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Abstract Aminopeptidase N (APN) inhibitors have been
reported to be effective in treating of life threatening dis-
eases including cancer. Validated ligand- and structure-
based pharmacophore mapping approaches were combined
with Bayesian modeling and recursive partitioning to iden-
tify structural and physicochemical requirements for highly
active APN inhibitors. Based on the assumption that ligand-
and structure-based pharmacophore models are complemen-
tary, the efficacy of ‘multiple pharmacophore screening’ for
filtering true positive virtual hits was investigated. These
multiple pharmacophore screening methods were utilized to
search novel virtual hits for APN inhibition. The number of
hits was refined and reduced by recursive partitioning, drug-
likeliness, pharmacokinetic property prediction, and com-
parative molecular-docking studies. Four compounds were
proposed as the potential virtual hits for APN enzyme inhi-
bition.
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Abbreviations

APN Aminopeptidase N
A Hydrogen-bond acceptor

BD Binding database
D Hydrogen-bond donor

MFASA Molecular fractional polar surface area
MPSA Molecular polar surface area

MW Molecular weight
nHBA Number of hydrogen-bond acceptor
nHBD Number of hydrogen-bond donor

nFr Number of fragments
nRB Number of rotatable bonds
nPA Number of positive atoms

nR Number of rings
nArR Number of aromatic rings

P Positive ionisable
R Ring aromatic

RP Recursive partition
Y Hydrophobic

Introduction

Aminopeptidase N (APN, EC 3.4.11.2) is a zinc-dependent
membrane type II endopeptidase. It belongs to the M1 fam-
ily of MA clan (metallo-peptidase superfamily) of pepti-
dases. It contains 967 amino acids and has a relative mole-
cular mass (Mr) of ∼99,000 [1]. APN is mainly involved
in ATP-dependent downstream processing during cytoso-
lic protein degradation. It enables the utilization of amino
acids as nutrients [2]. This enzyme is found in a variety
of species, such as mammals, insects, plants, and bacteria.
Human APN is identical to the human lymphocyte surface
cluster differentiation antigen CD13. It is also known as
APN/CD13, which is widely distributed in mammals. It is
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expressed on the surface of different cells, such as epithe-
lial cells of the intestine and kidney, synaptic membranes
in the central nervous system, fibroblasts, endothelial cells,
epithelial cells, sebocytes, and keratinocytes [1]. Deregu-
lation of APN/CD13 expression is observed in many dis-
eases, such as cancer, chronic pain [3], and various forms
of joint effusions, rheumatoid arthritis [4], multiple sclerosis
[5], systemic sclerosis, and systemic lupus erythematosus
[6]. APN plays a crucial role in tumor invasion, metasta-
sis, and angiogenesis [7] in cancer. The over-expression of
APN was reported in breast, colon, gastric, ovarian, pancre-
atic, renal, and thyroid cancer [7]. Therefore, it is used as an
important clinical marker in cancer [1]. APN also functions
as a receptor for corona virus like gastroenteritis virus and
human corona virus 229E [2]. Inhibition of APN/CD13 may
be useful for treatment of such diseases [1]. Bestatin was
first identified as APN inhibitor, isolated from Streptomyces
olivoreticuli [8], and reported to improve immunological
functions by enhancing the chemotaxis of T lymphocytes.
Although several small-molecule APN/CD13 inhibitors have
been synthesized and evaluated biologically so far, it is still
challenging to develop potent inhibitor with higher binding
potential and efficacy. Recently, the X-ray crystal structure of
human APN (hAPN) complex with bestatin [9] was reported,
and it provided the opportunity to understand the mecha-
nism of action of different APN inhibitors by structure-based
analysis. In this study, an attempt was made to highlight
the structural and physicochemical requirements of APN
inhibitors. We also tried to find novel scaffolds as virtual hits
to design potent drug-like APN inhibitors. Both ligand- and
structure-based pharmacophore mapping studies were per-
formed to identify the 3D structural requirements for potent
APN inhibitory activity. Two different QSAR approaches,
i.e., Bayesian modeling and recursive partitioning (RP) tech-
niques, were adopted to understand the physicochemical and
2D structural requirements for better APN inhibitory activ-
ity. Simultaneously, ‘multiple pharmacophore-based virtual
screening’ was employed for the selection of virtual hits from
the diverse chemical databases. The best RP model was uti-
lized to select virtual hits from the ligands obtained from
‘multiple pharmacophore-based virtual screening’. Compar-
ative molecular docking studies with three different docking
tools were performed to search the most potential drug-like
virtual hits as well as to predict possible interactions between
proposed virtual hits and the catalytic residues at the binding
site of APN enzyme.

Materials and methods

Data set

175 APN inhibitors were collected from the literature
[10–19]. IC50 values of all these compounds were determined

by the same group of authors using l-leucine-p-nitroanilide
as the substrate and microsomal aminopeptidase N from
porcine kidney microsomes as the enzyme. This data set
(internal data set) was used for the development as well as
preliminary validation of pharmacophore models. The mole-
cules of the data set have wide range of inhibitory activity
(IC50), from 1.8 to 9108.6 µM. Moreover, a second data
set (external data set) containing 175 compounds was col-
lected from the binding database (BD) [20]. Unlike internal
dataset, the biological activities of these compounds were
determined by various assay methods by different group of
authors, and APN inhibitory activity of these molecules was
expressed either in IC50 or in ki (the dissociation constant
for inhibitor binding). From the BD compounds, 101 com-
pounds were arbitrarily chosen as ‘active’ APN inhibitors
(reported IC50 < 15 µMorki < 0.050 µM) and 74 com-
pounds were arbitrarily selected as ‘inactive’ APN inhibitors
(reported IC50 > 102 µM orki > 102 µM). Comparing with
the internal data set, the external compounds contain more
structural and biological activity variations. The purpose of
using an external data set was to assess the overall perfor-
mance of pharmacophore models and to develop Bayesian
and RP models. The detailed information of internal and
external data set compounds is provided in the supporting
information (Tables S1 and S2, respectively).

