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Abstract Inhibitors of the enzyme 5α-reductase (5aR) are
promising therapeutic agents for the treatment of benign
prostatic hyperplasia (BPH) and prostate cancer. The lack
of structural data of the enzyme 5aR prompts the applica-
tion of ligand-based approaches to systematically explore the
activity landscape of 5aR inhibitors. As part of an effort to
develop inhibitors of this enzyme for the treatment of BPH,
herein we discuss a chemoinformatic-based analysis of the
activity landscape of a novel set of 53 novel pregnane and
androstene compounds. It was found that, in general, for each
pair of compounds in the set, as the structure similarity of the
compounds increases the corresponding potency difference
decreases. These results are in agreement with an overall
smooth activity landscape. However, two potent activity cliff
generators were identified pointing to specific small struc-
tural changes that have a large impact on the inhibition of
5aR.

Electronic supplementary material The online version of this
article (doi:10.1007/s11030-016-9659-x) contains supplementary
material, which is available to authorized users.

J. Jesús Naveja and Francisco Cortés-Benítez have contributed equally
to the work.

Eugene Bratoeff: deceased.

B José L. Medina-Franco
jose.medina.franco@gmail.com; medinajl@unam.mx

1 Departamento de Farmacia, Facultad de Química,
Universidad Nacional Autónoma de México, Avenida
Universidad 3000, 04510 Mexico, DF, Mexico

2 Facultad de Medicina, PECEM, Universidad Nacional
Autónoma de México, Avenida Universidad 3000, 04510
Mexico, DF, Mexico

Keywords Activity cliff generators · Benign prostatic
hyperplasia · Chemical space · Chemoinformatics · Prostatic
5α-reductase · Structure–activity relationships

Abbreviations

5aR 5α-Reductase
ALM Activity landscape modeling
AR Androgen receptor
BPH Benign prostatic hyperplasia
DHT 5α-Dihydrotestosterone
ECFPs Extended connectivity fingerprints
FIDE Finasteride
PCa Prostate cancer
PCA Principal component analysis
SARs Structure–activity relationships
SAS Structure–activity similarity
T Testosterone
Tc Tanimoto coefficient

Introduction

Approximately, 3% of testosterone (T) is free in serum and
biological activity making it in the most abundant andro-
gen [1]. In prostatic stromal and basal cells, T is converted
to 5α-dihydrotestosterone (DHT) by the 5α-reductase (5aR)
enzyme through the irreversible reduction of the�4 bond [2].
DHT is the preferred ligand for the androgen receptor (AR)
[3]. Once DHT–AR has been formed, in its activated form,
AR undergoes dimerization, phosphorylation, and translo-
cation to the nucleus. Then, it activates the transcription
of certain genes that include transcription co-regulators and
transcriptionalmachinerywhich triggers the synthesis of spe-
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cific proteins and also cell proliferation [4]. Elevated levels of
DHT are related to benign prostatic hyperplasia (BPH) and
prostate cancer (PCa) which are two of the most common
diseases in men [5,6].

Due to the crucial role of 5aR in the progress of the
prostate pathogenesis, various prostatic 5aR inhibitors have
been developed in an effort to block the T conversion and
inhibit the effects ofDHT in prostate disease. Currently, there
is a wide range of azasteroids reported such as finasteride
(FIDE), which is a drug broadly used for BPH treatment
[7]. However, side effects of FIDE [8,9] have encouraged
the development of new steroidal compounds with improved
selectivity toward 5aR.

