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Abstract 
During formylation of 2-quinolones by DMF/Et3N mixture, the unexpected 3,3′-methylenebis(4-hydroxyquinolin-2(1H)-
ones) were formed. The discussed mechanism was proved as due to the formation of 4-formyl-2-quinolone as intermediate. 
Reaction of the latter compound with the parent quinolone under the same reaction condition gave also the same product. 
The structure of the obtained products was elucidated via NMR, IR and mass spectra. X-ray structure analysis proved the 
anti-form of the obtained compounds, which were stabilized by the formation hydrogen bond. Molecular docking calcula-
tions showed that most of the synthesized compounds possessed good binding affinity to the SARS-CoV-2 main protease 
 (Mpro) in comparable to Darunavir.
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Introduction

Dimethylformamide (DMF) can react as either an electro-
philic and/or a nucleophilic agent. Therefore, DMF can 
be considered as the source of various key intermediates 
mediating a plethora of important reactions [1]. More 
significantly, DMF can participate in many reactions by 
serving as a multipurpose building block for various units, 
such as  CH3, N(CH3)2,  HCO2, CHO, O,  H−, H.,  (CH3)2CO, 
etc. (Fig. 1).

Alkyl-quinolones AQ analogs (Fig. 2) act synergisti-
cally to inhibit bacterial growth [2, 3] (i.e., two examples 
assigned as HHQ and HQNP).

Quinolones show a significant similarity to some 
anticancer [4], anticonvulsant [5–7], anti-dermatities 
[8], antibacterial [9], antimicrobial [10], anti-Alzhei-
mer [11] and pain relief [12] in addition to their medi-
cal, agricultural and industrial uses [13–15]. In pre-
vious work with quinolones, Aly et  al., synthesized 
various classes of 2-quinolones such as 2′-amino-2,5′-
dioxo-5′,6′-dihydro-spiro(indoline-3,4′-pyrano[3,2-c]
quinoline)-3′-carbonitriles [16], 3-(methyl-thio)-4-oxo-
4,5-dihydrofuro[3,2-c]quinolone-2-carbonitriles [17], 
3-(methylthio)-4-oxo-4,5-dihydro-furo[3,2-c]quinolone-
2-carboxamides [17], naphtho[2′,3′:4,5]furo[3,2-c]qui-
noline-6,7,12(5H)-trione derivatives (as ERK inhibitors 
with efficacy in BRAF-mutant Melanoma) [18], 2,3-bis-
(4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)succinates, 
arylmethylene-bis-3,3′-quinoline-2-ones [19], N-2,3-bis(6-
substituted-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)
naphthalene-1,4-diones and substituted N-(methyl/ethyl)
bisquinolinone triethylammonium salts [20].

Han and Zhou [21] reported that the reaction of two 
equivalents of quinolone derivatives with one equivalent 
of aromatic aldehydes and potassium phtalamide under 
reflux at water–ethanol solution, gave the corresponding 

3,3′-arylmethylene-bis(4-hydroxyquinolin-2(1H)-ones. 
Aly et al. [19] also reported another method of prepar-
ing arylmethylene-bis-3,3′-quinoline-2-ones via the reac-
tion of equal equivalents of aromatic amines and diethyl 
malonate together with half equivalent of the correspond-
ing aromatic aldehydes. 3,3′-Arylmethylene-bis(4-hydrox-
yquinolin-2(1H)-ones have a great biological activity 
especially in the composition of vitamin K [22, 23] and 
anticoagulation [24]. Choudhary et al. [25] synthesized 
some 3,3′-methylenebis(substituted-4-hydroxyquinolin-
2(1H)-ones from the condensation between two molecules 
of quinolones and one molecule formaldehyde but also nei-
ther mechanism nor NMR spectra were discussed for the 
products. Previously, irradiation of only N-ethyl(methyl)-
4-hydroxyquinol-2-ones, was tested in ethanol and afforded 
their corresponding 3,3′-methylenebis(substituted-4-hydrox-
yquinolin-2(1H)-ones, virtually eliminating the solvent as a 
source of formaldehyde [26]. The method suffered from low 
yields of the obtained products besides to its hazard condi-
tion. Moreover the stereochemistry of the obtained products 
was not discussed.