Pharmacophore model development

One ‘ligand-based pharmacophore’ and two ‘structure-based
pharmacophore’ models were developed in this study. The
first ‘structure-based pharmacophore’ was generated from
ligand-receptor interaction, where both receptor and co-
crystallized ligand were utilized for the model generation.
The second ‘structure-based pharmacophore’ was built only
from the receptor structure using the information on the bind-
ing site interaction. Each pharmacophore model was inde-
pendently generated and validated using different protocols
in Accelrys Discovery Studio 3.0 (DS) [21].

Ligand-based 3D-QSAR pharmacophore modeling
(model 1)

3D QSAR pharmacophore model was developed with the
Hyporefine module in DS [21]. In this method, 25 structurally
diverse compounds with a logarithmic biological activity,
range of approximately 3.7, were selected from internal
dataset with the help of Find diverse molecules protocol in
DS. Fingerprint feature FCFP_4 (fingerprints of maximum
diameter 4) and the biological activity value (IC50) were used
as the ‘property’ for the selection of these diverse molecules.
These 25 compounds were subsequently used as the train-
ing set for the generation of ligand-based pharmacophore
hypotheses.
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Pharmacophore model generation

All compounds were initially minimized with the Smart min-
imizer protocol of DS which applies steepest descent algo-
rithm, followed by conjugate gradient algorithm. Prior to
pharmacophore generation, the Feature mapping tool was
used to predict the favorable features for highly active com-
pounds. It was also found that the addition of ‘exclusion
volumes (E)’ improves the overall statistical quality of
the model. Moreover, uncertainty value was fixed to 1.5.
A diverse set of conformations of these compounds was gen-
erated using the FAST conformer generation method, where
maximum number of conformers and the energy range were
chosen as 255 and 20 kcal/mol, respectively.

Validation of model 1

The developed 3D pharmacophore hypotheses were vali-
dated by three different methods, (1) cost analyses, (2) Fis-
cher randomization test and (3) test set prediction [22]. In the
cost analysis method, three cost values—fixed, total, and null
cost of the generated hypotheses were analyzed. The fixed or
ideal cost is the cost of simple possible hypothesis that fits all
the data in a perfect manner. The null cost or no correlation
cost is the cost of the hypothesis without any feature. The
value of the total cost of the generated hypothesis should lie
between the fixed cost and the null cost. It should be close
to that of the fixed cost value, but away from the null cost
value. The correlation coefficient, root mean square devia-
tion (RMSD) and configuration cost are the other parameters
considered in the cost analysis. The configuration cost (deter-
mines the complexity of the hypothesis) should be less than
17 and the RMSD value (explains the quality of the correla-
tion between the experimental and estimated values) should
be less than 1.5 for a standard pharmacophore hypothesis
[23].

Fischer randomization test was used to ensure whether
a strong correlation exists between the chemical structures
and the biological activities of the training set compounds.
The test was performed at 95 % confidence level, where the
biological activities of the training set data were scrambled
using the same features and parameters used in develop-
ment of original hypothesis. If any randomization run pro-
duces hypothesis with better correlation coefficient and/or
less total cost, the original hypothesis may be considered to
be developed by chance. The third validation method, i.e.
the test set prediction was used to ensure that the pharma-
cophore hypotheses were well predictive on a set of diverse
compounds other than the training set compounds. The test
set containing 150 compounds was subjected to Ligand
pharmacophore mapping protocol in DS [21] to map these
compounds in the generated hypothesis, and to obtain the
estimated activity value for each compound. The higher

correlation coefficient between the experimental and the
estimated activity of the test set indicates better external
predictability of the generated hypothesis.

Structure-based pharmacophore mapping I: ligand–receptor
interaction (model 2)

In most of the cases, microsomal APN from porcine kid-
ney is used to assay compounds against APN. Porcine
APN has a high sequence identity with hAPN (80 %
overall, 100 % at the active site, and 94 % in the peptide-
binding region) [24]. In this study, the X-ray crystal struc-
ture of hAPN was used for all structure-based analyses
(PDB ID: 4FYR) [9]. The Receptor–ligand pharmacophore
generation protocol in DS allowed extracting information
from a ligand–protein interaction to generate a number of
hypotheses.

Protein structure preparation

The receptor structure was prepared by the Prepare protein
method in DS. All water molecules, except some selected
molecules that play important roles in ligand–receptor bind-
ing were removed. Subsequently, hydrogen atoms were
added to the protein, and CHARMM force-field was assigned
to the protein atoms. The binding site of cocrystallized besta-
tin was defined as the receptor active site, and receptor-bound
bestatin was defined as the ligand for hypotheses generation.

Hypotheses generation

Default chemical features, such as hydrogen-bond acceptor
(A), hydrogen bond donor (D), hydrophobic (Y), positive
ionizable (P), negative ionizable (N), and ring aromatic (RA)
were considered for hypotheses generation. The excluded
volume (E) was added based on locations of atoms in the
protein. During hypotheses generation, the following default
parameters were chosen, minimum feature 3; maximum
charge distance 8.0; maximum hydrogen-bond distance 4.0;
maximum hydrophobic distance 5.5; maximum exclusion
volume distance 5.0 and minimum interfeature distance 2.0.