Over the past several years, the research group of Bra-
toeff has reported a large set of pregnane and androstane
molecules as inhibitors of 5aR. Most of these steroidal com-
pounds have shown potent inhibitory effect in prostatic 5aR
enzyme.Moreover, several of these compoundshadbeen able
to reduce the weight of prostate in gonadectomized hamster
more than FIDE in the in vivo experiments [10–24]. How-
ever, limited studies have been reported for the computational
analysis of the structure–activity relationships (SARs) of
pregnane and androstane molecules. This is in part due to the
lack of experimental three-dimensional structures of the 5aR
enzyme. Recently, a self-organizing molecular field analy-
sis (SOMFA) [25], a 3D-QSAR technique, was employed to
explore the SAR of a set of pregnane and androstane deriva-
tives [26] and different azasteroids [27]. In those studies, the
master grid for various SOMFA models indicated that bulky
groups around C-3, C-6, and C-17 of the steroidal skele-
ton suggest favorable interactions, whereas electronegative
groups around C-3, C-6, and C-17 as well as electropositive
groups at C-4 are responsible for the observed variations in
the 5aR inhibition. However, drawbacks of 3D-QSARmeth-
ods such as molecular alignment and selection of bioactive
conformations are well known, making this technique chal-
lenging to implement [28]. Therefore, it is convenient to
apply additional computational strategies using a fast and
robust method to further advance the understanding of the
SAR and structure–property relationships of inhibitors of
5aR.

Herein, we report a comprehensive SAR study of 54 5aR
inhibitors (53 novel compounds plus FIDE) using the con-
cept of activity landscape modeling (ALM) [29,30]. ALM
has emerged as an approach to rapidly navigate through
the SAR of datasets [29,31]. Of note, a number of ALM
methodologies are ligand-based only, so no data on the three-
dimensional structure of the receptor or prior knowledge of
the putative binding site are required. Indeed, ligand-based
methods are particularly useful when no detailed struc-
tural information of the putative ligand–target interactions
is known or when there is a high uncertainty in the bioactive
conformations [32]. ALM emphasizes on the identification

of compounds with very similar chemical structures but dif-
ferent potency differences, i.e., activity cliffs [33]. Of note,
ALM is part of the broader concept ‘property landscape
modeling’ used in chemistry [34]. Here, ‘activity’ (typically
referring to biological activity) is a specific case of ‘property.’
In this context, ALM does not necessarily assume that all
compounds have exactly the same mechanism of action such
as other typical quantitative SAR methods such as QSAR.
Indeed, ALM has been proved to be useful to gain insights
from datasets where the biological activity has been tested
in cell-based assays (where the precise mechanism of action
is actually unknown) [35]. This is because, in contrast to tra-
ditional QSAR analysis such as 3D-QSAR, ALM does not
assume continuous SARs [36,37].

Methods

Dataset

The chemical structures andbiological activity of 53 in-house
pregnane and androstene molecules were retrieved from the
literature. The activity data for all compounds were obtained
in vitro in enzymatic inhibition assays using the same exper-
imental conditions. The experimental IC50 values against the
prostatic 5aR were converted to pIC50 (−log IC50) values.
The pIC50 values ranged from 5.00 to 10.60. The chemical
structure of FIDEwas retrieved from theZINCdatabase [38].

Chemical space

Avisual representation of the chemical space [39]was gener-
ated by conducting a principal components analysis (PCA) of
the similarity matrix of the dataset with 54molecules. This is
a well-established method to generate visual representation
of chemical spaces [40]. The similaritymatrixwas calculated
using the extended connectivity fingerprints (ECFPs) avail-
able in MayaChemTools (http://www.mayachemtools.org)
using a neighborhood radius of two [41]. ECFPs have been
used to perform activity landscape analysiswith interpretable
results [32,42]. The structural similarity was computed with
the Tanimoto coefficient (Tc) [43]. The PCA analysis was
performed with the FactoMineR R package version 1.29.
PCA of the similarity matrix has been used as a strategy
to visualize the chemical space of several datasets [43,44].

