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Abstract
Adopting climate-smart agricultural practices (CAPs) has the potential to mitigate the 
adverse effects of climate change and directly influence the well-being of households. 
Therefore, this research investigates the impact of CAP adoption intensity on household 
income, net farm income, and income diversity, using the 2020 China Rural Revitalization 
Survey data. We utilize the approach of two-stage residual inclusion (2SRI) to mitigate the 
endogeneity of CAP adoption intensity. The results show that CAP adoption intensity posi-
tively and significantly affects household income, net farm income, and income diversity. 
Heterogeneous analysis indicates that the impacts of CAP adoption intensity on household 
income increase across the selected quantiles, but the impacts on net farm income decrease 
across the same. In addition, CAP adoption intensity significantly improves income diver-
sity only at the 20th quantile. Our findings suggest that enhancing farmers’ CAP adoption 
intensity improves rural household welfare.
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1 Introduction

The interaction and exposure between climate-related hazards (e.g., frequency and inten-
sity of occurrences and trends) and human systems result in climate-related risks (Wu et al. 
2019), resulting in loss of livelihood and food insecurity, particularly in rural areas. Agri-
culture significantly contributes to the climate problem through GHG emissions and is also 
most vulnerable to the effects of climate change (CC). For instance, agriculture generates 
approximately 14% of total greenhouse gas (GHG) emissions (Stetter and Sauer 2022). 
This proportion will likely rise significantly as emissions from other sectors decline due 
to the clean energy transition (World Bank 2021). On the other hand, agriculture is highly 
susceptible to the impacts of CC (Habtemariam et al. 2020). For instance, a degree Celsius 
increase in average temperature would decrease wheat production by 6.0%, rice by 3.2%, 
maize by 7.4%, and soybean by 3.1% (Zhao et al. 2017). According to the Bluebook on 
Climate Change in China 2023, extreme weather events and the “climate risk index” take 
on an increasing trend.1 The North-east China Plain, which stands as one of the most criti-
cal food production regions, has experienced a reduction in average regional precipitation 
levels throughout the crop-growing season of -1.72 mm/year during the last 40 years (Chen 
et al. 2022). Further, the average annual surface temperature increased by 0.23 ◦C every ten 
years since 1951 (Chen et al. 2022; Song et al. 2022). China’s economic losses might dou-
ble between 1.5 and 2.0 °C warming levels, and the population impacted by catastrophic 
floods could continuously rise (Wu et al. 2019). The short- and long-term effects of CC 
would diminish crop yields (Roy et al. 2019; Chaloner et al. 2021), damage livestock out-
put (Wreford and Topp 2020), and challenge sustainable agricultural systems (FAO 2022), 
consequently leading to a rise in the population facing food insecurity (Pörtner et al. 2022).

Climate-smart agricultural practices (CAPs) employ comprehensive practices address-
ing CC and food security, which is critical to establishing a more sustainable and resilient 
agriculture system. Therefore, many studies have explored the factors that promote and 
inhibit farmers’ decisions to adopt CAPs (Arslan et al. 2015; Sardar et al. 2021; Bazzana 
et al. 2022; Gikonyo et al. 2022; Musafiri et al. 2022). These studies have focused on indi-
vidual and household factors (Musafiri et al. 2022), socioeconomic factors (Bazzana et al. 
2022; Gikonyo et al. 2022), institutional factors (Sardar et al. 2021), and topography and 
climate-related factors (Arslan et al. 2015). For example, Zhu et al. (2021) found that com-
pared with ties to retailers, ties to local farmers impeded farmers from actively combating 
CC in China. Sedebo et al. (2022) found that weather information significantly influences 
smallholder households’ decisions to adopt CAPs in southern Ethiopia. Zhou et al. (2023) 
found that agricultural cooperatives are key to improving CAP adoption in rural China.

An increasing body of research has examined the impacts of CAPs on the three fun-
damental aspects (productivity, adaptation, and mitigation) of the climate-smart agricul-
ture (CSA) systems (Lopez-Ridaura et al. 2018; Branca et al. 2021; Sedebo et al. 2022). 
However, most of these studies only consider one dimension of the implications of the 
CSA system, such as household income, agricultural outputs, and greenhouse emissions 
(Amadu et al. 2020; Bazzana et al. 2022; Israel et al. 2020). For example, Amadu et al. 
(2020) found that the maize yield of CAP adopters, who participated in the Agriculture for 
Life Advancement project in southern Malawi, is 53% higher than that of non-adopters. 

1 China Meteorological New Press. (2023). Blue Book on Climate Change of China unveiled. https:// www. 
cma. gov. cn/ en2014/ clima te/ Clima teUpd ate/ 202307/ t2023 0719_ 56570 00. html

https://www.cma.gov.cn/en2014/climate/ClimateUpdate/202307/t20230719_5657000.html
https://www.cma.gov.cn/en2014/climate/ClimateUpdate/202307/t20230719_5657000.html
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Branca et al. (2021) revealed that transforming from conventional to climate-smart farm-
ing significantly enhances households’ economic returns in Southern Africa. Bazzana et al. 
(2022) found that CAPs (water and soil management action and conservation practices) can 
greatly increase farmers’ food security in rural Ethiopia, particularly for those with strong 
financial resources, extensive social networks, and entry to well-connected food markets.