Validation of pharmacophore hypotheses

Two validation procedures were implemented: (1) test set
validation, and (2) selectivity score-based ranking approach.
To assess the ability of the generated hypotheses to dis-
criminate between active and inactive ligands, 25 most
active compounds (IC50 < 15 µM) and 25 least active
compounds (IC50 > 100 µM) of the internal data set
were selected to construct ‘active’ and ‘inactive’ sets.
These were, subsequently, allowed to map the generated
pharmacophore queries. The following parameters were
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chosen for screening—conformation generation: FAST, max-
imum conformations: 255, energy threshold: 20 kcal/mol and
maximum omitted feature: 0.

Goodness of Hit score (GH score) was chosen as the crit-
ical criteria for the selection of best pharmacophore [25].
The GH score of 0.6–0.7 indicates a good pharmacophore
model. Apart from this, sensitivity (Se), specificity (Sp), and
accuracy (Acc) [26] were considered as other important para-
meters. The details of GH, Se, Sp, and Acc are provided in
supporting information (Text S1).

In selectivity score determination, a genetic functional
algorithm (GFA) model for the selectivity of a pharma-
cophore was built from a training set of 3285 pharmacophore
models, using the total number of features in the model
and the feature–feature distance bin values as descriptors.
This set was used to find the CapsDiverse database in DS.
The logarithmic values of virtual hits were used as the tar-
gets. Higher value of selectivity score is indicative of better
model.

Structure-based pharmacophore mapping II: LUDI
interaction (model 3)

Hypotheses generation

In this method, a LUDI [27] interaction map was created in
the receptor (PDB ID: 4FYR) [9] active site sphere, com-
prising the catalytic residues within 9Å distance from the
bound ligand (bestatin) using Interaction generation proto-
col in DS. This map consisted of all possible hydrogen-bond
acceptor (A), hydrogen-bond donor (D), and hydrophobic
(Y) features. Initially, the Edit and cluster pharmacophore
tool in DS was utilized to edit redundant and pharmacophore
features with no catalytic importance. From the generated
pharmacophore query, some features were carefully selected
on the basis of information reported on ligand–receptor
interaction [9].

Validation of pharmacophore

The same ‘Active’ and ‘Inactive’ data sets (used in model
2) were used for the Model 3 validation. The Screen library
protocol in DS was utilized for the selection of optimized
pharmacophore query. During this analysis, one feature was
fixed as ‘required feature’ that is required to be selected
by all input test molecules during screening. The selected
parameters for this screening method were—minimum and
maximum features: 4 and 5, respectively, maximum subset
of pharmacophore: 100, conformation search method: FAST
and minimum interfeature distance: 2.0.

QSAR analysis

To understand the structural and physicochemical factors
responsible for potent APN inhibitory activity, two differ-
ent QSAR modeling techniques, namely Bayesian modeling
[28] and recursive partitioning (RP) modeling [29], were per-
formed. These methods rely only on the activity profile of
these compounds (active or inactive) and not on the numer-
ical experimental data. Therefore, compounds assayed by
various methods, and biological activities expressed by dif-
ferent units could be used for QSAR modeling. The external
dataset, containing 101 active and 74 inactive compounds,
was used for these two studies.

Generation of the training and the test sets

The external data set was divided into the training and the test
sets (80 and 20 % of the data set, respectively). The selections
of the training and the test sets were based on fingerprints
of maximum diameter 4 (FCFP_4). To ensure the applica-
bility domain the test compounds [30], the whole data set
was subjected to principal component analysis (PCA). In
this process, the biological activity (IC50) of these molecules
along with some molecular properties (AlogP, MW, nHBD,
nHBA, nRB, nR, nArR, nFr, and MPSA) were selected. The
number of components and minimum variance explained
were fixed at 3 and 0.75 respectively. In the PCA score plot,
each test compound should remain close to at least one of
the training set compounds for an unbiased selection of the
training-test sets.

Recursive partitioning (RP) QSAR study

The create recursive partitioning model protocol in DS was
used to build the classification model. RP tree consists of
internal nodes and leafs where each internal node corre-
sponds to a test on one descriptor, and each leaf is assigned a
classification label. The model was built by minimizing the
Gini index [31] to divide these compounds into branches.
Detailed protocol of RP is provided in supporting informa-
tion (Text S2).

Bayesian modeling

2D descriptors including function class fingerprints of max-
imum diameter 6 (FCFP_6), AlogP, MW, nRB, nR, nArR,
nHBD, nHBA, and MFPSA were used for the Bayesian
model generation using the Create Bayesian model proto-
col in DS. The model predictability was tested on the test set
compounds.
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Screening of database

The developed pharmacophore models were used as 3D
query in database screening to find out novel and diverse
virtual hits suitable for further development. Chemical data-
bases, such as NCI (2,60,071 compounds), Specs (2,53,000
compounds), Maybridge (59,632), and Asinex (36,032 com-
pounds) were screened in this study. The retrieved com-
pounds with higher fit values were further filtered for drug
likeliness. At first, these compounds were tested against the
Lipinski rules [32] (Molecular weight< 500, hydrogen-bond
donor < 5, hydrogen-bond acceptor < 10, logP < 5) and
Veber rules [33] (rotatable bond < 10, polar surface area <

140 Å2 and sum of hydrogen-bond donor and acceptor<12)
for drug-likeliness properties. The filtered drug-like com-
pounds were tested for drug-like absorption, distribution,
metabolism, and excretion (ADME) properties calculated by
ADMET module in DS [21]. Compounds that successfully
passed these filtering methods were treated as the test set
compounds, and the activities were predicted through the best
developed RP model to identify molecules that possess 2D
structural and physicochemical features essential for APN
inhibition.

Molecular docking study

The screened drug-like virtual hits were analyzed thoroughly
for ligand–receptor-binding affinity by three molecular dock-
ing tools: LibDock/DS [34], GOLD [35,36], and GLIDE
[37].