Utilizing by the expected formylation process during 
the reaction of 2-quinolones with dimethylformamide/tri-
ethylamine (DMF/Et3N) mixture [27, 28], we explain the 
abnormal formation of 3,3′-methylenebis(4-hydroxyquin-
olin-2(1H)-ones). Also, the previous two aforementioned 
methods could not afford a general preparation method and 
suffered from low yields, hazardous conditions and no spec-
troscopic detailed data compared to our announced method 
of preparation.

Coronavirus disease (COVID-19) is a respiratory infec-
tious disease caused by a novel virus strain, severe acute res-
piratory syndrome-coronavirus 2 (SARS-CoV-2) [29–32]. 
Molecular docking is utilized as a substantial tool in the drug 
discovery process to predict the binding mode and affin-
ity of a drug candidate with a target. To combat COVID-
19, the main protease of SARS-CoV-2  (Mpro) would be 
targeted due to its significant role in the viral replication 

Fig. 1  DMF as a precursor of various functional groups

Fig. 2  The structures of 2-heptylquinolin-4(1H)-one (HHQ) and 
2-heptyl-4-hydroxyquinoline 1-oxide (HQNO) as alkyl-quinolone 
(AQ) analogues
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process. Therefore, the binding modes and affinities of 
3,3′-methylenebis(4-hydroxyquinolin-2(1H)-ones) as pro-
spective SARS-CoV-2 inhibitors were predicted against 
 Mpro using Darunavir as a drug reference. Darunavir (Drug-
Bank code: DB01264) is a human immunodeficiency virus 
(HIV) protease inhibitor and has been recently clinical 
investigated as anti-COVID-19 drug [33, 34]. The afore-
mentioned encouraged us to synthesize various derivatives 
of 3,3′-methylenebis(4-hydroxyquinolin-2(1H)-ones) and 
established a general method of preparing the former com-
pounds. In addition, we investigate the molecular docking of 
3,3′-methylenebis(4-hydroxyquinolin-2(1H)-ones) as anti-
COVID-19 using Darunavir as a prospective drug reference.

Results and discussion

Upon addition of equimolar amounts of 4-hydroxy-2(1H)-
quinolones 1a–g and  Et3N and gently heating in an oil path 
at 70–80 °C using DMF for 10–12 h, the resulting yellow-
ish orange coloration of the solution was converted gradu-
ally to brown color and the 3,3′-methylenebis(substituted-
4-hydroxyquinolin-2(1H)-ones 3a–g were precipitated in 
70–87% yields (Scheme 1).

The structural assignment of all the obtained products 
3a–g were based on IR, NMR (1H NMR and 13C NMR,) and 
mass spectra were performed; these and elemental analyses 
were in good agreement with the assigned structures. As 
an example, 3,3′-methylene-bis(1-ethyl-4-hydroxyquinolin-
2(1H)-one (3g). The elemental analysis and mass spectrome-
try of compound 3g have the gross formula  C23H22N2O4. The 
IR spectrum of 3g indicated the presence of OH at ν = 3500 
(OH), 3030 (Ar–CH), 2867 (Alpihatic –CH) and 1643 cm−1 
(C=O), whereas  CH2 group at ν = 1458 cm−1. The 1H NMR 
spectrum of 3g exhibited a triplet at δH = 1.24 and a quartet 
at 4.38 ppm with the coupling constant J = 7.50 Hz arising 
from ethyl group. The 1H NMR spectrum of 3g also showed 
the methylene protons at δH = 3.89. Eight aromatic protons 
give rise to characteristic signals in the aromatic region of 

