Skip to main content
Log in

De novo design of N-(pyridin-4-ylmethyl)aniline derivatives as KDR inhibitors: 3D-QSAR, molecular fragment replacement, protein-ligand interaction fingerprint, and ADMET prediction

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Vascular endothelial growth factor (VEGF) and its receptor tyrosine kinase VEGFR-2 or kinase insert domain receptor (KDR) have been identified as promising targets for novel anticancer agents. To achieve new potent inhibitors of KDR, we conducted molecular fragment replacement (MFR) studies for the understanding of 3D-QSAR modeling and the docking investigation of arylphthalazines and 2-((1H-Azol-1-yl)methyl)-N-arylbenzamides-based KDR inhibitors. Two favorable 3D-QSAR models (CoMFA with q 2, 0.671; r 2, 0.969; CoMSIA with q 2, 0.608; r 2, 0.936) have been developed to predict the biological activity of new compounds. The new molecular database generated by MFR was virtually screened using Glide (docking) and further evaluated with CoMFA prediction, protein–ligand interaction fingerprint (PLIF) and ADMET analysis. 44 N-(pyridin-4-ylmethyl)aniline derivatives as novel potential KDR inhibitors were finally obtained. In this paper, the work flow developed could be applied to de novo drug design and virtual screening potential KDR inhibitors, and use hit compounds to further optimize and design new potential KDR inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ivy SP, Wick JY, Kaufman BM (2009) An overview of small-molecule inhibitors of VEGFR signaling. Nat Rev Clin Oncol 6: 569–579. doi:10.1038/nrclinonc.2009.130

    Article  CAS  Google Scholar 

  2. Teicher BA (2011) Antiangiogenic agents and targets: a perspective. Biochem Pharmacol 81: 6–12. doi:10.1016/j.bcp.2010.09.023

    Article  CAS  Google Scholar 

  3. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438: 967–974. doi:10.1038/nature04483

    Article  CAS  Google Scholar 

  4. Ferrara N, Hillan KJ, Gerber HP, Novotny W (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3: 391–400. doi:10.1038/nrd1381

    Article  CAS  Google Scholar 

  5. Ahmad T, Eisen T (2004) Kinase inhibition with BAY 43-9006 in renal cell carcinoma. Clin Cancer Res 10: 6388S–6392S. doi:10.1158/1078-0432.ccr-040028

    Article  CAS  Google Scholar 

  6. Sakamoto KM (2004) Su-11248 Sugen. Curr Opin Investig Drugs 5: 1329–1339

    CAS  PubMed  Google Scholar 

  7. Cabebe E, Wakelee H (2006) Sunitinib: a newly approved small-molecule inhibitor of angiogenesis. Drugs Today (Barc) 42: 387–398. doi:10.1358/dot.2006.42.6.985633

    Article  CAS  Google Scholar 

  8. Podar K, Catley LP, Tai YT, Shringarpure R, Carvalho P, Hayashi T, Burger R, Schlossman RL, Richardson PG, Pandite LN, Kumar R, Hideshima T, Chauhan D, Anderson KC (2004) GW654652, the pan-inhibitor of VEGF receptors, blocks the growth and migration of multiple myeloma cells in the bone marrow microenvironment. Blood 103: 3474–3479. doi:10.1182/blood-2003-10-3527

    Article  CAS  Google Scholar 

  9. Tyagi P (2005) Vatalanib (PTK787/ZK 222584) in combination with FOLFOX4 versus FOLFOX4 alone as first-line treatment for colorectal cancer: preliminary results from the CONFIRM-1 trial. Clin Colorectal Cancer 5: 24–26. doi:10.1016/S1533-0028(11)70162-1

    Article  Google Scholar 

  10. ISCHEMIA CL (2012) Drug approved to treat advanced disease. J Vasc Surg 55: 371–380

    Article  Google Scholar 

  11. Morabito A, De Maio E, Di Maio M, Normanno N, Perrone F (2006) Tyrosine kinase inhibitors of vascular endothelial growth factor receptors in clinical trials: current status and future directions. Oncologist 11: 753–764. doi:10.1634/theoncologist.11-7-753