Activity landscape

Several methods have been developed for ALM [29]. In this
work, the activity landscape of the 5aR inhibitors was stud-
ied by means of the structure–activity similarity (SAS) maps
[45], which have been extensively employed to characterize
the SAR of datasets with activity data for one or more bio-
logical endpoints [34,35,46,47]. A detailed description of
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the construction of SAS maps is provided elsewhere [48]. In
summary, the relationship between structural similarity and
potency difference (or potency similarity) can be represented
in a two-dimensional graph called a SAS map. Usually, the
structural similarity (that can be obtained with any single or
combination of similarity approaches) is plotted on the x axis
and the potency difference is plotted on the y axis [49]. SAS
maps can be roughly divided in four zones. The most signif-
icant one explored in this work was the upper-right region of
the plot that identifies pairs of molecules with high structure
similarity but large potency difference. Therefore, this zone
identified activity cliffs and was considered the ‘activity cliff
region’ of the SAS maps. In order to define the four zones
of the SAS maps, we used two thresholds following estab-
lished criteria [48]: one standard deviation above the mean
structure similarity (ECFPs/Tanimoto = 0.43) along the x-
axis, and one standard deviation above the activity difference
(�pIC50 = 2.75) along the y-axis. Since the visual interpre-
tation of the SAS maps can be difficult if many data points
are present, we implemented the recently developed density
SAS maps [32]. In a density SAS map, the frequency of the
data points is represented with a continuous color scale as
detailed elsewhere [32].

Activity cliff generators

An activity cliff generator is a molecule frequently found in
activity cliffs [50]. Inmedicinal chemistry, themost attractive
activity cliff generators are compounds with high biological
activity. Identification of activity cliff generators and com-
pounds with similar chemical structure but large potency
difference is particular relevant because it points to specific
structural datawith significant impact on the biological activ-
ity. Herein, the activity cliff generators were identified as
molecules with high frequency in the ‘activity cliff region’
of the SAS maps.

Results and discussion

Since the activity landscape of a dataset is the association
between the chemical space with the structure representation
[42], the “Results and discussion” section of the paper are fur-
ther organized in two parts: (1) exploration of the chemical
space of the dataset followed by (2) activity landscape analy-
sis. Analysis of the chemical space provides information of
the chemical diversity of the dataset, while the second part
discusses the pairwise structural relationships between the
chemical structures with the biological activity.

Chemical space

Figure1 shows a visual representation of the chemical space
of the 53 pregnane and androstene molecules and FIDE. In

Fig. 1 Visual representation of the chemical space of the 54 molecules
in the dataset. ThePCAshows the relative position offinasteride (FIDE).
The visualization was obtained by principal component analysis of the
similarity matrix computed with ECFPs.Data points are colored by the
pIC50 values in a continuous scale. Five major groups or clusters (A–E)
are readily distinguished (see also Table1)

this plot, each data point represents one compound. Data
points are colored by the corresponding pIC50 value using a
continuous scale indicated in the figure. The relative position
of FIDE and two representative compounds (activity cliff
generators EB-13 and EB-37, discussed below) is shown.
The visual representation of chemical space in Fig. 1 is an
approach to rapidly classify the compounds in the dataset.
Such visual classification provides a first and rapid idea of
the different groups (or clusters) of compounds that can be
found in the set of 53 pregnane and androstene molecules.
Furthermore, adding activity data to the plot enables the iden-
tification of regions in chemical space with, for example,
smooth SAR or groups of compounds enriched with activ-
ity. The distribution in chemical space distinguishes several
groups, both by visual inspection and k-means analysis (data
not shown). The most significant activity cliffs generators,
i.e., EB-13 and EB-37 (cf. chemical structures in Figs. 5, 6,
respectively), are included in two different groups. Table1
contains the main clusters that can be distinguished and
the compounds present in each group. The chemical struc-
tures are given in the Supporting Information. Cluster A is
composed by 6-halopregna-4,6-diene-3,20-dione, pregna-4-
en-3,20-dione, and methylenepregna-4,6-diene-3,20-dione
skeletons having different aliphatic and aromatic esters as
well as aromatic carbamates at C-17 α . Some of these
compounds have an alpha epoxide group at C-4, C-5 or
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Table 1 Major clusters identified in the visual representation of the
chemical space in Fig. 1