the spectrum, whereas the hydroxyl protons resonated at 
δH = 12.65. The presence of methylene  (CH2) group is evi-
dent from 13C-DEPT-NMR spectra; exhibiting positive sig-
nal at δH = 12.95 ppm and negative signal at δH = 37.59 ppm 
 (CH2). The 13C NMR spectrum of 3g showed signals at 
δC = 131.50, 122.67, 123.30 and 116.74 ppm due to Ar–CH 
(C-7), (CH-6), (CH-5) and (CH-8), respectively (Fig. 3). The 
13C NMR spectrum of 3g supported the 13C NMR spectro-
scopic data by the distinctive appearance of carbon signals 
representing quinolone C-4a and C-8a (Fig. 3) and reso-
nated at δC = 115.15 and 136.70 ppm, respectively. Also, the 
observed δC values for carbon atoms in C-2 at δC = 164.84, 
C-4 at 159.63 and C-3 at 108.53 ppm.

The structure of 3g was unambiguously determined by a 
single crystal structure determination showing the bismeth-
ylene system (Fig. 4 and see CIF file, note that the crystal-
lographic numbering does not correspond to the systematic 
IUPAC numbering rules). The bond lengths C(3)–C(21) 
and C(13)–C(21) are 1.5085 (15) Å and 1.5104 (14) Å, 
respectively, and have single bond character, while C=O 
of 1.2536 (13) Å and 1.2605 (13) Å, has double bond char-
acter. Whereas, bond lengths C(3)–C(4) 1.3637 (15) Å, 
C2–C3 1.4384 (15) Å and N1–C2 1.3796 (14) Å indicate 
the presence of hydrogen bond between O2–H14–O14 and 
O12-H4-O4.

The anti-form of the formed compound is established 
and stabilized by the formed hydrogen bonding. On the 
basis of the previous reports [1, 27], the formation of 
3,3′-methylenebis(substituted-4-hydroxyquinolin-2(1H)-
ones 3a–g can be rationalized as depicted in Scheme 2. It 
would be proposed that  Et3N would abstract a hydrogen 
proton from the active methylene in C-3 of 1a–g and there-
fore increasing the nucleophilicty of CH-3 of the quinolone 

Scheme 1  Formation of 
3,3′-methylenebis(substituted-
4-hydroxyquinolin-2(1H)-ones 
from the reaction of 4-hydroxy-
2-quinolones 1a–g with DMF 2 
and  Et3N

Fig. 3  Structure and numbering 
of compound 3g 
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moiety. Thereafter, a nucleophilic addition of the anion 
CH-3 of 1a–g to the carbonyl carbon of DMF would give the 
intermediate 4 accompanied by elimination of a molecule 
of dimethylamine,  (CH3)2NH to give 4-formyl-2-quinolones 
(5). Reaction of 5 with 2 via the nucleophilic attack of the 
oxygen lone pair to the carbonyl in 2 would form interme-
diate 6 (Scheme 2). Subsequently, elimination of another 
molecule of dimethylamine  (CH3)2NH would give the inter-
mediate 7. Further nucleophilic attack of a molecule of 1 to 
vinylic-carbon in 7 would form the intermediate 8. Finally, 
decarboxylation of 8 would form compound 3 (Scheme 3). 
The reaction pathway was also supported via isolation of 
 (CH3)2NH, which was identified by TLC analysis.

Having established reaction conditions in hand, we inves-
tigated the formation 3a–g from the reaction of 3-formyl-
4-hydroxy-2-quinolone derivatives 5a–g with 1a–g under 
the condition illustrated in Scheme 3. We reacted 5a–g 
with their resemble derivatives in 1a–g to obtain symmetric 
compounds like those in Scheme 1. Fortunately, the target 
symmetric products of 3,3′-methylenebis(substituted-4-hy-
droxyquinolin-2(1H)-ones) 3a–g were formed in 60–77% 
yields (Scheme 3).