    Article  CAS  Google Scholar 

  12. Goodman VL, Rock EP, Dagher R, Ramchandani RP, Abraham S, Gobburu JV, Booth BP, Verbois SL, Morse DE, Liang CY, Chidambaram N, Jiang JX, Tang S, Mahjoob K, Justice R, Pazdur R (2007) Approval summary: sunitinib for the treatment of imatinib refractory or intolerant gastrointestinal stromal tumors and advanced renal cell carcinoma. Clin Cancer Res 13: 1367–1373. doi:10.1158/1078-0432.ccr-06-2328

    Article  CAS  Google Scholar 

  13. Wood JM, Bold G, Buchdunger E, Cozens R, Ferrari S, Frei J, Hofmann F, Mestan J, Mett H, O’Reilly T, Persohn E, Rosel J, Schnell C, Stover D, Theuer A, Towbin H, Wenger F, Woods-Cook K, Menrad A, Siemeister G, Schirner M, Thierauch KH, Schneider MR, Drevs J, Martiny-Baron G, Totzke F (2000) PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res 60: 2178–2189

    CAS  PubMed  Google Scholar 

  14. Li R, Stafford JA (2009) Kinase inhibitor drugs. Wiley, Hoboken

    Book  Google Scholar 

  15. Duncton MA, Piatnitski Chekler EL, Katoch-Rouse R, Sherman D, Wong WC, Smith LM, Kawakami JK, Kiselyov AS, Milligan DL, Balagtas C, Hadari YR, Wang Y, Patel SN, Rolster RL, Tonra JR, Surguladze D, Mitelman S, Kussie P, Bohlen P, Doody JF (2009) Arylphthalazines as potent, and orally bioavailable inhibitors of VEGFR-2. Bioorg Med Chem 17: 731–740. doi:10.1016/j.bmc.2008.11.049

  16. Kiselyov AS, Semenova M, Semenov VV, Piatnitski E (2006) 2-((1H-Azol-1-yl)methyl)-N-arylbenzamides: novel dual inhibitors of VEGFR-1/2 kinases. Bioorg Med Chem Lett 16: 1726–1730. doi:10.1016/j.bmcl.2005.11.105

    Article  CAS  Google Scholar 

  17. Selassie C (2003) History of quantitative structure-activity relationships. In: Burger’s medicinal chemistry and drug discovery, 6th edn. Wiley, New York

  18. Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110: 5959–5967. doi:10.1021/ja00226a005

    Article  CAS  Google Scholar 

  19. Cramer RD, Bunce JD, Patterson DE, Frank IE (1988) Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies. Quant Struct-Act Relat 7: 18–25. doi:10.1002/qsar.19880070105

    Article  Google Scholar 

  20. Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37: 4130–4146. doi:10.1021/jm00050a010

    Article  CAS  Google Scholar 

  21. Neaz M, Pasha F, Muddassar M, Lee SH, Sim T, Hah JM, Cho SJ (2009) Pharmacophore based 3D-QSAR study of VEGFR-2 inhibitors. Med Chem Res 18: 127–142. doi:10.1007/s00044-008-9113-4

    Article  CAS  Google Scholar 

  22. Lu X, Chen Y, You Q (2009) Pharmacophore guided 3D-QSAR CoMFA analysis of amino substituted nitrogen heterocycle ureas as KDR inhibitors. QSAR Comb Sci 28: 1524–1536. doi:10.1002/qsar.200960032

    Article  CAS  Google Scholar 

  23. Zeng H, Zhang H (2010) Combined 3D-QSAR modeling and molecular docking study on 1,4-dihydroindeno[1,2-c]pyrazoles as VEGFR-2 kinase inhibitors. J Mol Graph Model 29: 54–71. doi:10.1016/j.jmgm.2010.04.004

    Article  CAS  Google Scholar 

  24. Wu X, Wu S, Chen WH (2012) Molecular docking and 3D-QSAR study on 4-(1H-indazol-4-yl) phenylamino and aminopyrazolopyridine urea derivatives as kinase insert domain receptor (KDR) inhibitors. J Mol Model 18: 1207–1218. doi:10.1007/s00894-011-1146-9