Although it is widely acknowledged that farmers always adopt more than one type 
of CAP (Zakaria et al. 2020), most of the previous studies have used CAP adoption as a 
dummy variable in their estimations (Arslan et al. 2015). Only a few studies consider CAP 
adoption as an ordered or continuous variable when investigating its intensity on household 
welfare (Israel et  al. 2020; Sardar et  al. 2021). For example, taking CAPs as a continu-
ous variable, Israel et al. (2020) found that CAP adoption (irrigation and water collection, 
soil conservation practices, and livelihood diversification) significantly reduces GHG emis-
sions by 62.3% in Northern Ghana. Sardar et al. (2021) divided CAPs into different lev-
els and found that the crop yields received by Pakistani farmers who adopted a full set of 
CAPs (water and nutrient management, adjusting planting dates, increasing crop varieties, 
and zero or minimum tillage) are 32% higher for cotton and 44% higher for wheat than 
non-adopters.

Despite the rich findings in the existing studies, there are important research gaps. First, 
while a growing body of research has explored the social, economic, and ecological effects 
of CAP adoption, little is known about whether and to what extent CAP adoption intensity 
affects income diversity. As a risk management strategy, income diversification can effec-
tively address external shocks in production. Therefore, it is important to understand the 
relationship between CAP adoption intensity and income diversity. Second, previous stud-
ies have assumed that CAP adoption intensity has a homogeneous impact on household 
welfare. Nevertheless, CAP adoption intensity may affect rural households in the upper and 
lower levels of the distribution of household welfare indicators differently. This is not sur-
prising because farmers are endowed with different personal characteristics (e.g., education 
and innate ability) and resource endowments (land and machinery). However, to the best of 
our knowledge, the potential heterogeneous effects of CAP adoption intensity on household 
welfare remain unexamined.

This study, therefore, examines the effects of CAP adoption intensity on household eco-
nomic welfare. Our contributions are threefold. First, we consider seven types of CAPs (e.g., 
water-saving irrigation, organic fertilizer, farmyard manure, zero tillage, fallow cropping, 
crop rotation, and crop straw mulch) to capture the CAP adoption intensity. In particular, 
we categorized the farmers’ CAP adoption intensity into four ordinal groups according to 
the number of CAPs they adopted. Second, this study considers multiple indicators, includ-
ing household income, net farm income, and income diversity, to capture household eco-
nomic welfare. Most studies only focus on specific household economic indicators, such as 
crop income and per capita consumption expenditure (Fentie and Beyene 2019; Sardar et al. 
2021). Measuring household welfare from multiple dimensions provides a comprehensive 
understanding of the effects of CAP adoption intensity.

Third, we utilize a two-stage residual inclusion (2SRI) model to mitigate the endogene-
ity concern linked to CAP adoption intensity. Farmers self-decide whether or not to adopt 
CAPs. Both observable factors (e.g., age, gender, education, and family size) and unob-
servable factors (e.g., inner motivations and native ability) could affect their CAP adop-
tion decisions. The fact leads to self-selection and omitted variable issues. Previous studies 
mainly employ the propensity score matching (PSM) model (Andati et al. 2023; Fentie & 
Beyene 2019) and inverse-probability-weighted regression adjustment (IPWRA) estimator 
(Israel et  al. 2020) to mitigate the concerns related to selection bias. However, they can 
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only control for the observed selection bias. Several studies used the endogenous switching 
regression model (Amadu et al. 2020; Akter et al. 2023), but it cannot solve the endogene-
ity issue of ordered explanatory variables (i.e., CAP adoption intensity). The 2SRI model 
can address the endogeneity of CAP adoption intensity by controlling for both observable 
and unobservable heterogeneities, thus producing more robust estimates. Additionally, we 
employ an instrumental-variable-based quantile regression (IVQR) model to explore the 
heterogeneous effects of CAP adoption intensity on household economic welfare. The find-
ings of this study enrich the literature examining the effects of CAP adoption intensity on 
household welfare.

The subsequent sections of this paper are structured as follows: Section 2 offers a lit-
erature review, followed by an explanation of the estimation methodologies in Section 3. 
Section 4 introduces the data and provides descriptive statistics, while Section 5 presents 
and discusses empirical findings. The concluding section wraps up the paper and proposes 
policy implications.

2  Literature review

In the face of CC, farmers, particularly those in developing countries, have changed their 
traditional agricultural practices and adopted CAPs to reduce the adverse impact of chang-
ing climatic conditions (Nyasimi et al. 2017). These CAPs are diversified and need to be 
tailored based on different locations and conditions (Anugwa et al. 2022; Das et al. 2022; 
Morkunas and Volkov 2023). Previous studies mainly focused on the specific CAPs and 
taking CAP adoption as the dummy variable to explore its determinants and implications 
(Arslan et al. 2015; Bazzana et al. 2022; Israel et al. 2020; Musafiri et al. 2022). However, 
farmers are more inclined to implement a mix of CAPs rather than solely relying on a sin-
gle CAP to tackle the obstacles presented by the impacts of CC (Zhou et al. 2023). Further, 
with the emphasis on the complementary effects of different CAPs (Harvey et  al. 2014; 
Zheng et  al. 2019; Antwi-Agyei et  al. 2023), several research endeavors focused on the 
CAP adoption intensity, regarding it as the continuous or count variable based on the num-
bers of CAPs adopted by farmers (Sardar et al. 2021; Zakaria et al. 2020). In this study, we 
follow these studies to divide CAP adoption intensity into different levels and explore how 
CAP adoption intensity affects households’ economic welfare, providing suggestions for 
CAP implementation in rural areas.

