10 0

2 EtOH  Pyridine 70 16 55

3 EtOH  Piperidine 70 12 48

4 EtOH  Triethylamine 70 11.30 92

The first step of the reaction was carried out in ethanol as
solvent at reflux temperature, in the presence of a catalytic
amount of HCI yielding the intermediate 5-(3,5-dime-
thyl-1H-pyrazol-1-yl)-4-((4-methoxybenzylidene)

amino)-4H-1,2,4-triazole-3-thiol [46]. The intermediate
was not isolated instead of it 4-methoxyphenacylbromide
4 was added to the reaction mixture. In order to drive the
ring closure to form the thiadiazine moiety, various reaction
conditions were explored (Table 1). Running this reaction,
either at room temperature or at reflux temperature failed to
yield the desired product. Upon the addition of an organic
base (such as Pyridine, Piperidine or Triethylamine), the
desired product was formed. Using triethylamine as base and
running the reaction at reflux temperature (entry 4) resulted
in the formation of desired compound ( +)-5a in excellent
yield (Table 1).

Using this methodology (Scheme 2), a series of com-
pounds was prepared using various benzaldehydes,
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Scheme 2 One-pot, four-component synthesis of (+)-3-(1H-pyrazol-1-yl)-6,7-dihydro-5H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine derivatives

(5a-t)
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heterocyclic aldehydes and phenacyl bromides (Table 2).
This approach is simple and affords the desired products in
yields ranging from 83 to 94%. (Table 3).

In the present investigation, pyrazole and dihydrothiadia-
zine skeletons were developed using one-pot, four-compo-
nent reaction. Initially, hydrazino functional group of com-
pound 1 underwent cyclocondensation with acetylacetone 2
to form pyrazole ring [47]. Then an appropriate amount of
different aldehydes 3 and substituted phenacyl bromides 4
were reacted with amine (-NH,) and thiol (-SH) groups of
compound 1 respectively by using triethylamine to establish
the dihydrothiadiazines (Scheme 3) [48].

The structures of the final products were confirmed by
their spectral data. The FT-IR spectrum of product (+)-5b
showed a characteristic stretching band at 1681 cm™' cor-
responding to the —C=0 functional group, whereas the
—NH- group appeared at 3135 cm™!. The 'H-NMR spec-
trum of compound (+)-5b showed characteristic peaks,
such as two singlets at 2.21 and 2.95 ppm, arising from
the two methyl groups on the pyrazole ring. Another two
singlets appeared at 2.37 and 2.43 ppm that were assigned
to the methyl groups on both phenyl moieties. The two
—CH- protons of the dihydrothiadiazine skeleton were vis-
ible as two doublets at 5.05 and 5.25 ppm, respectively.
The proton of the pyrazole ring showed up as a singlet at
6.00 ppm, whereas the -NH- proton appeared at 7.42 ppm.
The remaining aromatic protons appeared in the region
of 7.11-7.80 ppm. The 3C-NMR spectrum of compound
(#)-5b showed peaks at 11.9 and 13.6 ppm for the carbon

Table 3 Hydrogen bonding interactions

S.no D-H..A H..AA) D...AA) D-H..A()
N(6)-H(6) ... N(2)! 2.50 3.1298 130
C(4)-H(4) ... N@)' 2.38 3.2637 150

3 C(19)-H(19) ... O(1)"" 2.46 3.3727 160

Symmetry transformations used: (i) Y2-x, Y2+y, Y2+1z; (ii) -Y2-x,
Va+yYa-z;

atoms of two methyl groups on the pyrazole ring at 21.1 and
21.8 ppm for the carbons of two methyl groups on the phenyl
moiety. The characteristic carbons of the dihydrothiadiazine
skeleton appeared at 44.2 and 59.3 ppm respectively. The
pyrazole carbon displayed a peak at 107.8 ppm, whereas
the carbonyl peak appeared as the most downfield signal
at 193.7 ppm. The remaining aromatic carbons appeared in
the range of 127.3 to 151.8 ppm. Mass spectral analysis of
compound (+)-5b showed a molecular ion peak at m/z 445.

X-ray crystallography

To confirm the structure, crystalline material of compound
(£)-5 h was isolated, and single crystal X-ray diffraction
data were obtained. The compound crystallizes in a mono-
clinic P2,/n space group. The molecular structure of (+)-5 h
in ORTEP representation is shown in Fig. 2.

Compound (+)-5 h has a 4-methylbenzoyl group and
4-chlorophenyl group on two adjacent chiral centers of the

Table 2 Derivatives of

Product R! R? R? R* R3 X Time (h) Yield (%)

(+)-3-(1H-pyrazol-1-yl)-

6.7-dihydro-5H-[1,2.4] 5a OCH, OCH, H H OCH, - 11.30 92

Eg:i?10[3,4-b][l,3,4]th1ad1azme b H H CH, H CH, N 11.00 91
5¢ H H NO, H NO, - 14.30 83
5d H OCH, H H cl - 12.00 86
5e Br H H H F - 12.30 90
5f Br H H H CH, - 11.50 92
5¢ H H cl H Br - 13.00 90
5h H H cl H CH, - 12.00 93
5i H OCH, OH OCH, H - 11.40 89
5§ H F F F CH, - 14.00 92
5k H F F F H - 13.30 90
51 H OCH; OCH; OCH; F - 13.15 88
5m H OCH; OCH; OCH; H - 11.40 94
5n cl H H H OCH, - 14.15 86
50 OCH, H OCH, H OCH, - 12.00 94
5p OCH, H OCH, H NO, - 14.00 92
5q - - - - OCH, O 14.30 87
5r - - - - CH, 0 14.15 85
5s - - - - NO, S 15.00 89
5t - - - - NO, 0 14.50 92
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Scheme 3 Plausible mechanism for the synthesis of compounds (+)-5a-t

six-membered dihydrothiadiazine ring. The dihydrothiadia-
zine moiety is fused with a triazole ring, further connected
to a pyrazole ring through a carbon-nitrogen single bond.
The phenyl rings of 4-methylbenzoyl and 4-chlorophenyl
groups are almost perpendicular (79.92° and 82.28° respec-
tively) to the mean plane of the fused six- and five-mem-
bered rings. The pyrazole ring attached to triazole makes an
angle of 55.59° with the mean plane of the fused six- and
five-membered rings. The bond distances and angles are
consistent with the structure derived from NMR data. The
centrosymmetric space group (P2,/n) indicates (Table 4) that
the material is a racemic mixture. The unit cell contains two
pairs of enantiomers and is connected through non-covalent
interactions.