Cluster A Cluster B Cluster C Cluster D Cluster E

EB-1 EB-19 EB-31 EB-36 EB-5

EB-2 EB-20 EB-32 EB-37 EB-6

EB-3 EB-21 EB-33 EB-38 EB-7

EB-4 EB-22 EB-34 EB-41 EB-8

EB-10 EB-23 EB-35 EB-43 EB-9

EB-15 EB-24 EB-39 EB-44 EB-11

EB-16 EB-25 EB-40 EB-12

EB-17 FIDE EB-42 EB-13

EB-18 EB-14

EB-29 EB-26

EB-30 EB-27

EB-45 EB-28

EB-47 EB-46

EB-48 EB-52

EB-49 EB-53

EB-50

EB-51

C-6. Cluster B includes pregna-4,16-diene-6,20-dione deriv-
atives with aliphatic and aromatic esters at C-3 β position,
the 4-azasteroid FIDE are present in this cluster. Clus-
ter C contains the modified D-homo lactone androstane
and androstane skeletons having different aliphatic esters
at C-3 β . Interestingly, Cluster D has the same skeletons
than C, but it differs in the presence of 5α,6 β-dibromo
group. Finally, Cluster E contains the 17α-methylpregna-
4,6-diene-3,20-dione, 17α-methylpregna-1,4,6-triene-3,20-
dione, pregna-4,6-diene-3,20-dione, and 17β-methyl-16β-
phenyl-D-homoandrost-4,6-diene-3,17a-dione skeletons ha-
ving different ester groups at the C-17 α position. Of note,
the ECPFs were able to distinguish the structures, despite
the fact that most of the compounds in the dataset have a
steroid skeleton. This is due to the high resolution of this
fingerprint-based structure representation [51].

Activity landscape analysis

Figure2a depicts a typical SAS map for this dataset. Each
point in the SAS map represents a paired comparison (there
are 1431 possible pairs for this dataset of 54 compounds).
Importantly, it can be seen that at higher similarity values
(x axis), the range of the difference in activity decreases
(y axis). This feature is in overall agreement with a con-
tinuous SAR, i.e., as two compounds are structurally more
similar, the activity values are also similar. This result is
further illustrated in panel b. In the SAS map of Fig. 2b,
points are distinguished using a categorical classification

Fig. 2 SAS map for the 54 molecules in the dataset. Each data point
(1431 total) represents a pairwise comparison. a Relative position of the
1431 pairwise structure and potency difference comparisons. bActivity
SAS map identifying the data points by the categorical activity of the
molecules in each pair. ‘AA’ represents pairs of active molecules, ‘AI’
pairs with one active and one inactive, and ‘II’ pairs in which both
compounds are inactive (see text for details). Activity cliffs are located
in the upper-right region of the plot herein defined using established
criteria [45]. Representative activity cliffs are labeled EB-13/EB-46
(‘x’) and EB-37/EB-38 (‘y’)

of the biological activity taking as reference the pIC50 of
FIDE: a compound was defined as ‘active’ in this figure if
pIC50 ≥ 8.0. Thus, in Fig. 2 data points labeled as ‘AA,’ are
pairs where both compounds are active. Data points labeled
as ‘AI’ contain one active and one inactivemolecules. Finally,
data points in gray (II pairs), contain two inactive compounds.
Figure2b clearly shows that the proportion of red (AA) points
increases as the structure similarity also increases. This result
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highlights the proficiency of the chemical representation used
and also suggests a smooth SAR of the dataset.

In the SAS map of Fig. 2a, there are several pairs of com-
pounds with both, low structure similarities and low activity
differences (lower left quadrant). These are called ‘similar-
ity cliffs’ [52] or scaffold hops. The relative amount of data
points in the similarity cliff region can be visually analyzed
in the density SAS map of Fig. 3. Note that the density SAS
map can be clearly differentiated from the SASmaps in Fig. 2
in that Fig. 3 is focused on the counts of data points in each
different regions of the map. Indeed, density SAS maps have
been recently developed as complementary tools to allevi-
ate the issue of crowded SAS maps that may be difficult to
interpret [53].

Fig. 3 Density SASmap of paired comparisons plotting structure sim-
ilarity versus potency difference. The map is colored by the frequency
of data points in the coordinates given

Figure2a, b shows that there are few but notable data
points in the upper-right zone of the plot, this is, pairs if
compounds with high structure similarity but have large
potency difference. These exceptions to the continuous SAR
are the activity cliffs and are discussed in the next section.
Of note, the activity cliffs are not systematically identified in
3D-QSAR studies such as SOMFA (vide supra). The identi-
fication and interpretation of the activity cliffs is an outcome
of particular significance of the ALM study reported in this
work.