Molecular docking calculations

Utilizing molecular docking technique, the binding modes 
and affinities of compounds 3a–g as prospective SARS-
CoV-2 inhibitors were predicted against the main protease 
 (Mpro). The geometrical structures of 3a–g were prepared 
and docked into the active site of SARS-CoV-2  Mpro 
using AutoDock 4.2.6 software with docking parameters 
of GA= 250 and eval= 25,000,000. The predicted bind-
ing scores and features are summarized in Table 1. The 
2D representations of binding modes of the investigated 
compounds inside the active site of SARS-CoV-2  Mpro are 
depicted in Fig. 5.

What is interesting about the data in Table 1 is that com-
pounds 3a–g demonstrated good binding affinities toward 
SARS-CoV-2  Mpro with docking scores ranged from −8.63 
to −7.05 kcal/mol. Besides, compounds 3a-g exhibited the 
same binding modes inside the active site of  Mpro, forming 
an essential hydrogen bond with key amino acid GLU166 
residue (Fig. 5). Further interactions including van der 
Waals, hydrophobic and pi-based interactions were also 
observed between the compound and the key amino acids 
inside the SARS-CoV-2  Mpro active site (Fig. 5).

Among the examined compounds, 3e showed the high-
est binding affinity with docking score of −8.6 kcal/mol 
against SARS-CoV-2  Mpro. The high potentiality of 3e 
as SARS-CoV-2  Mpro inhibitor would be returned to its 
capability to form four hydrogen bonds with THR190, 
GLN192, ARG188 and GLU166 amino acid with bond 
lengths of 2.10, 2.38, 1.79 and 2.08  Å, respectively 
(Figs. 5, 6).

The binding affinity and features of Darunavir were inves-
tigated and compared to compound 3e as SARS-CoV-2  Mpro 
inhibitors. According to molecular docking calculations, 
Darunavir showed a good binding affinity of −8.19 kcal/mol, 
forming three hydrogen bonds with GLU166, and LEU167 
with bond lengths of 1.94, 2.88 and 1.96 Å, respectively 
(Figs. 5, 6). A comparison of the molecular docking results 
revealed the competing binding affinity of 3e with regard to 
Darunavir as prospective SARS-CoV-2  Mpro inhibitor.

Conclusion

Formylation of 2-quinolones by DMF/Et3N mixture caused 
an insertion of a methylene group between two symmet-
rically quninolones. DMF/Et3N mixture was proved as a 
formylatig agent of the parent 2-quinolones. Reaction of 
4-formyl-2-quinolone with the parent 2-quinolone under the 

Fig. 4  X-ray structure analysis 
of 3g (displacement parameters 
drawn at 50% probability level)
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Scheme 2  The proposed mechanism describes the formation of compounds 3a–g 

Scheme 3  Formation of compounds 3a–g from the reaction of 3-formyl-4-hydroxy-2-quinolones 5a–g with 1, 2 and  Et3N
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same reaction condition gave the same product. The afore-
said 3-formyl-2-quinolones would prospectively be used to 
prepare various symm and/or asymm substitutents of the 
desired compounds. Molecular docking calculations dem-
onstrated the competing binding affinity of 3e with regard 
to Darunavir as a prospective SARS-CoV-2  Mpro inhibitor.

Experimental

The IR spectra were recorded by ATR technique 
(ATR = Attenuated Total Reflection) with a FT device 
(FT-IR Bruker IFS 88), Institute of Organic Chemistry, 
Karlsruhe University, Karlsruhe, Germany. The NMR 
spectra were measured in DMSO-d6 on a Bruker AV-400 
spectrometer, 400 MHz for 1H, and 100 MHz for 13C; and 
the chemical shifts are expressed in δ (ppm), versus internal 
tetramethylsilane (TMS) = 0 for 1H and 13C, and external 
liquid ammonia = 0. The description of signals includes: 
s = singlet, d = doublet, t = triplet, q = quartet, m = multi-
plet, dd = doublet of doublet and m = multiplet. Mass spectra 
were recorded on a FAB (fast atom bombardment) Thermo 
Finnigan Mat 95 (70 eV). Elemental analyses were carried 
out at the Microanalytical Center, Cairo University, Egypt. 
TLC was performed on analytical Merck 9385 silica alu-
minum sheets (Kieselgel 60) with  Pf254 indicator; TLC’s 
were viewed at λmax = 254 nm.