Different CAPs bring about heterogeneous economic, social, and environmental effects 
on the three fundamental elements of the CSA system (Zakaria et al. 2020; Sardar et al. 
2021; Akter et al. 2023). Adopting CAPs is an efficient pathway to ensure food security, 
which can be found in the positive effects of CAPs on households’ agricultural productiv-
ity (Lopez-Ridaura et al. 2018; Sardar et al. 2021), food availability (Bazzana et al. 2022), 
and food consumption (Hasan et al. 2018). Further, CAP adoption significantly improves 
households’ adaptability and resilience under various climatic conditions. For example, the 
prevalent agricultural adaptive strategies, such as diversifying crops, rescheduling farm-
ing, and changing crop structure are found positively influence crop yields (Arslan et al. 
2015; Sedebo et al. 2022; Sargani et al. 2023), poverty alleviation (Habtewold 2021), crop 
income (Ahmad and Afzal 2020), and GHG emission mitigation (Zheng et al. 2019; Wang 
et  al. 2020). CAP adoption is also imperative to improve gender equality in agriculture 
regarding ownership rights (Tsige et  al. 2020) and knowledge and capacity (Hariharan 
et  al. 2020). In this study, we focus on two pillars of the CSA system: productivity and 
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adaptability. We use household income and net farm income as the proxy variable of pro-
ductivity and use income diversity to indicate farmers’ adaptability.

Therefore, to explore the economic impacts of CAP adoption, this study classifies CAP 
adoption behavior into four intensity levels based on the amount/number of CAP adoption 
behavior of the farmers and investigates its impacts on three dimensions of households’ 
economic welfare. This comprehensive perspective helps us understand the potential syner-
gistic effects of CAPs on household economic welfare.

3  Estimation strategies

3.1  Endogeneity issue and model selection

The adoption of CAPs is not random. Farmers self-determine whether to adopt CAPs and 
how many CAPs they should adopt. The intensity of CAP adoption depends on observ-
able factors (e.g., age, gender, health status, and education) and unobservable factors (e.g., 
farmers’ innate ability, risk preference, and motivation). This process of self-selection ren-
ders the intensity of CAP adoption endogenous. This endogeneity should be addressed to 
produce coherent estimations of the consequences linked to CAP adoption intensity on out-
come variables. Both the two-stage residual inclusion (2SRI) approach and the two-stage 
prediction substitution (2SPS) approach can effectively tackle the issue of endogeneity 
associated with ordered explanatory variables (i.e., CAP adoption intensity in this study). 
Compared with the 2SPS approach, the 2SRI approach generated more accurate and reli-
able estimates (Terza et al. 2008; Basu et al. 2018; Zheng et al. 2023). Therefore, we adopt 
the 2SRI approach as the estimation strategy in this study.

3.2  The 2SRI approach

The 2SRI approach involves the estimation of two equations. The first equation investigates 
the factors influencing CAP adoption intensity. In the first equation, it is essential to incor-
porate at least one valid instrumental variable. Given that CAP adoption intensity is an 
ordered variable, we estimate the following ordered probit model in the first stage:

where A∗
i
 represents an underlying or latent variable depicting the CAP adoption inten-

sity of household i ; it is indicated by an observable categorical variable Ai . The latter is 
influenced by the unidentified cutoffs C1 , C2 , ⋯ , CK−1 , which fulfills the requirement that 
C1 < C2 < ⋯ < CK−1 . Xi denotes a set of control variables. IVi refers to an instrumental 
variable (IV). �i and �i are parameters to be estimated, and �i is an error term.

An appropriate instrumental variable is a prerequisite for the 2SRI model to gen-
erate consistent estimates. Following previous research (Sang et  al. 2023), we con-
struct an IV based on the peer effect theory. Specifically, we use the average level of 
CAPs adopted by peers in the same village as the IV. Theoretically, the level of CAPs 
adopted by peers in the same village will motivate farmers to adopt more practices, 

(1)A∗

i
= 𝛼iXi + 𝛽iIVi + 𝜀i,Ai =

⎧
⎪
⎨
⎪
⎩

1 if A∗
i
≤ C1

2 if C1 < A∗
i
≤ C2

⋯

K if CK−1 ≤ A∗
i
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but will not directly affect their economic welfare. We employed Pearson correlation 
coefficient analysis to statistically verify the validity of the employed IV (see Table 6 
in the Appendix). The test results show that the correlation coefficient between the 
instrumental variable and CAP adoption intensity is 0.357, which demonstrates sta-
tistical significance at the 1% significance level. The results in Table 6 also show that 
the IV and outcome variables are not statistically significant. Hence, the instrumental 
variable (IV) fulfills the criterion of exhibiting correlation with the endogenous vari-
able and non-correlation with the outcome variables, affirming the appropriateness of 
our chosen IV.