Non-covalent intermolecular interactions, such as hydro-
gen bonding, play an essential role in binding of drugs to

their targets, such as DNA or proteins. In this context, the
possibility of the presence of non-covalent interactions in
the solid state structure of compound (+)-5 h was explored.
As a result, we were able to identify one N-H ... N hydro-
gen bonding, one C-H ... O interaction and one C-H ...
N interaction (Fig. 3). The interactions and corresponding
symmetry transformations are listed in Table 3.

Biological evaluation

In vitro antiviral screening

Compounds ((+)—5a-t) were subjected to a broad antivi-
ral screening. At a concentration of 100 uM, no selective

antiviral activity was observed for the following viruses:
influenza A (HIN1 and H3N2) and influenza B virus (in

@ Springer



1362

Molecular Diversity (2022) 26:1357-1371

Fig.2 ORTEP representation of
compound (+)-5h

Table 4 Important crystallographic data for compound (+)-5 h

Compound

(£)-5h

Chemical formula
Formula weight
Crystal system
Space group
a(A)

b(A)

c(A)

a(®)

pCO)

r ()

V(A%

Z

p(gem™)
p (mm™)

Reflections collected
Reflections unique
Reflections [/>20(])]
Parameters

R1, wR2 [I>20(])]
R1, wR2 [all data]
GOF on F?
Max./Min. Ap (e A™3)

Cy;;H, CIN;O S
464.97
Monoclinic
P2,/n
14.2063(18)
8.4877(11)
20.022(3)

90

107.576(5)

90

2301.6(5)

4

1.342

0.285

34,696

4077

4077

289

0.0471, 0.1330
0.0537, 0.1387
1.136

-0.710
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MDCK cells), respiratory syncytial virus (in HEp-2cells),
yellow fever virus (in Huh7 cells), herpes simplex virus type
1 and 2 (in HEL 299 cells). However, a number of deriva-
tives did show antiviral activity against the human corona
virus 229E (hCoV-229E) in HEL 299 cells (Table 5). Espe-
cially compounds (+)-5b and (+)-5f displayed promising
activity with ECs, values of 4.7 and 3.2 uM, respectively. In
addition, both derivatives lacked cytotoxicity for the HEL
cells giving rise to favorable selectivity indexes.

In vitro antitumoral screening

To investigate their anti-cancer potential, compounds Sa-t
were tested in vitro for their anti-proliferative properties,
using a real-time IncuCyteproliferation assay against an
array of solid and hematological cancers including LN-229
(glioblastoma), Capan-1 (pancreatic adenocarcinoma), HCT-
116 (colorectal carcinoma), NCI-H460 (lung carcinoma),
DND-41 (acute lymphoblastic leukemia), HL-60 (acute
myeloid leukemia), K-562 (chronic myeloid leukemia) and
Z-138 (non-Hodgkin lymphoma) cell lines. Docetaxel (a
microtubule depolymerisation inhibitor) and staurosporine
(STS, a pan-kinase inhibitor) were used as positive controls.
From this screening campaign, two derivatives (compounds
5j and 5q) emerged that showed low uM activity against the
different cell lines (Table 6).
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Fig.3 Intermolecular Hydrogen bonding interactions of compound (+)-5 h in crystal lattice

Table5 Antiviral evaluation of compounds (+)-5a-t against hCoV-
229E

Compound Conc. unit hCoV-229E (HEL cells)
CCs, ECy,

5b uM 81.5 4.7+0.5 (%)

5¢ uM > 100 244

Se uM > 100 >100

5f uM > 100 32+1.8(%)

S¢g uM > 100 >100

5h uM > 100 38.0

5j uM 23.8 >100

5k uM > 100 >100

Sm uM > 100 95.7

5n uM > 100 > 100

S5p uM > 100 > 100

5q uM <0.8 > 100

S5r uM > 100 > 100

5s uM > 100 > 100

5t uM > 100 > 100

UDA ug/ml > 100 2.1

(*)Mean value of three independent experiments + SEM

Because of the promising antitumoral profile of com-
pounds (+)-5j and (+)-5q, their apoptogenic potential in
non-cancerous peripheral blood mononuclear cells (PBMCs)
was determined as counter screening. The activation of
the executioner caspases-3 and -7 normally precedes the
manifestation of apoptosis as massive DNA fragmentation.
Therefore, the caspase-3/7 Green reagent was added to the
PBMCs, which are also treated with different concentra-
tions of compounds ( +)-5j and (+)-5q. When activated
caspase 3 or 7 are intracellularly present, they will cleave the

Caspase-3/7 Green Reagent at the DEVD motif. This results
in the release of a DNA binding dye that fluorescently labels
nuclear DNA of apoptic cells. In addition, in order to dis-
tinguish dead cells from live cells, a propidium iodide (PI)
staining was carried out. As can be derived from Fig. 4, only
very high concentrations of compounds ( +)-5j and (+)-5q
(100 uM) give rise to a small increase in the number of
apoptotic and dead cells. Overall, these data indicate that
compounds (+)-5]j and (+)-5q did not inhibit the viability
of normal PBMCs and demonstrate selectivity toward cancer
cells over normal cells (Fig. 4).

Despite their promising antitumoral profile, the exact
molecular target of compounds ( +)-5j and (+)-5q remained
elusive. In order to assess whether they interact with tubulin,
an immune fluorescence analysis of tubulin in HEp-2 cells
treated for 3 h with compounds (+)-5j and (+)-5q was per-
formed, and compared to DMSO (vehicle control) and to
vincristine (a known tubulin polymerization inhibitor, used
as positive control). It can be clearly observed that both
compounds (+)-5j and (+)-5q inhibit the polymerization
of tubulin in a dose-dependent manner (Fig. 5).