Starting materials

1,6-Disubstituted-quinoline-2,4-(1H,3H)-diones 1a–g were 
prepared according to the literature [35, 36] whereas car-
baldehydes 5a, 5b, 5c–f and 5g were synthesized according 
to the literature [37–40].

General procedure

Method a: A mixture of 1a–g (1 mmol), 15 ml of DMF (2), 
0.100 g (1 mmol)  Et3N was gently heated with stirring in 

an oil path at 70–80 °C for 10–12 h. The time period until 
the reactants had disappeared, as mentioned in Scheme 1, 
was monitored by TLC. The formed precipitate was then 
washed with ethanol (50 mL) and recrystallized from the 
stated solvents to give pure crystals of 3a–g. The filtrate was 
concentrated on vacuum and  (CH3)2NH was obtained and 
was identified by TLC analysis.

Method b: A a mixture of 1a–g (1 mmol), 5a–g (1 mmol) 
and 0.100 g (1 mmol) of  Et3N in 2 15 ml of 2 was gently 
heated with stirring for 8–10 h in an oil path at 70–80 °C. 
Compounds 3a–g were obtained (i.e., Scheme 3) in pure 
state as above mentioned.

3,3′-Methylenebis(4-hydroxyquinolin-2(1H)-one) (3a). 
Orange crystals (DMF/H2O), yield (method a): 0.233 g 
(70%) or yield (method b) 0.200  g (60%); 1H NMR 
(400 MHz, DMSO-d6): δ = 3.59 ppm (s, 2H,  CH2), 7.05–7.07 
(m, 2H, Ar–H), 7.17–7.19 (m, 2H, Ar–H), 7.30–7.35 (m, 
2H, Ar–H), 7.65–7.71 (m, 2H, Ar–H), 11.99 (s, 2H, NH), 
12.54 ppm (s, 2H, OH); 13C NMR (100 MHz, DMSO-d6): 
δ = 19.16  (CH2), 109.12 (C-3), 115.85 (C-4a), 115.96 (C-8), 
122.52 (C-6), 122.78 (C-5), 130.87 (C-7), 136.80 (C-8a), 
160.77 (C-4), 165.94 ppm (C-2); MS (Fab, 70  eV, %): 
m/z = 334  (M+, 15), 227 (15), 136 (62), 120 (23), 107 (27), 
89 (15). Anal. Calcd. for  C19H14N2O4 (334.33): C, 68.26; H, 
4.22; N, 8.38. Found: C, 68.38; H, 4.35; N, 8.42.

3,3′-Methylenebis(4-hydroxy-6-methylquinolin-2(1H)-
one) (3b) [25]. Orange crystals (DMF/EtOH), yield (method 
a): 0.267 g (74%) or yield (method b): 0.231 g (64%); 1H 
NMR (400 MHz, DMSO-d6): δ = 2.25 (s, 6H,  CH3), 3.78 
(s, 2H,  CH2), 7.20–7.29 (m, 2H, Ar–H), 7.30–7.40 (m, 
2H, Ar–H), 7.65–7.71 (m, 2H, Ar–H), 12.21 (s, 2H, NH), 
12.78 ppm (s, 2H, OH); 13C NMR (100 MHz, DMSO-d6): 
δ = 19.23  (CH2), 20.59  (CH3), 109.12 (C-3), 115.77 (C-4a), 
115.88 (C-8), 122.14 (C-5), 131.66 (C-7), 132.15 (C-6), 
134.82 (C-8a), 160.62 (C-4), 165.71 ppm (C-2); MS (Fab, 
70 eV, %): m/z = 362  (M+, 25), 226 (25), 136 (63), 120 (22), 
107 (28), 89 (13). Anal. Calcd. for  C21H18N2O4 (362.38): C, 
69.60; H, 5.01; N, 7.73. Found: C, 69.74; H, 4.89; N, 7.83.