Protein selection

The X-ray structure of APN complexed with bestatin (PDB
ID: 4FYR [9]) was used for docking studies. The binding
site of the cocrystallized bestatin was defined as the receptor
active site. In each docking method, self-docking was carried
out initially. The docking trial was considered successful if
self-docking could reproduce the cocrystallized conforma-
tion/pose of the ligand to a considerable extent. After get-
ting satisfactory result from self-docking, other ligands were
cross-docked similarly. Compounds showing consistent as
well as comparable docking scores in three different tools
(LibDock, GOLD, and GLIDE) were proposed as the final
virtual hits.

LibDock/DS docking

In LibDock, the protein structure was prepared by remov-
ing bound water molecules, protonating the protein struc-
ture (protein dielectric constant 10, pH for protonation 7.4),
and applying CHARMm force-field for minimization. Lib-
Dock/DS docks ligands into a binding site guided by polar

and apolar interaction sites, which are known as hotspots.
A binding site sphere radius of 9 Å surrounding the center
of cocrystallized ligand (bestatin) was generated. The lig-
and conformations were generated using FAST conformation
generation method that considered the maximum number of
conformations to be 255, utilizing a 20 kcal/mol limit for con-
formational analysis. The other default parameters were kept
unchanged during docking study.

GOLD docking

The water molecules in the protein were removed, and the
hydrogen atoms were added using GOLD protein prepara-
tion. The binding site was defined with a 6 Å radius around
the bound inhibitor. Docking calculations were performed
using Goldscore fitness function. The ten top scoring con-
formations of each ligand were considered at the end of the
process.

GLIDE docking

In GLIDE, bound water molecules in the protein were
deleted, and formal charges of the ligand as well as pro-
tein atoms were adjusted. The restrained minimization of
hydrogen of the protein was done using protein preparation
wizard and OPLS2005 force field. Molecules to be docked
were prepared using ligand preparation step. Conformations
were generated for each input ligand after generating tau-
tomers, removing defective structures and optimizing ligand
geometries. Epik was used to generate all possible states of
the ligand in a pH range of 7.0 ± 2.0. Docking simulations
were performed using GLIDE with OPLS-AA force field. A
grid of 10Å × 10Å × 10 Å box centered on the centroid of
the bound ligand was defined as the binding region. Ligand
docking was performed utilizing the prepared protein and
ligands as inputs. Extra precision (XP) docking was used
for this purpose. Conjugate gradient method (100 steps) was
used for energy minimization of poses, which had passed
through the selection of initial poses scoring phase. Top ten
poses were generated for each ligand.

Results and discussion

Ligand-based 3D QSAR pharmacophore mapping

Twenty-five structurally diverse APN inhibitors (P1–P25),
selected from the internal data set, were considered as
the training set compounds for developing pharmacophore
hypotheses by the Hyporefine method. The training set com-
pounds are listed in Fig. 1.

The standard APN inhibitor, bestatin (P2) was included
as a member of the training set. Based on Feature mapping
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Fig. 1 Structures of training set molecules (P1–P25) used for 3D QSAR pharmacophore generation

of DS, hydrogen-bond acceptor (A), hydrogen-bond donor
(D), ring aromatic (RA), hydrophobic (Y), and positive ion-
izable (P) features were included in pharmacophore hypoth-
esis generation. Hyporefine generated ten pharmacophore
hypotheses with fixed and null cost values of 74.43 and
275.83, respectively. Among ten hypotheses, the first hypoth-
esis (Model 1) was selected as the best pharmacophore on the
basis of the cost values, correlation coefficient and RMSD
value. Model 1 showed the lowest total cost (91.24) with
a cost difference (null cost–total cost) of 184.58, indicating
that the model and data are correlated by more than 90 %.
The correlation value of this hypothesis was 0.961, which
suggests the model is capable of predicting the activity of
the training set compounds. In addition, lower RMSD value
(1.15) of the hypothesis further supports the predictive ability
of the model. The configuration cost of the model was found
as 13.89, which was much lower than the cutoff value of 17.
The Model 1 consisted of one each A, D, P, and RA feature
along with five exclusion volumes (E) (Fig. 2). The represen-
tative result of Model 1 is shown in supporting information
(Table S3).

Apart from the cost analyses, the merit of hypothesis
was justified by its ability to predict the activity of indi-
vidual compounds within the set. For this purpose, the
training set compounds were approximately classified into
three different categories: active (IC50 < 15 µM,+ + +),

less active (15 µM ≤ IC50 < 100μM,++) and low
active/inactive (IC50 > 100 µM,+). All the compounds in
the training set were accurately predicted with low error val-
ues between the experimental and estimated IC50.

Test set prediction

The test set contained 150 compounds (supporting informa-
tion, Table S1) with diverse structures and a wide range of
biological activity. It was used to evaluate the best ligand-
based hypothesis, i.e. Model 1. The relation between the
experimental and the estimated activity values of the test set
compounds showed a correlation coefficient (R) of 0.81 and
the R2

Predvalue of 0.65. The correlation plots of both training
and test set compounds are depicted in supporting informa-
tion (Fig. S1). The observed and estimated activities of test
set compounds are provided in supporting information (Table
S4).

Fischer randomization test

The Fischer randomization test at 95 % confidence (sup-
porting information, Table S5) showed that 4 out of 19
randomized runs could produce correlation (< 0.86) less
than the original hypothesis. Moreover, the total costs of
the randomized runs were much higher than the original
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Fig. 2 a 3D-spatial
arrangement and inter-feature
distance constraints between the
chemical features (Model 1). b
Mapping of the most active
compound (P1) in the training
set on Model 1. c Mapping of
the least active compound (P25)
in the training set on Model 1

hypothesis. It justified that the Model 1 was not generated by
chance.