Conclusion

The synthesis of a new series of (+)-3-(1H-pyrazol-1-yl)-
6,7-dihydro-5H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine
derivatives was carried out in an excellent yields via a one-
pot, four-component method using readily available starting
materials. The reactions proceeds in such a way with high
atom economy, leading to the formation of one C=N, two
C-N, one C-C, and one C-S bonds in a single operation,
giving multi-annulated products. All the final compounds
were tested for their antiviral and antitumoral activity. It
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Table 6 Antitumoral evaluation of compounds from (+)-5a-t. ICy,

Compound IC5, (UM)

LN-229 Capan-1 HCT-116 NCI-H460 DND-41 HL-60 K-562 Z-138
5b 47.1 57.5 67.8 >100 393 50.9 10.4 48.4
Sc > 100 > 100 > 100 > 100 >100 > 100 > 100 > 100
Se > 100 > 100 > 100 >100 >100 > 100 > 100 > 100
5f > 100 >100 >100 >100 >100 > 100 > 100 >100
5¢ >100 >100 >100 >100 >100 > 100 > 100 >100
5h > 100 > 100 > 100 > 100 > 100 >100 > 100 > 100
55 27+0.2 23+0.2 2.5+0.09 56.0 24+04 13.0+2.8 3.4+0.2 1.9+0.03
5k >100 >100 >100 >100 >100 > 100 > 100 >100
5m > 100 > 100 > 100 > 100 >100 > 100 > 100 > 100
5n 63.3 63.1 >100 >100 91.7 71.2 53.2 53.9
S5p >100 >100 >100 >100 > 100 > 100 > 100 >100
5q* 0.7+0.09 1.1+0.7 1.0+0.4 25+0.2 0.6+0.2 2.0+0.4 23+1.6 0.4+0.005
Sr 439 54.3 69.0 47.0 70.2 54.0 235 50.2
5s > 100 > 100 >100 >100 > 100 > 100 >100 >100
5t 62.7 >100 >100 > 100 > 100 74.5 79.3 49.5

Docetaxel* 0.0087 +0.0004 0.0042 +0.0021 0.0009 +0.0008 0.0038+0.0029  0.0033+0.0014  0.0023+0.0003  0.0037+0.0003  0.0011+0.0008
STS* 0.0229 +0.0021 0.0007 £0.0002 0.0004 +£0.0001 0.00010+£0.0000  0.0015+0.0004  0.0043+0.0022  0.0074+0.0017  0.0224+0.0074

*Mean value of two independent experiments + SEM
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Fig.4 Analysis of apoptosis induction by compound-5j (left) and (+)-5q (right) in PBMC originating from two healthy donors

was demonstrated that subtle structural modifications on the
phenyl moieties allowed to tune the biological properties of
the compounds. Among the newly synthesized compounds,
a number of derivatives show promising antiviral activity
against the hCoV-229E, whereas other derivatives exhibited
cytotoxicity in various cancer cell lines. In addition, it was
demonstrated that the antitumoral activity of these com-
pounds is caused by inhibition of tubulin polymerization.

Experimental
General
All the reactants, reagents and solvents were pure, pur-

chased from commercial sources and used without fur-
ther purification. All the synthesized compounds were

@ Springer

preliminarily confirmed by monitoring using TLC plates
(E, Merck, Mumbai, India) in the UV-light chamber. A
“Stuart SMP30” programmable melting point instrument
(Bibby Scientific Ltd. U.K.) was used to record the melt-
ing points of the synthesized compounds. FT-IR spectra
of the newly synthesized compounds in KBr-pellets were
recorded on a PerkinElmer 100S FT-IR spectrophotom-
eter. The 'H- and the '>*C-NMR chemical shift values
were determined for the compounds on Avance-III Bruker
WM-400 MHz spectrometer in 6 ppm. Tetramethylsilane
(TMS) acts as reference standard for the chemical shifts.
Suitable deuterated solvents like CDCl; and DMSO-
ds were used as solvent for the various compounds to
record 'H- and '3*C-NMR spectra. Molecular ion peaks
were recorded as m/z, ESI-Mass spectra on a PerkinElmer
spectrometer performing at 12.5 eV. Carlo Erba EA 1108
CHNS-O automatic analyzer was used for the elemental
analysis.
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A

DMSO control 100uM 5j

1uM Vincristine 100uM 5q

Fig.5 Immune fluorescence staining of alpha-tubulin in HEp-2 cells:
a Representative images of normal alpha-tubulin after treatment with
DMSO (top) or typical phenotype after treatment with vincristine

General procedure for the synthesis

of (1)-(3-(3,5-dimethyl-1H-pyrazol-1-yl)-6-phe-
nyl-6,7-dihydro-5H-[1,2,4]triazolo[3,4-b][1,3,4]
thiadiazin-7-yl)(phenyl)methanones (5a-t).

A mixture of 4-amino-5-hydrazino-4H-[1, 2, 4] triazole-
3-thiol 1 (1 mmol), acetyl acetone (ACAC) 2 (1 mmol) and
appropriate aromatic aldehydes/heterocyclic aldehydes 3
(1 mmol) was taken sequentially in 5 mL of dry ethanol
containing drop of Conc. HCI. The reaction mixture was
refluxed for 5-7 h by monitoring TLC. After completion of
reaction, to the reaction mixture substituted phenacyl bro-
mides 4 (1 mmol) and triethylamine (TEA) (3 mmol) were
added and one drop of HCI was neutralized by one mole of
TEA. Then the reaction was continued under the reflux for
6-8 h by monitoring TLC (CHCl;:CH;0H =95:5). The reac-
tion mixture was cooled to room temperature, diluted with
water and the solid separated was filtered. The final products
were recrystallized from 6—8 mL ethanol.

(+)-(6-(2,3-Dimethoxyphenyl)-3-(3,5-dime-
thyl-1H-pyrazol-1-yl)-6,7-dihydro-5H[1,2,4]triazole
[3,4-b][1,3,4]thiadiazin-7-yl)(4-methoxyphenyl)
methanone (5a)

Light yellow color solid; yield 92%; m.p.: 192-194 °C;
IR (KBr, vmaX/cm‘l): 3211 (NH), 1668 (C=0); '"H-NMR
(400 MHz, CDCl;, 6 ppm): 2.24 (s, 3H, CHj;), 2.40 (s, 3H,
CH,3), 3.87 (s, 6H, OCHj;), 3.90 (s, 3H, OCHj;), 5.28 (unre-
solved doublet, 2H, CH), 6.00 (s, 1H, CH of pyrazole ring),

10pM 5§

10uM 5q 1uM 5q

(bottom), b Treatment with compounds (+)-5j and (+)-5q. Green:
alpha-tubulin, blue: DAPI. Scale bar: 25 uM

6.68 (d, 1H, J=7.6 Hz, Ar-H), 6.88 (d, 1H, J=8.0 Hz,
Ar-H), 6.94 (s, 1H, NH), 6.97 (d, 2H, J=8.4 Hz, Ar-H),
7.11 (d, 1H, J=8.0 Hz, Ar—H), 7.94 (d, 2H, J=8.8 Hz,
Ar—H); *C-NMR (100 MHz, CDCls, § ppm): 11.7, 13.7,
42.6, 54.9, 55.7, 55.8, 61.0, 107.7, 112.9, 114.3, 119.7,
124.4, 127.4, 129.4, 130.3, 130.8, 131.2, 142.9, 146.1,
151.8, 152.6, 164.6, 193.2; ESI-MS m/z: 507 [M +H]*;
Analytical calculated formulae C,sH,,N,O,S: C, 59.27; H,
5.17; N, 16.59; S, 6.33; Found: C, 59.22; H, 5.22; N, 16.53;
S, 6.30.