Table 1  Molecular docking scores and binding features for compound 3a–g and Darunavir with SARS-CoV-2 main protease  (Mpro)

No. Compound Docking score (kcal/
mol)

Binding features (hydrogen bond length in Å

1 3a − 8.28 ARG188 (2.18 Å), MET165 (2.63 Å), HIS164 (2.14 Å), GLU166 (2.17 Å, 2.79 Å)
2 3b − 8.14 ARG188 (2.81 Å), GLN192 (2.37 Å), THR190 (2.09 Å), GLU166 (2.03 Å)
3 3c − 7.05 ARG188 (1.82 Å), THR190 (2.60 Å) GLN192 (1.93 Å), GLU166 (1.82 Å, 1.96 Å)
4 3d − 8.30 GLU166 (2.05 Å), ARG 188 (1.80 Å), THR190 (2.08 Å), GLN192 (2.38 Å)
5 3e − 8.63 THR190 (2.1 Å), GLN192 (2.38 Å), ARG188 (1.79 Å), GLU166 (2.08 Å)
6 3f − 7.72 GLN189 (1.94 Å), GLU166 (2.01 Å, 2.33 Å)
7 3g − 7.38 GLU166 (2.82 Å)
8 Darunavir − 8.19 GLU166 (1.94 Å, 2.88 Å), LEU167 (1.96 Å)
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3,3′-Methylenebis(4-hydroxy-6-methoxyquinolin-2(1H)-
one) (3c). Orange crystals (DMF/CH3OH), yield (method 
a): 0.230 g (76%) or yield (method b): 0.260 g (66%); 
mp = 330–332 °C; IR (KBr): ν = 3450 (OH), 2910 (NH), 
3008 (Ar–CH), 1660 (CO), 1453 cm−1  (CH2); 1H NMR 
(400 MHz, DMSO-d6): δ = 3.81 (s, 6H,  OCH3), 3.78 (s, 2H, 
 CH2), 7.24–7.30 (m, 2H, Ar–H), 7.32–7.38 (m, 2H, Ar–H), 
7.60–7.72 (m, 2H, Ar–H), 12.13 (s, 2H, NH), 12.96 ppm 
(s, 2H, OH); 13C NMR (100 MHz, DMSO-d6): δ = 19.23 
 (CH2), 55.37  (OCH3), 109.11 (C-3), 115.76 (C-4a), 115.87 

(C-8), 122.13 (C-5), 131.62 (C-7), 132.13 (C-6), 134.82 
(C-8a), 160.61 (C-4), 165.69 ppm (C-2); MS (Fab, 70 eV, 
%): m/z = 394  (M+, 20), 136 (63), 120 (9), 107 (18), 89 (13). 
Anal. Calcd. for  C21H18N2O6 (394.38): C, 63.96; H, 4.60; N, 
7.10. Found: C, 63.84; H, 4.72; N, 7.19.

3,3′-Methylenebis(7-chloro-4-hydroxyquinolin-2(1H)-
one) (3d) [25]. Orange crystals (DMF/CH3OH), yield 
(method a): 0.322 g (80%) or yield (method b): 0.274 g 
(68%); 1H NMR (400 MHz, DMSO-d6): δ = 3.78 (s, 2H, 
 CH2); 7.22–7.28 (m, 2H, Ar–H), 7.30–7.39 (m, 2H, Ar–H), 