Figure 2a represents the arrangement of the pharma-
cophoric features along with their inter-feature distance con-
straints. Figure 2b, c shows the mapping of the most (P1)
and the least active (P25) compounds of the training set on
Model 1, respectively. The hydroxyl group in the hydroxamic
acid of P1 mapped upon the A feature, while the secondary
amino (protonated) and the phenyl group of P1 mapped over
P and RA features, respectively. The phenyl and carbonyl
groups of the compound P25 mapped upon the RA and A
features, respectively. The fit values of P1 and P25 were 5.61
and 1.95, respectively. It is observed that most of the highly
active compounds in the training set contained positive ion-
izable primary amine group. Although some active (e.g. P5,
of fit value 4.47) and moderately active (e.g., P8, fit value
4.29) compounds lacked this feature, showed considerable
APN inhibitory activity. These compounds contained amide
group that mapped over the donor feature. Therefore, it may
be assumed that some polar groups, in addition to positively
charged groups, also determine higher binding potential of
these ligands.

In the X-ray crystal structure of hAPN complexed with
bestatin [9], it was found that apart from catalytic amino
acid residues, some bound water molecules (w1176, w1118,
w1315, w1382, w1919, and w1445, the atom numbers were
assigned from the PDB structure) play significant roles in
the receptor binding by forming bridged hydrogen-bonding
interactions (both intra and inter) with the ligand. The

PheβN(αOH) fragment of bestatin is pushed deeply into
the S1 pocket of the enzyme, where amino group, carbonyl
oxygen atom and α-hydroxyl groups formed water-mediated
hydrogen bonds with hAPN. The schematic representation
of ligand–receptor interactions [9] is shown in Fig. 3a. The
mapped conformation of bestatin (P2) in Model 1 is shown
in Fig. 3b. It was found that bestatin could map three out
of four features in Model 1. The RA feature of phenyl ring
could be compared to the π − π interaction with Phe472,
whereas P feature of secondary amine (protonated) could be
compared with interactions with water molecules, w1176,
w1445, and w1382. The hydrogen-bond acceptor feature of
the carboxylic group could be compared with interactions
with Tyr477 and Glu389. However, other interactions with
carbonyl groups and hydroxyl group could not be interpreted
from the current model. Because of good predictive quality
of Model 1, it could be inferred that mapped interactions are
responsible for determination of the biological activity of the
internal data set compounds.

Structure-based pharmacophore mapping I: ligand–receptor
interaction

The receptor–ligand pharmacophore mapping generated
hypotheses based on the receptor–ligand interaction with 50
internal data set compounds, comprising 25 actives and 25
inactives. The result is shown in Table 1.
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Fig. 3 a Interaction of bestatin at the hAPN active site, hydrogen bonds
and π − π interaction are shown in dotted line, water molecules are
shown as spheres. b Mapping of bestatin (P2) on Model 1. c Mapping
of bestatin on Model 2 (water molecules are shown in ball and stick
form) and 3D-spatial arrangement and inter-feature distance constraints

between the chemical features of Model 2 (in box). d Mapping of Model
3 with bestatin and catalytic water molecules (presented in stick form),
3D-spatial arrangement and inter-feature distance constraints between
the chemical features of Model 3 (in box)

Selection and validation of hypotheses

It is evident from Table 1 that the RLPharm9 showed the
most acceptable result in terms of Se, Sp, Acc, and GH score.
The mapped conformation of bestatin in this pharmacophore
(Model 2) is shown in Fig. 3c. The hypothesis contained two
features (A and P), which are mapped over the functionali-
ties as in Model 1. The third feature, D was mapped over the
hydroxyl group that forms hydrogen-bond interaction with
the water molecule w1382. Figure 3 justified that a strong
relation exists between ligand- and structure-based pharma-
cophore modeling. However, both of these models could

not explain the hydrogen-bond interaction of the carbonyl
group. Figure 3c (box) represents the spatial arrangement of
features in Model 2 along with their inter-feature distance
constraints.

Structure-based pharmacophore mapping II: LUDI
interaction

The Interaction generation protocol generated total 434 fea-
tures (A, D, and H) at the active site (bestatin-binding site)
of the enzyme (PDB ID: 4FYR [9]). These features were
clustered and redundant interactions were removed. From

Table 1 Representative result of structure-based pharmacophore modeling

Pharm Features Selectivity Act Inact TP TN FP FN Sn Sp Acc GH

RLPharm1 DHHP 1.1148 25 25 10 25 0 15 0.40 1.00 0.70 0.16

RLPharm2 AADH 0.69736 25 25 16 3 22 9 0.64 0.12 0.38 0.41

RLPharm3 AADH 0.69736 25 25 16 3 22 9 0.64 0.12 0.38 0.41

RLPharm4 AHHP 0.47716 25 25 8 25 0 17 0.32 1.00 0.66 0.10

RLPharm5 AAHP 0.47716 25 25 14 25 0 11 0.56 1.00 0.78 0.31

RLPharm6 AHHP 0.47716 25 25 9 25 0 16 0.36 1.00 0.68 0.13

RLPharm7 DHH 0.33951 25 25 11 4 21 14 0.44 0.16 0.68 0.19

RLPharm8 DHP 0.33951 25 25 13 25 0 12 0.52 1.00 0.76 0.27

RLPharm9 ADP 0.33951 25 25 23 25 0 2 0.92 1.00 0.96 0.85

RLPharm10 DHP 0.33951 25 25 14 25 0 11 0.56 1.00 0.78 0.31
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Fig. 4 The schematic
representation of the RP-tree 1
model

the remaining features, some were selected on the basis of
ligand–receptor interactions reported in the literature [9]. The
final hypothesis (Model 3) comprising five features [three
hydrogen-bond acceptors (A1–A3) and two hydrogen-bond
donors (D1–D2)] were chosen on the basis of predictabil-
ity on the internal test set compounds. Figure 3d shows the
features mapped with the ligand and catalytic site of recep-
tor molecules. A3 and D2 are directed towards hydroxyl and
carbonyl groups of the ligand, respectively. The other fea-
tures (A1, A2, and D1) correspond to the water molecules
(w1382, w1176, and w1118) play important roles in ligand–
receptor interaction. A2 was selected as ‘required feature’,
as it showed the most consistent result for the test set vali-
dation. Noticeably, A2 is mapped over w1382 that interacts
with the positive ionizable amino group (Fig. 3a), which was
found to be the most important feature from SAR study, and
it appeared in both Models 1 and 2.
Validation of model