The second equation examines the effect of CAP adoption intensity on a vector of 
outcome variables. The residual term forecasted through estimating the first equation is 
incorporated into the second equation as a regressor to mitigate unobservable selection 
bias. Specifically, the second equation of the 2SRI approach is specified as follows:

where YJ
i
 refer to J dependent variables, including household income ( J = 1 ), net farm 

income ( J = 2 ), and income diversity ( J = 3 ). Ai and Xi are as defined earlier. Residuali is 
the residual term predicted after estimating Eq. (1). �i , �i and �i represent parameters that 
need to be estimated. �i represents the error term.

3.3  The IVQR model

The estimation of Eq. (2) can provide homogeneous effects of CAP adoption intensity 
on outcome variables. Besides that, it is also interesting to understand how CAP adop-
tion intensity influences the outcome variables at different distributions. For example, 
CAP adoption intensity may influence farming households with low and high house-
hold incomes differently. Therefore, we investigate the heterogeneous effects of CAP 
adoption intensity to enhance our understanding.

Some studies have utilized the conditional quantile regression (CQR) model (Ogutu 
and Qaim 2019; Zhang et  al. 2020) and unconditional quantile regression (UQR) 
model (Khanal et al. 2018; Tran and Vu 2020) when investigating the heterogeneous 
effects of a program or intervention. Both of them consider all explanatory variables 
as exogenous. As discussed earlier, CAP adoption intensity is an endogenous varia-
ble. Therefore, we utilize the instrumental-variable-based quantile regression (IVQR) 
model to estimate the heterogeneous impacts of CAP adoption intensity. Unlike the 
CQR and UQR models, the IVQR model has the advantage of addressing the endoge-
nous issue associated with the CAP adoption intensity variable. Following Chernozhu-
kov and Hansen (2008), we estimate the � th quantile of the outcome variable, Q� (Yi) , as 
a linear equation involving the endogenous variable ( Ai ), a set of exogenous variables 
( Xi ) and an error term ( �i ). It can be specified as follows:

where Q� (Yi) is independent of IVi , �� and �� are parameters that need to be estimated at 
the quantile � . We implement the estimator using the method of Machado and Santos Silva 
(2019).

(2)YJ
i
= �iAi + �iXi + �iResiduali + �i, J = 1, 2, 3

(3)Q� (Yi) = ��Ai + ��Xi + �i
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4  Data and key variables

4.1  Data

This study employed data from the 2020 China Rural Revitalization Survey (CRRS), carried 
out by the Rural Development Institute at the Chinese Academy of Social Sciences. It contains 
rich information on agricultural production (e.g., CAP adoption), demographic factors (e.g., 
age, gender, education, health status, household size, and dependency ratio), and socioeco-
nomic factors (e.g., income, farm size, and asset ownership). The 2020 CRRS utilized a multi-
stage probability proportional to size (PPS) sampling technique to randomly select 3,833 
households from 10 provinces in eastern, central, and western China. Since we are interested 
in the CAP adoption behavior of farmers growing grain crops such as maize, wheat, and rice, 
we dropped the samples of farmers growing other crops. We also deleted samples with miss-
ing information in dependent and independent variables. Finally, we obtained a sample size of 
1,785 households.

In this study, we select three dependent variables to capture economic welfare outcomes: 
household income, net farm income, and income diversity. Household income refers to the 
collective earnings generated through agricultural activity, business investment, wages, prop-
erty, subsidies, and remittances. Net farm income designates the difference between gross 
revenue derived from agricultural, forestry, animal husbandry, and fishery activities and pro-
duction costs. The income diversity is quantified using the Simpson index, and we have con-
sidered eight types of income sources (i.e., agriculture, forestry, animal husbandry, fishery, 
business, salary, property, and transfer income).

4.2  Key variables

4.2.1  Dependent variables

Economic welfare, denoting the overall prosperity and living standards within an economy, 
remains a multifaceted concept (Fang 2011). Despite the various factors contributing to its 
measurement, there is still limited consensus on the definition of households’ economic wel-
fare in existing literature (Tankari 2017). In this study, we strategically chose three depend-
ent variables to capture economic welfare outcomes: household income, net farm income, 
and income diversity. Household income, encompassing earnings from agricultural pursuits, 
business investments, wages, property, subsidies, and remittances, is a central and widely 
recognized measure of a household’s economic well-being (Shahzad and Abdulai 2021). Net 
farm income is of great significance, representing the disparity between gross revenue from 
agricultural, forestry, animal husbandry, and fishery activities and production costs. Its role 
in directly measuring a household’s financial success in agricultural endeavors has garnered 
broad acknowledgement.

Income diversity plays a key role in increasing household resilience and reducing eco-
nomic risk (Li et al. 2020). In this study, the income diversity is quantified using the Simpson 
index and we have considered eight types of income sources (i.e., agriculture, forestry, animal 
husbandry, fishery, business, salary, property, and transfer income). Following previous stud-
ies (Vatsa et al. 2022), the Simpson index is measured as follows:

(4)Simpsoni = 1 −
∑m

s=1
P2

i,s
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where Simpsoni refers to the Simpson index associated with household i . m is the total 
number of income sources for household i . Pi,s refers to the proportion of income from 
sources s in total household income. The value of Simpsoni is always between zero and 
one. If a household has only one source of income (e.g., agricultural), the value of Simpsoni 
will be equal to zero. As the number of income sources increases, the value of Simpsoni 
approaches one. Higher values of the Simpson index mean that households diversify their 
income using various sources.