Fig. 5  2D representation of predicted binding mode of 3a–g inside the active site of COVID-19 main protease  (Mpro)
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7.62–7.70 (m, 2H, Ar–H), 12.15 (s, 2H, NH), 12.86 ppm 
(s, 2H, OH); 13C NMR (100 MHz, DMSO-d6): δ = 20.01 
(CH-2), 109.00 (C-3), 115.70 (C-4a), 115.02 (C-8), 122.13 
(C-6), 130.00 (C-5), 132.13 (C-7), 136.82 (C-8a), 160.62 
(C-4), 164.69 ppm (C-2); MS (Fab, 70 eV, %): m/z = 403/402 
(/20/18), 136 (63), 120 (9), 107 (18), 89 (13). Anal. Calcd. 
for  C19H12Cl2N2O4 (402.02): C, 56.60; H, 3.00; N, 6.95. 
Found: C, 56.49; H, 3.12; N, 7.14.

3,3′-Methylenebis(7-bromo-4-hydroxyquinolin-2(1H)-
one) (3e) [25]. Orange crystals (DMF/EtOH), yield 
(method a): 0.406 g (83%) or yield (method b): 0.357 g 
(73%); 1H NMR (400 MHz, DMSO-d6): δ = 3.77 (s, 2H, 
 CH2), 7.22–7.25 (m, 2H, Ar–H), 7.26–7.30 (m, 2H, Ar–H), 
7.70–7.82 (m, 2H, Ar–H), 12.14 (s, 2H, NH), 12.90 ppm 
(s, 2H, OH); 13C NMR (100 MHz, DMSO-d6): δ = 19.80 
 (CH2), 109.10 (C-3), 115.76 (C-4a), 115.10 (C-8), 122.10 
(C-6), 128.90 (C-5), 132.98 (C-7), 136.82 (C-8a), 160.58 
(C-4), 165.12 ppm (C-2); MS (Fab, 70 eV, %): m/z = 490/489 
(20/18), 136 (63), 120 (10), 107 (20), 89 (10). Anal. Calcd. 
for  C19H12Br2N2O4 (489.12): C, 46.37; H, 2.46; N, 5.69. 
Found: C, 46.48; H, 2.36; 5, 7.73.

3,3′-Methylenebis(4-hydroxy-1-methylquinolin-2(1H)-
one) (3f) [26]. Orange crystals (DMF/EtOH), yield (method 
a): 0.308 g (85%) or yield (method b): 0.272 g (75%); IR 
(KBr): ν = 3450 (OH), 3040 (Ar–CH), 2820 (CH-Aliphatic), 

1641 (CO), 1417 cm−1 (CH-2); 1H NMR (400 MHz, DMSO-
d6): δ = 3.72 (s, 6H,  CH3), 3.60 (s, 2H,  CH2), 7.10–7.14 
(m, 2H, Ar–H), 7.25–7.31 (m, 4H, Ar–H), 7.72–7.78 (m, 
2H, Ar–H), 12.87 ppm (s, 2H, OH); 13C NMR (100 MHz, 
DMSO-d6): δ = 19.15  (CH2), 38.01  (CH3), 109.13 (C-3), 
115.80 (C-4a), 115.97 (C-8), 122.53 (C-6), 122.77 (C-5), 
130.98 (C-7), 136.82 (C-8a), 160.66 (C-4), 165.80 ppm 
(C-2); MS (Fab, 70 eV, %): m/z = 362  (M+, 33), 136 (63), 
120 (10), 107 (20), 89 (10). Anal. Calcd. for  C21H18N2O4 
(362.38): C, 69.60; H, 5.01; N, 7.73. Found: C, 69.72; H, 
5.12; N, 7.65.