(+)-(3-(3,5-Dimethyl-1H-pyra-
zol-1-yl)-6-(p-tolyl)-6,7-dihydro-5H-[1,2,4]
triazolo[3,4-b][1,3,4] thiadiazin-7-yl)(p-tolyl)metha-
none (5b)

White solid; yield 91%; m.p.: 194-196 °C; IR (KBr, v,/
cm™1): 3135 (NH), 1681 (C=0); 'H-NMR (400 MHz,
CDCl,, 6 ppm): 2.22 (s, 3H, CH;), 2.30 (s, 3H, CH,), 2.38
(s, 3H, CHy), 2.43 (s, 3H, CHj3), 5.05 (unresolved doublet,
1H, CH), 5.25 (d, 1H, J=5.2 Hz, CH), 6.00 (s, 1H, CH of
pyrazole ring), 7.11 (d, 2H, J=8.0 Hz, Ar—H), 7.29 (d, 4H,
J=7.2Hz, Ar-H), 7.42 (s, 1H, NH), 7.80 (d, 2H, J=8.0 Hz,
Ar-H); BC-NMR (100 MHz, CDCl,, 6 ppm): 11.9, 13.6,
21.1, 21.8, 44.2, 59.3, 107.8, 127.3, 128.8, 129.7, 129.8,
132.0, 132.7, 138.8, 141.3, 143.1, 145.6, 145.7, 151.8,
193.7; ESI-MS m/z: 445 [M +H]"; Analytical calculated
formulae C,,H,,NOS: C, 64.84; H, 5.44; N, 18.90; S, 7.21;
Found: C, 64.89; H, 5.40; N, 18.85; S, 7.18.
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(£)-(3-(3,5-Dimethyl-1H-pyra-
zol-1-yl)-6-(4-nitrophenyl)-6,7-dihydro-5H-[1,2,4]
triazolo[3,4-b][1,3,4] thiadiazin-7-yl)(4-nitrophenyl)
methanone (5¢)

Yellow solid; yield 83%; m.p.: 242-244 °C; IR (KBr, v,,,,/
cm™'): 3302 (NH), 1614 (-C=0); 'H-NMR (400 MHz,
CDCl,, 6 ppm): 2.16 (s, 3H, CH;), 2.44 (s, 3H, CH,), 5.05
(d, 1H, J=6.0 Hz, CH), 5.20 (d, 1H, J=6.0 Hz, CH), 6.00
(s, 1H, CH of pyrazole ring), 7.30 (d, 2H, J=28.4 Hz, Ar-H),
7.38 (d, 2H, J=8.4 Hz, Ar-H), 7.65 (d, 2H, J=8.1 Hz,
Ar-H), 7.73 (s, 1H, NH), 7.77 (d, 2H, J=8.4 Hz, Ar-H);
3C-NMR (100 MHz, CDCl;, § ppm): 12.0, 13.5, 44.1,
59.1,107.9, 128.9, 129.0, 129.2, 129.9, 131.9, 134.3, 134.9,
141.0, 143.1, 145.5, 146.0, 151.8, 193.5; ESI-MS m/z: 507
[M +H]J*; Analytical calculated formulae C,,H,{NgOsS: C,
52.17; H, 3.58; N, 22.12; S, 6.33; Found: C, 52.23; H, 3.54;
N, 22.17; S, 6.30.

(£)-(4-Chlorophenyl)(3-(3,5-dimethyl-1H-pyra-
zol-1-yl)-6-(3-methoxyphenyl)-6,7-dihy-
dro-5H-[1,2,4]triazolo[3,4-b][1,3,4][1,3,4]thiadia-
zin-7-yl)methanone (5d)

Cream color solid; yield 86%; m.p.: 188-190 °C; IR (KBr,
U /em™h): 3138 (NH), 1692 (C=0); 'H-NMR (400 MHz,
CDCl,, 6 ppm): 2.19 (s, 3H, CH;), 2.41 (s, 3H, CHj;), 3.74
(s, 3H, OCHj;), 5.04 (t, 1H, J=4.0 Hz, CH), 5.25 (d, 1H,
J=4.4 Hz, CH), 6.00 (s, 1H, CH of pyrazole ring), 6.83
(d, 1H, J=6.8 Hz, Ar-H), 6.96 (s, 1H, Ar-H), 6.98 (d, 1H,
J=6.4 Hz, Ar-H), 7.23 (t, 1H, J=6.4 Hz, Ar-H), 7.47
(d, 2H, J=6.4 Hz, Ar—H), 7.58 (s, 1H, NH), 7.84 (d, 2H,
J=6.8 Hz, Ar-H); ">*C-NMR (100 MHz, CDCl;, § ppm):
12.0, 13.6, 44.9, 55.3, 59.8, 107.9, 113.3, 114.4, 119.4,
129.5, 130.1, 130.2, 132.9, 137.1, 140.9, 141.2, 143.2,
145.5, 151.8, 160.0 192.9; ESI-MS m/z: 481 [M+H]*;
Analytical calculated formulae C,;H,,CIN,O,S: C, 57.44;
H, 4.40; N, 17.47; S, 6.67; Found: C, 57.48; H, 4.45; N,
17.42; S, 6.62.

(%)-(6-(2-Bromophenyl)-3-(3,5-dimethyl-1H-pyra-
zol-1-yl)-6,7-dihydro-5H-[1,2,4]triazolo[3,4-b][1,3,4]
thiadiazin-7-yl)(4-fluorophenyl)methanone (5e)

Golden yellow color solid; yield 90%; m.p.: 195-197 °C;
IR (KBr, vmax/cm_l): 3138 (NH), 1692 (C=0); '"H-NMR
(400 MHz, CDCl;, 6 ppm): 2.15 (s, 3H, CH;), 2.48 (s,
3H, CH,), 5.22 (d, 1H, J=4.0 Hz, CH), 5.50 (t, 1H,
J=4.8 Hz, CH), 5.99 (s, 1H, CH of pyrazole ring), 7.17
(s, 1H, NH), 7.20 (d, 2H, J=8.4 Hz, Ar-H), 7.24 (d, 1H,
J=2.0 Hz, Ar-H), 7.59 (d, 1H, J=7.6 Hz, Ar-H), 7.78 (d,
1H, J=5.6 Hz, Ar-H), 8.01 (dd, 2H, J=8.8 Hz, J=5,2 Hz,
Ar-H); 3C-NMR (100 MHz, CDCl,, 6 ppm): 11.9, 13.3,
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43.1,58.3,107.8, 116.3, 116.5, 123.2, 128.1, 128.6, 130.2,
131.7, 131.8, 133.4, 136.4, 140.0, 142.9, 145.5, 151.7,
166.2, 167.8 192.5; ESI-MS m/z: 515 [M +2]*; Analytical
calculated formulae C,,H,sBrFN,OS: C, 51.47; H, 3.53; N,
16.37; S, 6.25; Found: C, 51.42; H, 3.57; N, 16.32; S, 6.20.