4.2.2  Explanatory variables

The key explanatory variable is CAP adoption intensity. We choose seven practices reflect-
ing CAP adoption intensity based on the grain crop production practices in China and 
existing literature on CAPs (Chen et al. 2022; Akter et al. 2023; Sattar et al. 2023), which 
includes: (1) water-saving irrigation, (2) organic fertilizer, (3) farmyard manure, (4) zero 
tillage, (5) fallow cropping, (6) crop rotation, (7) crop straw mulch.2 Specifically, we cat-
egorize the farmers’ CAP adoption intensity into four ordinal groups according to the num-
ber of CAPs they adopted: i.e., Adoption Level-0 (no CAPs have been adopted), Level-1 
(Adoption of only one CAP), Level-2 (Adoption of two to three CAPs), and Level-3 (Adop-
tion four to five CAPs). Each level represents the cumulative number of distinct practices 
adopted by a farmer. For example, a farmer classified under Level-1 means adopting any 
one of the seven specified practices, not limited to a specific one. Similarly, a farmer clas-
sified under Level-2 indicates choosing any combination of two to three practices from the 
set of seven. Our rationale for employing this ordinal coding approach rather than a mul-
tivariate analysis lies in our interest in understanding the cumulative impact of adopting 
a certain number of practices on specific outcomes. By categorizing farmers into ordinal 
levels, we aim to explore the relationship between the intensity of CAP adoption and out-
comes in a structured and interpretable manner.

The control variables are selected based on previous studies on CAP adoption (Khan 
et al. 2022; Belay et al. 2023) and economic welfare (Ma et al. 2020; Ahmad and Jabeen 
2023). These variables capture individual characteristics (household head’s age, gender, 
education, and health status), household characteristics (household size, dependency ratio, 
farm size, and asset ownership), and location characteristics (eastern, central, and western 
China).

5  Results and discussion

5.1  Descriptive results

Table  1 presents the definitions and rates of adoption for each of the seven CAPs. The 
most popular practices adopted by farmers are crop straw mulch and organic fertilizer, 
accounting for 49% and 48%, respectively. The practices least popular among farmers are 
water-saving irrigation, zero tillage, and fallow cropping, representing 6%, 8%, and 8%, 

2 In this study, organic fertilizer refers specifically to commercial organic fertilizer, and farmyard manure 
refers to composted crop residues and animal manure.
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respectively. Furthermore, around 24% and 21% of farmers have embraced crop rotation 
and farmyard manure, respectively.

We further present proportional distributions of CAP adopt intensity in Fig.  1. Most 
farmers adopted two to three practices (level-2) with a percentage of 50.36%, followed by 
farmers adopting one practice (level-1) with 36.70%. Only 10.42% of the farmers did not 
adopt any practice (level-0). In addition, 2.52% of the farmers adopted 4 to 5 practices 
(level-3).

Table 2 provides the definitions and summary statistics of the variables. The average per 
capita household income and per capita net farm income are 16.84 thousand Yuan and 7.03 
thousand Yuan,3 respectively. The average score for income diversity, as measured by the 
Simpson Index, is 0.36. The mean value of CAP adoption intensity is 1.45, indicating that 
the majority of households have a relatively low level of CAP adoption. On average, the 
household heads in the sample are 55 years old, and most (96%) are male. The average year 
of education is around eight years, and the mean health status is 4.22. There are about four 
persons in the sampled households on average. The mean dependency ratio is 0.26. The 
average size of farm size is 28.91 mu. Appropriately, 40% of households own agricultural 
machines. The proportions of farmers growing wheat, maize, and rice are 20%, 56%, and 
24%, respectively. The percentages of farmers located in the eastern, central, and western 
regions are 18%, 35%, and 47%, respectively.

Table 1  Definitions and descriptive statistics of climate-smart agricultural practices

Variables Definitions Mean (S.D.)

Water-saving irrigation 1 if water-saving irrigation technology is adopted, 0 
otherwise

0.06 (0.24)

Organic fertilizer 1 if organic fertilizer is adopted, 0 otherwise 0.48 (0.50)
Farmyard manure 1 if farmyard manure is adopted, 0 otherwise 0.21 (0.41)
Zero tillage 1 if zero tillage is adopted, 0 otherwise 0.08 (0.27)
Fallow cropping 1 if fallow cropping is adopted, 0 otherwise 0.08 (0.27)
Crop rotation 1 if crop rotation is adopted, 0 otherwise 0.24 (0.43)
Crop straw mulch 1 if crop straw mulch is adopted, 0 otherwise 0.49 (0.50)

Fig. 1  Proportional distributions 
of adoptation intensity

10.42

36.70

50.36

2.52

0 20 40 60 80 100

Adoption Level-0

Adoption Level-1

Adoption Level-2

Adoption Level-3

Farmers (%)

3 On average, the net farm income per unit of land is 2.64 thousand Yuan.
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5.2  Determinants of CAP adoption intensity

Table 3 shows the effects of different factors on CAP adoption intensity estimated from 
Eq. (1). As previously mentioned, the ordered probit model was employed to estimate the 
CAP adoption intensity equation. Because the coefficient estimates of the ordered probit 
model are not straightforward in interpretations, we compute and present the results of the 
marginal effects estimates to facilitate our understanding.