Activity cliffs generators: identification

Figure4 shows the distribution of molecules in the activity
cliff region of the SAS map. The most frequent compounds
with high activity were EB-13 (pIC50 = 10.20; IC50 =
0.063 nM) and EB-37 (pIC50 = 10.60; IC50 = 0.025 nM)
with frequencies of five and three, respectively. In other
words, EB-13 formsfive activity cliffs andEB-37 forms three
activity cliffs (see discussion below). Figure4 also shows
that there were additional activity cliff generators with high
activity (red bars) but with lower frequencies such as EB-
32, EB-33, and EB-42 (frequency of one). Finally, there
were compounds with relative low pIC50 values (lower than
the median pIC50 values of the entire dataset) that form
several activity cliffs. One example was EB-34 (pIC50 =
6.96; IC50 = 110 nM) that forms four activity cliffs (Fig. 4).
The SAR of the two most prominent activity cliff generators
is discussed in the next section.

Activity cliffs generators: interpretation of the SAR

As discussed above, analysis of the chemical space and activ-
ity landscapeof thedataset of inhibitors of 5aR led to the rapid
identification of two activity cliff generators (EB-13 and EB-
37) that occupy different regions in the chemical space of

Fig. 4 Activity cliff generators:
bar graph of compounds in the
cliff region of the SAS map. The
bars are colored by the relative
biological activity (pIC50
values) of the compounds with
respect to the entire set, red
compounds with activities above
one standard deviation from the
mean, blue compounds with an
activity below the mean, gray if
the activity is between the mean
and one standard deviation.
Compounds EB-13 and EB-37
are the most active activity cliff
generators
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Fig. 5 SAR of the activity cliff generator EB-13

this dataset. In this section, we discuss an interpretation of
the SAR of each of the two generators.

SAR of activity cliff generator EB-13

Figure5 shows the chemical structure, pIC50 value, and struc-
tural similarity (Tc/ECFPs) values of the five compounds
forming activity cliffs with EB-13, which is the 17α-acetoxy-
16-methylpregna-4,6-diene-3,20-dione derivative (pIC50 =
10.20). In this figure, the standard numbering for the mole-
cular scaffold is shown for EB-13. All compounds in this
figure have a potency difference �pIC50 >2 with EB-13.
The position in the SAS maps of a representative activity
cliff, compound pair EB-13/EB-46, is shown in Fig. 2 (e.g.,
data point labeled with an ‘x’). Comparison of the structure
and activity of the activity cliff EB-13/EB-46 (Fig. 5) led to
the remarkable finding that the 17β-methyl group in EB-13

can drastically change the inhibitory potency in three log
units.

Overall, the molecules structurally related to the activ-
ity cliff generator EB-13 are pregnane derivatives with three
conjugated double bonds and different esters attached to
C-17 α position (Fig. 5). The inhibitory effect of these com-
pounds has been explained with a plausible mechanism
proposed wherein the inhibition of the 5aR enzyme is based
on the Michael type addition reaction of the 5aR enzyme
to the steroidal enone, dienone, or trienone to form irre-
versible adducts [54]. For EB-46 and EB-53, the different
pIC50 values could be explained by the number of unsat-
urated bonds in the steroidal skeleton. Therefore, we can
infer that the trienone in EB-53 has more resonance stabi-
lization than EB-46, thus it is less susceptible to Michael
addition and therefore EB-53 is the less active molecule in
Fig. 5.

123



Mol Divers (2016) 20:771–780 777

Fig. 6 SAR of the activity cliff
generator EB-37

An additional intriguing finding that emerged from the
analysis of the activity cliff generator in Fig. 5 is that the
most similar steroidal compounds to EB-13 (i.e., with Tc
>0.40) have in common two double bonds between C-
4 and C-5, and C-6 and C-7, respectively. Consequently,
the changes in activity can be attributed to the C-17α sub-
stituent. In general, a bulky ester group at C-17α decreases
the activity for this series. However, comparing the pIC50
values of EB-6 with EB-7, and EB-9, it can be concluded
that the p-substituted aromatic esters slightly increase the
potency.