(%)-(6-(2-Bromophenyl)-3-(3,5-dimethyl-1H-pyra-
zol-1-yl)-6,7-dihydro-5H-[1,2,4]triazolo[3,4-b][1,3,4]
thiadiazin-7-yl)(p-tolyl)methanone (5f)

Lemon yellow color solid; yield 92%; m.p.: 201-203 °C;
IR (KBr, vmax/cm_l): 3148 (NH), 1673 (C=0); '"H-NMR
(400 MHz, CDCl;, 6 ppm): 2.20 (s, 3H, CHj;), 2.44 (s, 3H,
CH,;), 2.46 (s, 3H, CH,), 5.22 (d, 1H, J=4.0 Hz, CH-), 5.49
(t, 1H, J=4.8 Hz, CH), 6.00 (s, 1H, CH of pyrazole ring),
7.19 (t, 2H, J=8.0 Hz, Ar-H), 7.23 (s, 1H, NH), 7.31 (d,
2H, J=8.0 Hz, Ar-H), 7.58 (d, 1H, J="7.6 Hz, Ar-H), 7.65
(d, 1H, J=5.2 Hz, Ar—H), 7.86 (d, 2H, J=8.0 Hz, Ar—H);
3C-NMR (100 MHz, CDCl,, 6 ppm): 11.9, 13.5, 21.8,
42.9,57.8,107.8, 123.0, 128.1, 128.6, 128.9, 129.9, 130.2,
131.7,133.4, 136.6 140.1, 142.9, 145.6, 145.7, 151.8, 193.7,
ESI-MS m/z: 511 [M +2]*; Analytical calculated formulae
C,3H, BIN(OS: C, 54.23; H, 4.16; N, 16.50; S, 6.29; Found:
C,54.28;H,4.21; N, 16.44; S, 6.33.

(£)-(4-Bromophenyl)
(6-(4-chlorophenyl)-3-(3,5-dimethyl-1H-pyra-
zol-1-yl)-6,7-dihydro-5H- triazolo[3,4-b][1,3,4]
thiadiazin-7-yl)methanone (5g)

White solid; yield 90%; m.p.: 205-207 °C; IR (KBr, v,,,,/
cm™"): 3291 (NH), 1688 (C=0); '"H-NMR (400 MHz,
CDCl;, 6 ppm): 2.16 (s, 3H, -CH3), 2.44 (s, 3H, CH;),
5.05 (dd, 1H, J=6.0 Hz, J=3.6 Hz, CH-), 5.2 (d, 1H,
J=6.0 Hz, CH), 6.00 (s, 1H, CH of pyrazole ring), 7.30
(d, 2H, J=8.4 Hz, Ar-H), 7.38 (d, 2H, J=8.4 Hz, Ar-H),
7.65 (d, 2H, J=8.1 Hz, Ar-H), 7.72 (s, 1H, NH), 7.77
(d, 2H, J=8.4 Hz, Ar—H); '3C-NMR (100 MHz, CDCl,,
6 ppm): 12.0, 13.5, 44.9, 59.5, 107.9, 129.0, 129.3, 132.1,
130.2 132.6, 133.2, 134.2, 135.1, 140.6, 143.1, 145.3, 151.8,
192.8; ESI-MS m/z: 531 [M +2]*; Analytical calculated for-
mulae C,,H,3BrCIN,OS: C, 49.87; H, 3.42; N, 15.86; S,
6.05; Found: C, 49.84; H, 3.48; N, 15.83; S, 6.12.

(£)-(6-(4-Chlorophenyl)-3-(3,5-dimethyl-1H-pyra-
zol-1-yl)-6,7-dihydro-5H-[1,2,4]triazolo[3,4-b]
[1,3,4]thiadiazin-7-yl)(p-tolyl)methanone (5 h)

White solid; yield 93%; m.p.: 214-216 °C; IR (KBr, v,/
cm™!): 3219 (NH), 1675 (C=0); 'H-NMR (400 MHz,
CDCl; +DMSO-d,, 6 ppm): 2.25 (s, 3H, CHj3), 2.31 (s, 3H,
CH,), 2.44 (s, 3H, CHj), 3.21 (s, 1H, NH), 4.99 (unresolved
singlet, 1H, CH), 5.69 (d, 1H, J=5.2 Hz, CH), 6.06 (s, 1H,
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CH of pyrazole ring), 7.19 (d, 1H, J=7.2 Hz, Ar—H), 7.28
(d, 1H, J=6.4 Hz, Ar-H), 7.33 (d, 2H, J=7.6 Hz, Ar-H),
7.47 (s, 2H, Ar-H), 7.90 (s, 2H, Ar-H); '>*C-NMR (100 MHz,
CDCl;+DMSO-d,, 6 ppm): 11.4, 13.7, 21.8, 42.5, 58.2,
107.6,128.9, 129.1, 129.3, 129.8, 132.2, 133.9, 135.2, 141.8,
142.8, 145.6, 146.6, 151.4, 194.3; ESI-MS m/z: 465 [M+H]";
Analytical calculated formulae Cy;H,,CINOS: C, 59.41; H,
4.55; N, 18.07; S, 6.90; Found: C, 59.45; H, 4.51; N, 18.10;
S, 6.85.

(£)-(3-(3,5-Dimethyl-1H-pyra-
zol-1-yl)-6-(4-hydroxy-3,5-dimethoxyphenyl)-6,7-di-
hydro-5H- triazolo[3,4-b][1,3,4]thiadiazin-7-yl)
(phenyl)methanone (5i)

Green solid; yield 89%; m.p.: 196-198 °C; IR (KBr, v,/
cm™!): 3435 (OH), 3134 (NH), 1653 (C=0); 'H-NMR
(400 MHz, CDCl;+DMSO-d,, 6 ppm): 2.21 (s, 3H, CHy),
2.25(s,3H, CH,), 3.71 (s, 6H, OCHj;), 4.80 (t, 1H, /=6.8 Hz,
CH), 5.86 (d, 1H, J=6.0 Hz, CH), 6.11 (s, 1H, CH of pyrazole
ring), 6.35 (s, 1H, OH), 6.77 (s, 2H, Ar-H), 7.07 (s, 1H, NH),
7.54 (t,2H, J=8.0 Hz, Ar-H), 7.67 (t, 1H, J=7.2 Hz, Ar-H),
8.00 (d, 2H, J=7.2 Hz, Ar-H); '3*C-NMR (100 MHz, CDCl,,
oppm): 11.9,13.5,45.4,56.2,60.8, 104.8, 107.8, 128.7, 129.1,
131.0, 134.5, 134.7, 138.4, 141.5, 143.2, 145.4, 151.7, 153.5,
194.1; ESI-MS m/z: 493 [M +H]"; Analytical calculated for-
mulae C,,H,,N.O,S: C, 58.52; H, 4.91; N, 17.06; S, 6.51;
Found: C, 58.57; H, 4.94; N, 17.10; S, 6.47.