The findings indicate that education, geographical location, and the average level 
of CAPs adopted by peers in the same village exert significant and positive marginal 
effects on CAP adoption intensity. Specifically, a one-year increase in the education 
level of the household head raises the probability of attaining CAP adoption intensity 
levels 2 and 3 by 0.7% and 0.1%, respectively. The findings indicate that the household 
heads with higher education are more likely to adopt more CAPs. The results are con-
sistent with the findings of Sardar et  al. (2021). Higher levels of education improve 

Table 2  Variable definitions and summary statistics

S.D. refers to the standard deviation; a Yuan is a Chinese currency (1 USD = 6.90 Yuan in 2019); b 1 
mu = 1/15 ha

Variables Definitions Mean (S.D.)

Dependent variables
  Household income Total household income (1,000 Yuan/capita)a 16.84 (18.68)
  Net farm income The difference between gross revenue received from agricul-

tural, forestry, animal husbandry, and fishery activities and 
production costs (1,000 Yuan/capita)

7.03 (15.06)

  Income diversity Measured by Simpson index 0.36 (0.21)
  Key explanatory variable
  CAP adoption intensity 0 = no adoption; 1 = 1 practices; 2 = 2–3 practices; 3 = 4–5 

practices
1.45 (0.71)

Independent variables
  Age Age of household head (HH) (years) 55.10 (10.60)
  Gender 1 if HH is male, 0 otherwise 0.96 (0.21)
  Education Education level of HH (years) 7.78 (3.09)
  Health status Self-reported health status: from 1 = very unhealthy to 

5 = very healthy
3.55 (1.03)

  Household size Number of household members (persons) 4.22 (1.51)
  Dependency ratio Ratio of the number of residents aged less than 14 years and 

more than 64 years to household size
0.26 (0.26)

  Farm size Total farm size (mu)b 28.91 (87.78)
  Asset ownership 1 if household owns agricultural machines, 0 otherwise 0.40 (0.49)
  Wheat 1 if the main crop grown is wheat, 0 otherwise 0.20 (0.40)
  Maize 1 if the main crop grown is maize, 0 otherwise 0.56 (0.50)
  Rice 1 if the main crop grown is rice, 0 otherwise 0.24 (0.43)
  Eastern 1 if household is located in eastern region, 0 otherwise 0.18 (0.39)
  Central 1 if household is located in central region, 0 otherwise 0.35 (0.48)
  Western 1 if household is located in western region, 0 otherwise 0.47 (0.50)
  IV Average level of CAPs adopted by peers in the same village 1.45 (0.42)

Observations 1,785
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farmers’ understanding of the benefits associated with CAPs, motivating them to adopt 
them. Haq et al. (2021) also found that better-educated farmers are more aware of the 
impacts of CC, so they take more CAPs to reduce production losses.

The results also show that relative to their counterparts residing in the western 
region of China (reference region), rural households residing in the Central region have 
a 6.1% and 1.1% higher likelihood of having CAP adoption intensity at level 2 and 
level 3, respectively. The main reason may be attributed to differences in agricultural 
structure. Agriculture in the central region primarily revolves around grain produc-
tion, while the western region emphasizes poultry and livestock production. Finally, 
the coefficient of the IV representing the average level of CAPs adopted by peers in the 
same village is positive and significant, highlighting the importance of social interac-
tions in the adoption of innovative technology. This finding is consistent with existing 
findings (Barnes et al. 2019; Pagliacci et al. 2020).

5.3  Homogeneous impacts of CAP adoption intensity

Table  4 presents the results regarding the effects of CAP adoption intensity on eco-
nomic outcomes estimated from Eq.  (2). The coefficients of residuals predicted from 
the first stage of the 2SRI model are negative and statistically significant in columns 2 
and 3. These results indicate the potential presence of endogeneity issues arising from 
unobserved factors, which supports the utilization of the 2SRI model (Ma and Zhu 
2020).

Table 4  Second-stage estimation: impact of CAP adoption intensity on household income, net farm 
income, and income diversity

*** p < 0.01, **p < 0.05, *p < 0.1; Robust standard errors in parenthesis; The reference crop is rice; The ref-
erence region is western region; (c) Continuous variable (d) Dummy variable

Variables Household income Net farm income Income diversity

CAP adoption intensity 4.118 (2.014)** 4.297 (1.573)*** 0.042 (0.023)*
Age (c) -0.150 (0.042)*** -0.152 (0.035)*** 0.002 (0.001)***
Gender (d) -2.274 (2.110) 0.279 (1.912) 0.027 (0.024)
Education (c) 0.409 (0.152)*** -0.127 (0.108) -0.001 (0.002)
Health status (c) 1.089 (0.377)*** 0.286 (0.300) -0.010 (0.005)**
Household size (c) -0.932 (0.269)*** -0.989 (0.226)*** -0.009 (0.003)***
Dependency ratio (c) -6.994 (1.451)*** -2.986 (1.132)*** 0.064 (0.020)***
Farm size (c) 0.055 (0.019)*** 0.039 (0.017)** 0.000 (0.000)
Aasset ownership (d) 0.075 (0.995) 1.971 (0.827)** 0.035 (0.011)***
Wheat (ref rice) (d) 1.155 (1.284) 2.225 (1.068)** 0.025 (0.015)*
Maize (ref rice) (d) 0.418 (1.137) 1.020 (0.962) 0.031 (0.013)**
Eastern (ref western) (d) -1.815 (1.182) -3.837 (0.833)*** -0.088 (0.015)***
Central (ref western) (d) -3.778 (1.107)*** -2.216 (0.914)** -0.037 (0.013)***
Residual -2.924 (1.613)* -2.627 (1.330)** -0.026 (0.018)
Constant 19.598 (4.157)*** 12.352 (3.530)*** 0.211 (0.052)***
F test 11.56, p > F=0.00 11.10, p > F=0.00 8.16, p > F=0.00
Observations 1,785 1,785 1,785
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5.3.1  Impacts on household income