    Article  CAS  Google Scholar 

  25. Munoz C, Adasme F, Alzate-Morales JH, Vergara-Jaque A, Kniess T, Caballero J (2012) Study of differences in the VEGFR2 inhibitory activities between semaxanib and SU5205 using 3D-QSAR, docking, and molecular dynamics simulations. J Mol Graph Model 32: 39–48. doi:10.1016/j.jmgm.2011.10.005

    Article  CAS  Google Scholar 

  26. Golbraikh A, Tropsha A (2002) Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. J Comput Aided Mol Des 16: 357–369. doi:10.1023/A:1020869118689

    Article  CAS  Google Scholar 

  27. St. Louis M (1999) Sybyl version6.9. Tripos Associates, St. Louis

  28. Myint KZ, Xie XQ (2010) Recent advances in fragment-based QSAR and multi-dimensional QSAR methods. Int J Mol Sci 11: 3846–3866. doi:10.3390/ijms11103846

    Article  CAS  Google Scholar 

  29. Kontoyianni M, McClellan LM, Sokol GS (2004) Evaluation of docking performance: comparative data on docking algorithms. J Med Chem 47: 558–565. doi:10.1021/jm0302997

    Article  CAS  Google Scholar 

  30. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105: 6474–6487. doi:10.1021/jp003919d

    Article  CAS  Google Scholar 

  31. Geladi P (1988) Notes on the history and nature of partial least squares (PLS) modelling. J Chemometr 2: 231–246. doi:10.1002/cem.1180020403

    Article  Google Scholar 

  32. Geladi P, Kowalski BR (1986) Partial least-squares regression: a tutorial. Anal chim Acta 185: 1–17. doi:10.1016/0003-2670(86)80028-9

    Article  CAS  Google Scholar 

  33. Bergmann R, Linusson A, Zamora I (2007) SHOP: scaffold HOPping by GRID-based similarity searches. J Med Chem 50: 2708–2717. doi:10.1021/jm061259g

    Article  CAS  Google Scholar 

  34. Labute P (2009) Protonate3D: assignment of ionization states and hydrogen coordinates to macromolecular structures. Proteins 75: 187–205. doi:10.1002/prot.22234

    Article  CAS  Google Scholar 

  35. Wildman SA, Crippen GM (1999) Prediction of physicochemical parameters by atomic contributions. J Chem Inf Comput Sci 39: 868–873. doi:10.1021/ci990307l

    Article  CAS  Google Scholar 

  36. Ertl P, Rohde B, Selzer P (2000) Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem 43: 3714–3717. doi:10.1021/jm000942e

    Article  CAS  Google Scholar 

  37. Lipkus AH (1999) A proof of the triangle inequality for the Tanimoto distance. J Math Chem 26: 263–265. doi:10.1023/A:1019154432472

    Article  CAS  Google Scholar 

  38. Mpamhanga CP, Chen B, McLay IM, Willett P (2006) Knowledge-based interaction fingerprint scoring: a simple method for improving the effectiveness of fast scoring functions. J Chem Inf Model 46: 686–698. doi:10.1021/ci050420d

    Article  CAS  Google Scholar 

  39. Marcou G, Rognan D (2007) Optimizing fragment and scaffold docking by use of molecular interaction fingerprints. J Chem Inf Model 47: 195–207. doi:10.1021/ci600342e

    Article  CAS  Google Scholar 

  40. Dogra SK (2007) Tanimoto_Coefficient. QSAR World:1–4

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yadong Chen or Tao Lu.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (DOC 2427 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Liu, H., Jiao, Y. et al. De novo design of N-(pyridin-4-ylmethyl)aniline derivatives as KDR inhibitors: 3D-QSAR, molecular fragment replacement, protein-ligand interaction fingerprint, and ADMET prediction. Mol Divers 16, 787–802 (2012). https://doi.org/10.1007/s11030-012-9405-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-012-9405-y

Keywords

Navigation