(+)-(3-(3,5-Dimethyl-1H-pyra-
zol-1-yl)-6-(3,4,5-trifluorophenyl)-6,7-dihy-
dro-5H-[1,2,4]triazole [3,4-b][1,3,4]thiadiazin-7-yl)
(p-tolyl)methanone (5j)

White solid; yield 92%; m.p.: 215-217 °C; IR (KBr, v,/
cm™1): 3219 (NH), 1674 (C=0); '"H-NMR (400 MHz, CDCl,,
o ppm): 2.19 (s, 3H, CHy), 2.43 (s, 3H, CH;), 2.50 (s, 3H,
CH;), 3.48 (s, 1H, NH), 5.035 (t, 1H, J=8.0 Hz, CH), 5.48 (d,
1H, J=8.0 Hz, CH), 6.00 (s, 1H, CH of pyrazole ring), 6.67 (t,
2H, J=8.4 Hz, Ar—H), 7.30 (d, 2H, J=8.4 Hz, Ar-H), 7.82 (d,
2H, J=8.0 Hz, Ar-H); 3C-NMR (100 MHz, CDCl,, § ppm):
11.9,13.5,21.8,44.1,53.1,101.3, 107.9, 127.5, 128.9, 129.9,
129.8, 131.6, 141.3, 143.2, 145.6, 146.1, 151.8, 160.0, 192.2;
ESI-MS m/z: 485 [M+H]*; Analytical calculated formulae
Cy3H,oF5NgOS: C, 57.02; H, 3.95; N, 17.35; S, 6.62; Found:
C,57.17;H,3.99; N, 17.39; S, 6.62.

(£)-(3-(3,5-Dimethyl-1H-pyra-
zol-1-yl)-6-(3,4,5-trifluorophenyl)-6,7-dihy-
dro-5H-[1,2,4]triazole [3,4-b][1,3,4]thiadiazin-7-yl)
(phenyl)methanone (5 k)

Light yellow color solid; yield 90%; m.p.: 182-184 °C;

IR (KBr, vmax/cm_'): 3207 (NH), 1681 (C=0); '"H-NMR
(400 MHz, CDCl;, 6 ppm): 2.15 (s, 3H, CHj3), 2.49 (s,
3H, CHy), 5.34 (t, 1H, J=8.0 Hz, CH-), 5.56 (d, 1H,
J=8.4 Hz, CH), 5.99 (s, 1H, CH of pyrazole ring), 6.67
(t, 2H, J=8.4 Hz, Ar-H), 7.15 (s, 1H, NH), 7.51 (t, 2H,
J=7.6 Hz, Ar-H), 7.64 (t, 1H, J=7.2 Hz, Ar-H), 7.94
(d, 2H, J=17.6 Hz, Ar—H); 3C-NMR (100 MHz, CDCl,,
o ppm): 11.9, 13.4, 44.3, 53.2, 101.3, 107.9, 127.5, 128.9,
129.1, 129.2, 130.4, 134.8, 134.9, 141.2, 143.2, 145.6,
151.8, 192.7; ESI-MS m/z: 471 [M +H]*; Analytical calcu-
lated formulae C,,H;,F;N4OS: C, 56.16; H, 3.64; N, 17.86;
S, 6.82; Found: C, 56.12; H, 3.60; N, 17.90; S, 6.87.

(*)-(3-(3,5-Dimethyl-1H-pyra-
zol-1-yl)-6-(3,4,5-trimethoxyphenyl)-6,7-dihy-
dro-5H-triazole[3,4-b][1,3,4]thiadiazin-7-yl)(4-fluo-
rophenyl)methanone (51)

White solid; yield 88%; m.p.: 196-198 °C; IR (KBr, v,,,,/
cm™1): 3211 (NH), 1668 (C=0); 'H-NMR (400 MHz,
CDCl;+DMSO-d,, 6 ppm): 2.18 (s, 3H, CH3), 2.22 (s, 3H,
CH,;), 3.69 (s, 3H, OCHj), 3.70 (s, 3H, OCHj), 3.87 (s, 3H,
OCH,), 4.45 (t, 1H, J=6.8 Hz, CH), 5.83 (d, 1H, J=6.4 Hz,
CH), 6.15 (s, 1H, CH of pyrazole ring), 6.87 (s, 1H,
Ar-H), 6.97 (s, 1H, Ar-H), 7.07 (s, 1H, NH), 7.12 (d, 2H,
J=7.2Hz, Ar-H), 8.01 (d, 2H, J=8.4 Hz, Ar—H); >*C-NMR
(100 MHz, CDCl;, 6 ppm): 11.7, 13.7, 42.5, 54.9, 55.7,
55.8,61.0, 107.7, 112.9, 114.3, 119.7, 124.4, 127.4, 129.4,
131.2, 142.9, 151.7, 152.6, 164.6, 193.2;ESI-MS m/z: 525
[M +H]*; Analytical calculated formulae C,5H,sFNO,S: C,
57.24; H, 4.80; N, 16.02; S, 6.11; Found: C, 57.20; H, 4.85;
N, 16.17; S, 6.15.