The results in column 2 of Table 4 reveal that the coefficient of the CAP adoption intensity 
variable is positive and statistically significant, indicating that enhancing CAP adoption 
is linked to a rise in household income. This finding is consistent with previous studies 
(Makate et al. 2019; Jamil et al. 2021). For example, Makate et al. (2019) demonstrated 
that adopting the complete CSA package significantly influenced household income more 
than other packages.

Our estimates show that household income is also affected by other control variables. 
For example, the age variable exerts a negative and statistically significant impact on 
household income. This is because elderly individuals are reluctant to learn new techniques 
and stick to their production habits (Huang et  al. 2020). The coefficient associated with 
the health status variable is positively significant, implying that farmers in good health 
are more inclined to achieve higher income levels. Better health conditions help farmers 
engage in non-agricultural employment, contributing to higher household incomes (Ma 
et al. 2022).

5.3.2  Impacts on net farm income

The results in column 3 of Table  4 indicate that CAP adoption intensity significantly 
increases net farm income. Implementing CAP can effectively mitigate the negative conse-
quences of CC, enhance resilience, and ultimately lead to improved productivity, resulting 
in higher net farm income (Azadi et  al. 2021). The findings are similar to the results of 
previous studies (Khan et al. 2021; Pangapanga-Phiri and Mungatana 2021). For example, 
Khan et al. (2021) found that farmers who adopted multiple CAPs had higher profits than 
those who adopted few.

The results show that other exogenous factors also influence net farm income. For 
example, the variable of farm size exerts a positive and statistically significant impact on 
net farm income. Larger farm sizes may provide a chance to enjoy economies of scale in 
agricultural production, leading to higher farm income. This finding is consistent with pre-
vious studies such as Noack and Larsen (2019) for Uganda and Hussain et al. (2020) for 
Pakistan. The coefficient of asset ownership is positive and statistically significant, indicat-
ing that agricultural machines can help farmers lower production costs and increase yields 
and net returns (Zhou and Ma 2022).

5.3.3  Impacts on income diversity

Column 4 of Table 4 shows the impact of CAP adoption intensity on income diversity. As 
discussed earlier, we employ the Simpson Index to measure income diversity. The results 
reveal that increasing farmers’ adoption of CAPs promotes income diversity. CAP adoption 
saves farm labor and time, thus facilitating farmers to reallocate the saved time to engage in 
non-farm activities (Ngwira et al. 2013). In addition, the government also provides subsi-
dies to farmers who adopt CAPs, thereby increasing their transfer income (Xie et al. 2022).

The results also offer valuable insights into the influence of control variables on 
income diversity. For example, the health status variable significantly and negatively 
affects income diversity. The possible reason is that farmers in good health tend to 
concentrate on non-agricultural employment to optimize their earnings, potentially 
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diminishing income diversification. The dependency ratio variable affects income 
diversity positively and significantly, indicating that rural households with elevated 
dependency ratios lean towards diversifying sources of income, thereby alleviating the 
burdens of life.

5.4  Heterogeneous impacts of CAP adoption intensity

The results for the IVQR estimates on the impacts of CAP adoption intensity on the 
economic outcomes are presented in Table 5. The results show that the impacts of CAP 
adoption intensity on household income are uniformly positive across the selected 
quantiles, except at the 20th quantile. The magnitudes of the coefficients increase 
monotonically per quantile. The findings suggest that farmers with higher household 
incomes tend to benefit more from CAP adoption than their counterparts with lower 
household incomes. This may be because farmers with higher household incomes tend 
to have more knowledge, skills, and productive resources. They are more likely to 
adopt the best package to maximize returns.

The results also show that the CAP adoption intensity exerts a positive and statisti-
cally significant influence on net farm income across the quantiles that have been cho-
sen for analysis. The magnitudes of the coefficients decrease consistently in a monoto-
nous manner from the lowest 20th quantile to the highest 80th quantile. Our results 
support the finding of Liang et  al. (2021), who noted that rice farmers with limited 
farm incomes tend to experience greater benefits from CAP adoption than their coun-
terparts with high farm incomes. At the lowest 20th quantile, CAP adoption intensity 
demonstrates a significant and positive impact on household diversity, but its impact is 
not significant at the higher quantiles.