The same internal test set was used as in Model 2. After
screening, 25 compounds out of 50 were retrieved and 22 of
these were found to be active. Based on this study, enrich-
ment factors and GH value were calculated [details are pro-
vided in supporting information (Table S6)]. The GH value
of 0.77 justifies that the developed LUDI-based pharma-
cophore (Model 3) was considerably selective for active
compounds.

QSAR modeling

Generation of training and test sets

Generate training and test data protocol of DS created
the training and the test sets with 144 and 31 compounds,

respectively. The applicability domains of the sets were ana-
lyzed by PCA. In the PCA score plot (Fig. S2 of support-
ing information), it was found that each test compound
remains comparatively close to at least one of the training
compound.

Recursive partitioning (RP) QSAR modeling

The RP on 144 training set compounds generated three clas-
sification trees (Tree 1, 2, and 3). Tree 1 was selected as
the best model (Model 4) on the basis of receiver operat-
ing characteristic (ROC) score (0.926) and cross-validated
ROC curve (0.807). Moreover, when the model was validated
with 31 test set compounds, the ROC score was 0.790. The
details statistical analysis of Model 4 is provided in support-
ing information (Table S7). The schematic representation of
the RP-tree 1 model is shown in Fig. 4.

Figure 4 depicts the development of Model 4 with six
selected descriptors along with their cut-off values that were
used for developing and validating the model. It demon-
strates that nPA, MFPSA, Kappa_3_AM, AlogP, PHI, and
HBA_count played important roles in distinguishing actives
from inactives. The functionality of these descriptors are
listed in Table S8 (supporting information). In Fig. 4, the
p values are for winning class and reflect sample weight.
1 means active and 0 stands for inactive. In this model, the
training set contains 87 actives and 57 inactive compounds.
Each active sample is assigned a weight of 94 and each inac-
tive sample is assigned a weight of 87, e.g. in node 1, 46 active
and 4 inactive compounds are observed. Therefore, p(1) can
be calculated by the expression: 57×46/(87×4+57×46).

In the RP model, NPA (total number of atoms in a mole-
cule with a positive charge) was found to be the main
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classifier, which may be correlated with the fact that the
positive ionizable features, like primary amines play impor-
tant role in the ligand–receptor interaction. The physico-
chemical descriptor MFPSA is the ratio of the polar surface
area to that the total surface area. It is evident from Fig. 3a
that the catalytic site of APN contains amino acids having
polar side chains (e.g., glutamic acid, tyrosine, etc.) as well
as polar water molecules that participate in the receptor–
ligand interactions. Although the model highlights the impor-
tance of ionizable groups, these are not the sole determinant
for the higher activity of these molecules. Hydrogen-bond
acceptor and donor groups also play vital roles in the ligand–
receptor interactions. Therefore, the significance of MFPSA
as a second major classifier of the model (for the compounds
that lacked nPA) reconfirms that the polarity of the mole-
cule has considerable importance for APN inhibition. The
number of hydrogen-bond acceptor was also found to be
important, and the significance of it was found in the pharma-
cophore mapping approach. In addition, AlogP (logarithm of
octanol–water partition coefficient determined by the Ghose
and Crippen’s method [38]) was found to be important for
APN inhibition of compounds that had lower cutoff values of
both nPA and MFPSA. The function of hydrophobic descrip-
tor may be easily understood as the binding site of hAPN
comprises of hydrophobic pockets and hydrophobic inter-
actions with residues like Phe472 and Ser469 were reported
for bestatin. In addition, two topological kappa-shaped index
descriptors, PHI and Kappa_3_AM were appeared in the
model. The Kappa_3_AM is alpha-modified shape index of
order three and PHI is the molecular flexibility index. These
topological descriptors appeared in the model for compounds
having higher values of MFPSA. Therefore, it may be inter-
preted that flexibility of the molecule is an important criterion
for higher activity.

Bayesian modeling

Eight interpretable descriptors (AlogP, MW, nHBA, nHBD,
nR, nArR, and MFPSA) and one fingerprint feature FCFP_6
(molecular function class fingerprints of maximum diam-
eter 6) were used in developing the Bayesian model with
the same training and test sets used in RP modeling. The
model was validated using LOO cross-validation and ROC
was generated. The ROC curve for the training set is pro-
vided in supporting information (Fig. S3). The model devel-
oped with a LOO cross-validation statistics of 0.918, and
enrichments data (Table S9, supporting information) was
obtained. The ‘best split’ value was calculated by picking
the split that reduced the sum of the percent misclassified
for inhibitors and noninhibitors using the cross-validation
score for each compound. The ‘best split’ value obtained in
the current model (Model 5) was 0.577, which demarcated
highly active compounds from nonpotent inhibitors. Based

on this value, a contingency table was obtained, which cal-
culated true positive (TP), true negative (TN), false posi-
tive (FP), and false negative (FN). The LOO cross-validated
result of training set is provided in supporting information
(Fig. S3).

After leaving 20 % out 100 times, the ROC (0.907), con-
cordance (0.903), specificity (0.895), and sensitivity (0.908)
were observed in the Model 5. The five-fold cross-validation
result is given in the supporting information (Table S10).
Based on Bayesian score, top 20 favorable and unfavorable
molecular fingerprints for APN inhibitory activity were iden-
tified by FCFP_6. All identified good and bad fingerprints
are shown in the supporting information (Table S11), and
five each selected favorable and unfavorable fingerprints are
listed in Fig. 5.