(+)-(3-(3,5-Dimethyl-1H-pyra-
zol-1-yl)-6-(3,4,5-trimethoxyphenyl)-6,7-dihy-
dro-5H-[1,2,4]triazole [3,4-b][1,3,4]thiadiazin-7-yl)
(phenyl)methanone (5m)

Golden yellow color solid; yield 94%; m.p.: 192-194 °C;
IR (KBr, vmax/cm_l): 3129 (NH), 1680 (C=0); '"H-NMR
(400 MHz, CDCl;, 6 ppm): 2.19 (s, 3H, CH;), 2.39 (s,
3H, CH,), 3.48 (s, 6H, OCH,), 3.78 (s, 3H, OCH,), 5.00
(t, 1H, J=5.2 Hz, CH), 5.31 (d, 1H, J=5.6 Hz, CH), 6.00
(s, 1H, CH of pyrazole ring), 6.66 (s, 2H, Ar-H), 7.50
(t, 2H, J=7.6 Hz, Ar-H), 7.59 (s, 1H, NH), 7.63 (t, 1H,
J=17.6 Hz, Ar-H), 7.90 (d, 2H, J=7.6 Hz, Ar—H); >*C-NMR
(100 MHz, CDCl;, 6 ppm): 11.9, 13.5, 45.4, 56.2, 60.6,
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60.8, 104.8, 107.8, 128.7, 129.1, 131.0, 134.5, 134.7, 138 4,
141.5, 143.2,145.4, 151.7, 153.5, 194.1; ESI-MS m/z: 507
[M +H]*; Analytical calculated formulae C,sH,(N:O,S: C,
59.27; H, 5.17; N, 16.59; S, 6.33; Found: C, 59.24; H, 5.20;
N, 16.54; S, 6.38.

(*)-(6-(2-Chlorophenyl)-3-(3,5-dimethyl-1H-pyra-
zol-1-yl)-6,7-dihydro-5H-[1,2,4]triazolo[3,4-b][1,3,4]
thiadiazin-7-yl)(4-methoxyphenyl)methanone (5n)

White solid; yield 86%; m.p.: 198-200 °C; IR (KBr, v,/
cm™!): 3143 (NH), 1671 (C=0); 'H-NMR (400 MHz,
CDCl,, 6 ppm): 2.21 (s, 3H, CH3), 2.45 (s, 3H, CHj3), 3.90
(s, 3H, OCH,), 5.18 (d, 1H, J=4.0 Hz, CH), 5.50 (t, 1H,
J=4.4 Hz, CH), 6.00 (s, 1H, CH of pyrazole ring), 6.98
(d, 2H, J=8.8 Hz, Ar-H), 7.16-7.23 (m, 2H, Ar-H), 7.29
(s, 1H, NH), 7.40 (d, 1H, J=8.0 Hz, Ar-H), 7.60 (d, 1H,
J=4.8 Hz, Ar-H), 7.94 (d, 2H, J=8.4 Hz, Ar—H); '’C-
NMR (100 MHz, CDCl;, § ppm): 12.0, 13.5, 21.8, 44.1,
59.1,107.9, 128.9, 129.0, 129.2, 129.9, 131.9, 134.3, 134.9,
141.0, 143.1, 145.5, 145.9, 151.8, 193.5; ESI-MS m/z: 481
[M+H]"; Analytical calculated formulae C,;H,,CIN,O,S:
C, 57.44; H, 4.40; N, 17.47; S, 6.67; Found: C, 57.40; H,
4.45;N, 17.1; S, 6.62.

(£)-(6-(2,4-Dimethoxyphenyl)-3-(3,5-dime-
thyl-1H-pyrazol-1-yl)-6,7-dihydro-5H-[1,2,4]triazole
[3,4-b][1,3,4]thiadiazin-7-yl)(4-methoxyphenyl)
methanone (50)

Yellow solid; yield 94%; m.p.: 150-152 °C; IR (KBr, v,,,,/
cm™!): 3129 (NH), 1680 (C=0); 'H-NMR (400 MHz,
DMSO-dg, 6 ppm): 2.19 (s, 3H, CH;), 2.22 (s, 3H, CHj),
3.69 (s, 3H, OCHj), 3.70 (s, 3H, OCH,), 3.87 (s, 3H, OCHj),
4.45 (t, 1H, J=6.8 Hz, CH), 5.83 (d, 1H, J=6.4 Hz, CH),
6.16 (s, 1H, CH of pyrazole ring), 6.86 (d, 1H, J=8.4 Hz,
Ar-H), 6.98 (d, 1H, J=8.4 Hz, Ar-H), 7.07 (s, 1H, NH),
7.10 (d, 2H, J=8.0 Hz, Ar-H), 7.12 (s, 1H, Ar-H), 8.01
(d, 2H, J=8.4 Hz, Ar—H); 3C-NMR (100 MHz, CDCl;, 6
ppm): 11.7,13.7,42.6, 54.9, 55.7, 55.8, 61.0, 107.7, 112.9,
114.3, 119.7, 124.4, 127.4, 129.4, 130.3, 130.8, 131.2,
142.9, 146.1, 151.8, 152.6, 164.6, 193.2; ESI-MS m/z: 507
[M +H]J*; Analytical calculated formulae C,5H,,N4O,S: C,
59.27;H, 5.17; N, 16.59; S, 6.33; Found: C, 59.24; H, 5.14;
N, 16.63; S, 6.30.

(£)-(6-(2,4-dimethoxyphenyl)-3-(3,5-dime-
thyl-1H-pyrazol-1-yl)-5H-[1,2,4]triazolo[3,4-b][1,3,4]
thiadiazin-7-yl)(4-nitrophenyl)methanone (5p)

Yellow solid; yield 88%; m.p.: 236-238 °C; IR (KBr, v,/

cm™): 3135 (NH), 1681 (C=0); 'H-NMR (400 MHz,
CDCls, 6 ppm): 2.35 (s, 3H, CH;), 2.42 (s, 3H, CH;),
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3.79 (s, 3H, OCHj;), 3.88 (s, 3H, OCHj;), 6.08 (s, 1H,
CH of pyrazole ring), 6.48 (s, 1H, Ar-H), 6.62 (dd, 1H,
J=8.4 Hz, J=6.4 Hz, Ar-H), 7.27 (s, 1H, NH), 7.43 (d,
1H, J=8.8 Hz, Ar-H), 7.95 (d, 2H, J=8.8 Hz, Ar-H), 8.31
(d, 2H, J=8.8 Hz, Ar—H); 3C-NMR (100 MHz, CDCl,,
o ppm): 11.7, 13.7, 55.6, 55.7, 98.5, 104.7, 108.1, 112.9,
114.6, 123.9, 131.0, 131.2, 138.3, 141.2, 143.6, 146.5,
149.4, 152.4, 16.2, 159.1, 163.3, 196.0; Analytical calcu-
lated formulae C,,H,;N-;O;S: C, 55.48; H, 4.07; N, 18.87;
S, 6.17; Found: C, 55.43; H, 4.02; N, 18.92; S, 6.21.