SAR of activity cliff generator EB-37

Figure6 illustrates the three compounds forming activity
cliffs with EB-37 (the standard numbering for the molec-
ular scaffold is shown for EB-37). All compounds in this
figure have a potency difference �pIC50 >3 with EB-37,
which is 5 α, 6 β-dibromo-17a-oxa-D-homoandrostane-3 β-
yl-3′-oxahexanoate (pIC50 = 10.60). The position in the
SAS map of the representative activity cliff EB-37/EB-38 is
shown in Fig. 2 (labeled with a ‘y’). The structural differ-
ence in this activity cliff is the side chain at C-3 β indicating

that the more lipophilic character of the hexanoate moiety in
EB-37 versus the ethoxyacetate in EB-38 seems to favor the
interaction with 5aR.

All molecules in Fig. 6 lack of an unsaturated ketone (in
contrast to EB-13 and all compounds in Fig. 5). This obser-
vation is consistent with the different relative positions of
EB-13 and EB-37 in chemical space (Fig. 1). Such structural
difference can be related to a different mechanism of action.
For example, the electrophilic C-5 and C-6 positions form
irreversible adducts with nucleophilic residues and there-
fore promotes the inhibition of catalytic activity of the 5aR
enzyme. Another mechanism suggested is that these com-
pounds could have an alternative binding mode due to the
pseudosymmetry of C-19 steroids, causing the C-3 end to
be in the usual position of C-17. This finding was previously
observed for DHT steroid in the 17 β-HSD1 enzyme [55] and
provides support for the hypothesis that the interchange of
D-ring with the A-ring in androstene series illustrated above
makes the C-3 β (or pseudo C-17 β position) ester moiety
responsible for the lipophilic interaction at the hypothetical
pocket in 5aR in a similar way found by the 4-azasteroids,
wherein lipophilic ketones and amides at C-17 β increase the
inhibitory effect in the 5aR type II enzyme [7].
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Conclusions and perspectives

Systematic characterization of the chemical space of 53 5aR
inhibitors here presented demonstrated the structural unique-
ness with respect to the approved drug FIDE and was able
to distinguish different chemical classes, for example, those
represented by the activity cliff generators EB-13 and EB-37.
Systematic comparison of the structural activity and potency
difference of each pair of molecules in the dataset showed
that, in general, as the structural similarity increases, the
potency difference decreases, in overall agreement with the
similarity principle. However, the dataset analyzed in this
work has two chemically distinct and potent activity cliff
generators, EB-13 (pIC50 = 10.20; IC50 = 0.063 nM) and
EB-37 (pIC50 = 10.60; IC50 = 0.025 nM), this is, com-
pounds with high affinity to 5aR that that are very similar
to compounds analogues but have large potency differences.
Although the current study is based on a relatively small
set of steroidal derivatives, the findings of this investiga-
tion complement those of previous studies. The outcome
of the activity landscape analysis also provided hypothesis
that compounds may be inhibiting 5aR in different forms,
for example, forming irreversible adducts through a Michael
type addition or having binding modes different from FIDE.
The application of activity landscape analysis to identify pos-
sible different mechanisms of action or alternative binding
modes is related to the concept ‘activity landscape sweeping’
introduced recently [53]. Of note, in contrast to other quan-
titative approaches to analyze SARs (such as QSAR), ALM
does not require that the compounds analyzed have exactly
the same mechanism of action. This is because activity
landscape studies do not assume continuous SARs [36,37].
Despite the fact that further experimental investigations are
needed to assess this hypothesis, novel non-4-azasteroidal
inhibitors can be developed in order to improve the potency
and selectivity in the prostatic 5aR enzyme and then be used
for the treatment of BPH and PCa. Indeed, once the under-
lying SAR of the set of 53 5aR inhibitors has been explored,
what was the focus of this work; the next logical steps are
design new compounds and predict their activity. As previ-
ously discussed in the literature, understating the SAR of a
data set become before prediction [37].

Supporting information

List of the 54 compounds used in this study (53 pregnane and
androstene compounds and FIDE).
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