The retrieved fingerprints of the Bayesian modeling con-
firmed that features containing more number of polar groups
are favorable. From both pharmacophore mapping and RP
modeling, it was inferred that polar groups and positive ion-
izable features play essential role in the enzyme inhibition.
The Bayesian modeling reconfirmed that polar moieties, like
amide, carboxylic acid, and phosphinyl groups are favorable.
The functionality of aromatic moieties may be intriguing
because these appeared in both favorable and unfavorable fin-
gerprints. However, unfavorable aromatic rings were either
attached to polar residues or have exocyclic conjugation.
Both of the functionalities may be related to aromaticity
of these rings. It was interesting to find that acyclic rings
appeared as the most unfavorable fingerprints due to lack
of features (positive charge, polarity, and ring aromaticity)
required for higher activity.

Thirty-one test set compounds were used to validate
Model 5 and produced ROC score of 0.941, which indi-
cated high predictive quality of the selected Bayesian model.
The results showed concordance of 0.871, specificity of
0.882 and sensitivity of 0.857. The results and ROC plot
for test set validation are provided in supporting information
(Fig. S3).

Multiple pharmacophore screening and its validation

Pharmacophore models (both ligand- and structure-based)
are used for the screening of databases containing large num-
ber of diverse molecules to find compounds that could be
proposed as potential virtual hits [39–46]. An ideal pharma-
cophore query is able to capture active molecules selectively
from the databases discarding inactive molecules. Therefore,
prior to virtual screening the selectivity of the model should
be properly assessed. The decoy set validation is the most
popular and widely used approach to confirm overall speci-
ficity of a model [43–46]. The decoy set is a set of com-
pounds, where some known active compounds are combined
with inactives or decoys, and the whole set is screened with
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Fig. 5 Good (G) and bad (B) molecular fingerprints identified by FCFP_6 descriptor

the selected pharmacophore query. The selection of inactive
compounds for decoy set validation is very crucial for unbi-
ased virtual screening. The selectivity of the pharmacophore
model may be represented either by ROC curve [43,45] or by
GH score [44,46]. The largest public available database of
decoys is directory of useful decoys (DUD), which provides
decoys for limited number of targets [47]. In the absence
of DUD for a particular target, the selection of inactives
depends on the users. However, the latter approach may have
two major limitations, (a) it often presumes the inactivity of
the decoys despite lack of supporting evidence [48] and (b)
the decoy selection method may lack transparency. More-
over, Verdonk et al. [49] earlier demonstrated that some 1D
molecular properties may affect the results of docking-based
virtual screening, and their proposal may be extrapolated to
pharmacophore-based virtual screening as well [43]. Accord-
ing to Verdonk et al., it is not sufficient to use a random library
(subsets of public databases) for performance assessments,
but it is essential to build up a focused library that reflects
the physicochemical properties of the active set. Verdonk
principle may be utilized for the selection of decoys [49].
In the current approach an alternative procedure has been
adopted which includes the following steps, (a) selection of
an well identified and recognizable decoy set from a public
database (i.e. BD), which is considerably less focused than
internal dataset used for the pharmacophore model develop-
ment, (b) validation of the decoy sets by multiple screening
with three different pharmacophore models developed in the
current study, and (c) determination of activity profile by RP
model developed from the external data set. The justifica-
tion of these steps (a, b and c) is discussed in the supporting
information (Text S3).

Fig. 6 Multiple screening using external data set (MOF maximum
omitted feature, MinF minimum number of feature)

To substantiate the idea of multiple screening, the external
data set was screened with three different pharmacophore
queries (Models 1, 2, and 3) as shown in Fig. 6.

The ligand-based pharmacophore model (Model 1) was
selected for initial screening as it is able to quantify the
estimated activity of the screened ligands. The structure-
based models were utilized to refine these ligands filtered
through Model 1. A cutoff fit value of 5.5 was set for Model
1, because top most active compounds (including bestatin)
in the internal data set showed ‘fit value’ more than 5.50
in mapping on Model 1 (Table 1). In the first screening
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Fig. 7 Database screening and filtering protocol (MOF maximum
omitted feature, MinF minimum number of feature)

(Model 1), 26.3 % of the retrieved virtual hits were found
to be seeded with known inactive compounds. The percent-
age of known inactives was gradually lowered in the subse-
quent screenings (18.75 and 0 % of the retrieved virtual hits
screened though model 2 and 3, respectively). Therefore,
it may be concluded that the number of inactives may be
gradually reduced by ‘multiple pharmacophore screening’,
and this approach could be useful for screening of public
databases.

Screening of databases

Four databases—NCI, Specs, Maybridge, and Asinex were
screened to find out potential virtual hits for APN inhibitory
activity. These compounds were screened with three
pharmacophore models (Models 1–3) as shown in Fig. 7.

The Model 1 filtered 2,111 compounds with fit values
more than 5.50. These compounds were further screened sub-
sequently with Models 2 and 3. The remaining compounds
(170 compounds) were subjected to Lipinski and Veber rules
for drug likeliness and ADME properties, employing human
intestinal absorption, aqueous solubility, and blood–brain
barrier penetration. 60 out of 170 compounds were found
to violate any one of the Lipinski and/or Veber rules for
drug likeliness and ADME properties and thus rejected. The
remaining 110 compounds were subjected to the RP pre-
diction. The necessity of applying RP prediction may be
substantiated by the work of Verdonk et al. [49], as they

pointed out the influence of 1D descriptors in virtual screen-
ing. As the RP model was created with the help of descriptors
that highlight the overall structural requirements for APN
inhibition, application of this model in virtual screening may
further help in reducing the number of inactive virtual hits in
the
database.