3,3′-Methylenebis(1-ethyl-4-hydroxyquinolin-2(1H)-one) 
(3g) [26]. Orange crystals (DMF/EtOH), yield (method 
a): g 0.340 (87%) or yield (method b): 0.300 g (77%); 
IR (KBr): ν = 3500 (OH), 3030 (Ar–CH), 2867 (CH-Ali-
phatic), 1643 (CO), 1458 cm−1  (CH2); 1H NMR (400 MHz, 
DMSO-d6): δ = 1.24 (t, 6H,  CH3-), 3.89 (s, 2H,  CH2), 4.38 
(q, 4H,  CH2), 7.00–7.05 (m, 2H, Ar–H), 7.29–7.35 (m, 2H, 
Ar–H), 7.59–7.70 (m, 4H, Ar–H), 7.90–8.07 (m, 2H, Ar–H), 
12.65 ppm (s, 2H, OH); 13C NMR (100 MHz, DMSO-
d6): δ = 12.95 (CH-2-Et), 21.11  (CH2), 37.59  (CH3-Et), 
108.52 (C-3), 115.15 (C-4a), 116.74 (C-8), 122.67 (C-6), 
123.30 (C-5), 131.50 (C-7), 136.70 (C-8a), 159.63 (C-4), 
164.83 ppm (C-2); MS (Fab, 70 eV,  %): m/z = 390  (M+, 18), 
202 (12), 136 (62), 120 (12), 107 (20), 89 (20). Anal. Calcd. 

Fig. 6  3D representations of 
interactions of 3e and Daruna-
vir with important amino acid 
residues of COVID-19 main 
protease  (Mpro)
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for  C23H22N2O4 (390.42): C, 70.75; H, 5.68; N, 7.17. Found: 
C, 70.82; H, 5.77; N, 7.29.

Crystal structure determination

The single-crystal X-ray diffraction study of 3g was carried 
out on a Bruker D8 Venture diffractometer with Photon II 
detector at 123(2) K using Cu-Kα radiation (λ = 1.54178 Å). 
Dual space/intrinsic methods (SHELXT) [41] were used 
for structure solution and refinement was carried out using 
SHELXL-2014 (full-matrix least-squares on F2) [42]. 
Hydrogen atoms were localized by difference electron den-
sity determination and refined using a riding model (H(O) 
free). A semi-empirical absorption correction was applied.

3g: Orange crystals,  C23H22N2O4, Mr = 390.42, crystal 
size 0.36 × 0.24 × 0.12 mm, monoclinic, space group P21/c 
(No. 14), a = 13.2293 (3) Å, b = 17.0327 (4) Å, c = 8.5503 (2) 
Å, β = 101.919 (1)°, V = 1885.11 (8) Å3, Z = 4, ρ = 1.376 Mg/
m−3, µ(Cu-Kα) = 0.77 mm−1, F(000) = 824, 2θmax = 144.4°, 
16886 reflections, of which 3689 were independent 
(Rint = 0.024), 268 parameters, 2 restraints, R1 = 0.034 (for 
3587 I > 2σ(I)), wR2 = 0.089 (all data), S = 1.06, largest diff. 
peak/hole = 0.27/− 0.19 e Å−3.

Molecular docking calculations

All molecular docking calculations were carried out using 
Autodock 4.2.6 software [43]. The crystal structure of 
SARS-CoV-2 main protease  (Mpro; PDB code: 6LU7 [44]) 
was taken as a template for all molecular docking calcula-
tions. Water molecules, ions and the ligand were deleted. 
The protonation state of  Mpro was evaluated using  H++ 
server, and all missing hydrogen atoms were added [45]. 
All docking parameters were kept to default values, except 
the number of genetic algorithm (GA) run and the maximum 
number of energy evaluation (eval) which were set to 250 
and 25,000,000, respectively. The docking grid was set to 
60 Å × 60 Å ×  60 Å with a grid spacing value of 0.375 Å, 
and the grid center was placed at the center of the active site 
of  Mpro. The geometrical structures of all examined syn-
thesized compounds were minimized with MMFF94s force 
field using SZYBKI software [46] and the partial atomic 
charges were assigned using Gasteiger method [47].

Supporting Information

CCDC 2011538 (3g) contains the supplementary crystallo-
graphic data for this paper. These data can be obtained free 
of charge from The Cambridge Crystallographic Data Centre 
via www.ccdc.cam.ac.uk/data_reque st/cif.
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