Table 5  Impact of CAP adoption intensity on household income, net farm income, and income diversity: 
IVQR model estimation

Household income and net farm income are log-transformed. ***p < 0.01, **p < 0.05, *p < 0.1; Standard 
errors in parenthesis

IVQR model estimation

Variables 20th 40th 60th 80th

Dependent variable = household income
CAP adoption intensity 0.136 (0.165) 0.211 (0.122)* 0.265 (0.104)** 0.325 (0.103)***
Control variables Yes Yes Yes Yes
Observations 1,785 1,785 1,785 1,785

Dependent variable = net farm income
CAP adoption intensity 1.217 (0.521)** 0.978 (0.293)*** 0.854 (0.205)*** 0.733 (0.184)***
Control variables Yes Yes Yes Yes
Observations 1,785 1,785 1,785 1,785

Dependent variable = income diversity
CAP adoption intensity 0.058 (0.035)* 0.042 (0.027) 0.028 (0.024) 0.018 (0.026)
Control variables Yes Yes Yes Yes
Observations 1,785 1,785 1,785 1,785



Mitig Adapt Strateg Glob Change (2024) 29:9 

1 3

Page 15 of 21 9

5.5  Additional estimations

To verify the robustness of our main results, we employed the Endogenous treatment 
regression (ETR) model to examine the influence of CAP adoption. Like the 2SRI model, 
the ETR model can account for the selection bias issues arising from observable and unob-
servable factors. Here, CAP adoption is measured as a dummy variable, which equals 1 if 
a farmer adopts any of those seven selected CAPs and 0 otherwise. Table 7 in the Appen-
dix presents the results that estimate the impact of CAP adoption on household income, 
net farm income, and income diversity. The significance of the correlation coefficient ��� 
indicates the existence of selection bias stemming from unobserved variables, affirming the 
suitability of employing the ETR model.

The results presented in Table 7 in the Appendix show that CAP adoption is positively 
associated with household income, net farm income, and income diversity, suggesting that 
CAP adoption exerts a positive and significant impact on household economic benefits 
(Imran et al. 2019; Issahaku and Abdulai 2020). The findings are consistent with the out-
comes derived from our estimation of CAP adoption intensity, as illustrated in Table  4, 
thereby affirming the robustness of our estimates.

6  Conclusions and policy implications

Although previous literature has examined the role of CAP adoption, little is known about 
the multiple economic impacts of CAP adoption intensity. This study comprehensively 
examines the economic impacts of CAP adoption intensity, focusing on household income, 
net farm income, and income diversity. To address the endogeneity issues, we utilized the 
2SRI model to estimate household data for 2020 CRRS. Besides, the IVQR model was uti-
lized to capture the heterogeneous impacts of CAP adoption intensity.

The results obtained from the first stage estimation of the 2SRI model indicate that 
the education level of the household head and geographical location determine farmers’ 
adoption intensity of CAPs. The results from the second stage of the 2SRI model reveal 
that higher levels of CAP adoption are positively and significantly associated with higher 
household income, net farm income, and income diversity. The results from the IVQR 
model show that CAP adoption intensity is associated with economic welfare, but the 
effects are not homogenous. The impacts of CAP adoption intensity are more significant 
for the higher quantile of the household income distribution and the lower quantile of the 
net farm income distribution. Low-income diversity farmers tend to benefit more from 
CAP adoption intensity than their high-income diversity counterparts.

Our findings have important policy implications for promoting CAP adoption and 
improving farmers’ household welfare. First, the positive effects of CAP adoption intensity 
on household economic welfare underscores the pressing need to incentivize farmers to 
incorporate CAPs more extensively. To bolster the adoption rate, particularly for practices 
with currently lower adoption rates, such as water-saving irrigation and crop rotation, poli-
cymakers should pursue a multifaceted approach. This approach involves identifying the 
pivotal drivers that can encourage the widespread adoption of CAPs. To this end, strategies 
such as offering financial incentives, crafting well-supported voluntary schemes, delivering 
robust training programs, and facilitating the dissemination of relevant informational tools 
should be considered. Achieving higher adoption rates requires a comprehensive approach 
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that synergistically combines economic, educational, and motivational factors. This inte-
grated strategy fosters a favorable environment for farmers to effortlessly incorporate 
CAPs into their practices, ultimately boosting their economic prosperity and operational 
sustainability.

Second, the evident link between education and the intensity of CAP adoption empha-
sizes the critical need for targeted interventions designed to assist farmers with limited 
educational backgrounds. To enhance ‘farmers’ ability to withstand climate variability 
by widely adopting CAPs’, it’s imperative to ensure that farmers comprehend the inherent 
value of these practices. As such, offering comprehensive technical training with CAPs 
becomes a pivotal method to foster increased adoption rates among farmers.

Third, it is essential to consider regional disparities during the policy formulation pro-
cess. To this end, we recommend conducting in-depth research to elucidate the specific 
hurdles farmers in the western region encounter when adopting CAPs. This proactive step 
will provide valuable insights that can guide the development of policies tailored to the 
unique circumstances of this region. Policymakers can craft strategies by understanding the 
distinct challenges and opportunities in the western region, resulting in more targeted and 
impactful initiatives.

Appendix

67

Table 6  Validity tests for the 
instrumental variables (Pearson 
correlation coefficient analysis)

*** p < 0.01

Variables Correlation coef-
ficients

p-value

CAP adoption intensity 0.357*** 0.000
Household income 0.023 0.338
Farm income 0.024 0.309
Income diversity 0.011 0.658
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