The RP model (Model 4, Fig. 5) predicted 87 com-
pounds as active which have physicochemical and struc-
tural features similar to the reported highly active APN
inhibitors. Finally, 87 compounds were subjected to molec-
ular docking studies to predict binding affinities and explore
interactions.

Comparative molecular docking study

In each docking method, the bound inhibitor bestatin was
self-docked at the catalytic site of the receptor (PDB ID:
4FYR) [9] by three different docking tools: LibDock, GOLD,
and GLIDE. The best conformer (supporting information,
Fig. S4) of bestatin was observed in LibDock method with
the lowest self-docking RMSD value of 0.38.

The 87 filtered drug-like compounds were docked by three
docking tools, and the docking scores were compared with
bestatin. It was found that only four compounds showed con-
sistent docking results for all three molecular docking tools,
and were proposed as the potential virtual hits for APN inhibi-
tion. The dockscores, predicted activities and ADME profiles
of these four compounds are shown in Table 2.

The docking interactions (LibDock/DS) and pharma-
cophore (Model 1)- mapped conformations of these vir-
tual hits are provided in supporting information (Figs. S5
and S6, respectively). Two of these virtual lead com-
pounds (MFCD00830868, MFCD00830876) contain piper-
azine residues. The protonated nitrogen atoms of these
residues were mapped over the positive ionizable feature,
and also interacted with the catalytic amino acid residues.
Flippo et al. [50] earlier investigated some quinoline anti-
malarial agents, which strongly inhibited mammalian APN
enzyme (lowest IC50 = 0.028µM). These compounds also
contained piperazine moiety as the only positive ionizable
group. Chelerythrin, a natural product containing quater-
nary nitrogen, also showed 82 % inhibition of APN [3].
Ligand–receptor interactions of these compounds were not
reported earlier. Apart from the positive ionizable features,
the proposed virtual hits also contained polar groups and
aromatic rings, which were found to be important in APN
inhibitory activity. All virtual hits were found to form
π − π interaction with the catalytic amino acid residues.
The pharmacophore mapped conformations were compara-
ble with the docked conformations (supporting information,
Figs. S5 and S6).
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Table 2 Docking scores, ADME property, and estimated activity of virtual hits

Ligand Libdock score Glide XP Gold score Model 1 Solubilty BBB AlogP PSA

Fit value IC50−(µM) (ADME) (ADME) (ADME) (ADME)

Bestatin 138.15 −8.80 82.69 5.59 − − − − −
MFCD00830868 153.99 −8.45 78.17 5.54 2.31 −5.16 −0.05 4.42 76.71

MFCD00830876 146.50 −6.94 77.12 5.58 2.13 −3.56 −0.46 3.09 76.71

MFCD02680015 137.92 −6.24 78.72 5.60 2.03 −3.70 −0.67 2.57 85.73

MFCD02681563 134.18 −7.94 72.23 5.62 1.92 −3.43 −0.76 2.85 96.54

Conclusion

The current chemometric approach was performed to achieve
three objectives (1) to highlight structural and physicochem-
ical factors important in APN enzyme inhibition (2) to focus
on aspects of ‘multiple pharmacophore screening’ approach
in pharmacophore-based virtual screening and (3) to propose
new virtual hits for APN inhibition. Ligand- and structure-
based pharmacophore mapping, RP and Bayesian modeling
were carried out and all models were properly validated
to achieve the first objective. Both ligand- and structure-
based pharmacophore mapping suggested that four features:
(a) positive ionizable, (b) acceptor, (c) donor, and (d) ring
aromatic are essential for the receptor–ligand interactions.
The 3D QSAR pharmacophore model may be utilized for
prediction of bioactivity of the ligands. RP modeling was
performed on a diverse set of molecules, and it showed
positive ionizable (P) feature may be the most important
determinant for APN inhibition, and increased polarity of
the molecule has positive contribution for higher biological
activity. Besides, hydrophobicity [related to ring aromatic
(RA)] was also found to be involved in receptor–ligand inter-
action. RP modeling presented some cut-off values of impor-
tant descriptors that demarcate the active inhibitors from that
of inactives. These may be utilized for the design of new
molecules. In addition, Bayesian model highlighted some
favorable and unfavorable fingerprints, which may also be
utilized for the novel lead design purpose. The results of
pharmacophore mapping, RP and Bayesian modeling were
comparable and consistent enough to indicate the success of
each modeling approach. To explore the second objective, an
external random data set was constructed from reported APN
inhibitors available in a public database (BD). It was shown
that multiple screening by the ligand- and structure-based
models may decrease the number of false positives gradually
even from a random decoy set, the use of which is not recom-
mended [49] for screening approaches in order to avoid low
enrichment. Moreover, it was also found that the ligand- and
structure-based pharmacophore models are complementary
[51] because sequential screening by ligand- and structure-
based pharmacophore queries gradually reduced the number
of inactive virtual hits. The multiple screening followed by

the RP prediction further reduced the number of false positive
hits. This composite approach of screening also decreased
the number of true positives to a considerable extent (Fig. 7).
However, the main success of this approach lies in the fact that
it is less complicated and maintains transparency in terms of
the selection of decoys as well as the validation of the model.
The last objective of the work was to search some poten-
tial virtual hits of APN inhibitors. Multiple pharmacophore
screenings followed by RP prediction were carried out from
some public databases. The retrieved virtual hits were tested
for drug-likeness and pharmacokinetic properties. The fil-
tered virtual hits were docked at the receptor active site, and
four compounds showing consistent results in three different
docking tools were ultimately proposed as the most potential
virtual hits. All virtual hits were found to contain essential
features like positive charge, polarity, and ring aromaticity,
and may help to obtain useful APN inhibitors.
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