(£)-(3-(3,5-Dimethyl-1H-pyra-
zol-1-yl)-6-(furan-2-yl)-6,7-dihydro-5H-[1,2,4]
triazolo[3,4-b][1,3,4] thiadiazin-7-yl)(4-methoxy-
phenyl)methanone (5q)

Brown solid; yield 87%; m.p.: 152—154OC; IR (KBr, v,/
cm™1): 3143 (NH), 1671 (C=0); 'H-NMR (400 MHz,
CDCl,, 6 ppm): 2.30 (s, 3H, CH;), 2.34 (s, 3H, CHj;), 3.92
(s, 3H, OCHj;), 5.23 (unresolved singlet, 2H, CH and CH),
6.03 (s, 1H, CH of pyrazole ring), 6.30 (s, 1H, CH-), 6.32 (s,
1H, CH), 7.02 (d, 3H, J=8.8 Hz, Ar-H), 7.35 (s, 1H, NH),
7.94 (d,2H, J=8.4 Hz, Ar—H); ESI-MS m/z 437 [M+H]*;
Analytical calculated formulae C,;H,,NsO,S: C, 57.79; H,
4.62; N, 19.25; S, 7.35; Found: C, 57.83; H, 4.66; N, 19.21;
S, 7.31.

(£)-(3-(3,5-Dimethyl-1H-pyra-
zol-1-yl)-6-(furan-2-yl)-6,7-dihydro-5H-[1,2,4]
triazolo[3,4-b] [1,3,4]thiadiazin-7-yl)(p-tolyl)metha-
none (5r)

Brown solid; yield 85%; m.p.: 149—151OC; IR (KBr, v,/
cm™): 3204 (NH), 1666 (C=0); 'H-NMR (400 MHz,
CDCl,, 6 ppm): 2.30 (s, 3H, CHj), 2.34 (s, 3H, CHy), 2.46 (s,
3H, CHj;), 5.26 (unresolved singlet, 2H, CH-), 6.03 (s, 1H,
CH of pyrazole ring), 6.31 (d, 2H, J=8.0 Hz, Ar—H), 7.03
(s, 1H, NH), 7.35 (d, 3H, J=8.8 Hz, Ar—H), 7.85 (d, 2H,
J=8.0 Hz, Ar-H); >*C-NMR (100 MHz, CDCl;, § ppm):
11.6, 13.7, 21.9, 39.8, 53.0, 107.7, 109.2, 111.0, 128.9,
130.0, 131.6, 140.6, 142.7, 143.1, 146.1, 146.7, 148.3,
152.0, 194.4; ESI-MS m/z: 421 [M+H]"; Analytical cal-
culated formulae C,;H,,NO,S: C, 59.98; H, 4.79; N, 19.99;
S, 7.63; Found: C, 59.94; H, 4.7; N, 19.94; S, 7.68.

(£)-(3-(3,5-Dimethyl-1H-pyra-
zol-1-yl)-6-(thiophen-2-yl)-6,7-dihydro-5H-[1,2,4]
triazolo[3,4-b][1,3,4] thiadiazin-7-yl)(4-nitrophenyl)
methanone (5s)

Golden color solid; yield 89%; m.p.: 204—206OC; IR (KBr,
Vpa/em™h): 3281(NH), 1696 (C=0); 'H-NMR (400 MHz,
CDCl;+DMSO-d,, § ppm): 2.26 (s, 3H, CH,), 2.27 (s, 3H,
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CH;), 547 (t, 1H, J=3.6 Hz, CH), 5.88 (d, 1H, J=3.2 Hz,
CH), 6.10 (s, 1H, CH of pyrazole ring), 6.97 (t, 1H,
J=4.4Hz, Ar-H), 7.17 (d, 1H, J=4.4 Hz, Ar-H), 7.31 (d,
1H, J=4.8 Hz, Ar-H), 7.35 (s, 1H, NH), 8.37 (s, 4H, Ar-H);
13C-NMR (100 MHz, CDCl; + DMSO-d,, § ppm): 11.4,
13.8,42.9, 53.4, 107.5, 124.1, 126.3, 126.5, 127.4, 129.3,
130.8, 139.9, 142.9, 146.9, 149.6, 150.7, 151.3, 194.5;
ESI-MS m/z: 468 [M +H]"; Analytical calculated formulae
C,0H;7N505S: C, 51.38; H, 3.67; N, 20.97; S, 13.72; Found:
C,51.34; H, 3.62; N, 20.94; S, 13.76.

(£)-(3-(3,5-Dimethyl-1H-pyra-
zol-1-yl)-6-(furan-2-yl)-6,7-dihydro-5H-[1,2,4]
triazolo[3,4-b][1,3,4] thiadiazin-7-yl)(4-nitrophenyl)
methanone (5t)

White solid; yield 92%; m.p.: 201—2030C; IR (KBr, v,/
cm™!): 3278 (NH), 1698 (C=0); 'H-NMR (400 MHz,
CDCl,, 6 ppm): 2.25 (s, 3H, CH;), 2.27 (s, 3H, CH;),
5.28-5.32 (m, 1H, CH), 5.78 (d, 1H, J=4.0 Hz, CH), 6.08
(s, 1H, CH of pyrazole ring), 6.45 (s, 1H, NH), 7.14 (d, 1H,
J=4.0 Hz, Ar-H), 7.48 (d, 1H, J=4.0 Hz, Ar-H), 7.85 (t,
1H, J=8.4 Hz, Ar-H), 8.29 (d, 2H J=8.4 Hz, Ar—H), 8.33
(d, 2H, J=17.2 Hz, Ar—H); 3C-NMR (100 MHz, CDCl,,
o ppm): 11.2, 13.8, 49.8, 52.5, 107.5, 109.2, 111.0, 124.1,
124.3,130.4, 130.6, 142.9, 143.0, 148.1, 149.1, 150.7 151.3,
194.0; ESI-MS m/z: 452 [M+H]"; Analytical calculated
formulae C,,H,,N;0,S: C, 53.21; H, 3.80; N, 21.72; S, 7.10;
Found: C, 53.25; H, 3.85; N, 21.7; S, 7.15.

X-ray crystallography

The diffraction data was collected on Bruker APEX2 sin-
gle crystal X-ray diffractometere quipped with a CCD area
detector system, graphite mono chromator and a Mo-K,, fine
focus sealed tube (1=0.71073 1&). Bruker SAINT PLUS was
used for data reduction, SHELXT-2014 [49] was used for
structure solution and SHELXL-2018 [50] was used for
full-matrix least-squares refinement. Mercury 3.3 [51] was
used for molecular graphics. All non-hydrogen atoms were
refined using anisotropic thermal parameters. All hydrogen
atoms bound to carbons were positioned geometrically and
refined using a riding model. Important crystallographic data
and table for bond distances and bond angles were provided
in supporting information.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11030-021-10258-8.
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