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Abstract
Páramo peatlands are a regional reservoir of biodiversity and ecosystem services, accumu-
lating large amounts of carbon and buffering water flows. Despite their importance, they 
have a long history of use and impacts including drainage for agriculture and grazing, and 
water withdrawal for human uses. Here we present a preliminary assessment of the con-
servation status of páramo peatlands in Ecuador and, using a case study, discuss peatland 
restoration as a tool for mitigation and adaptation to the impacts of current climate change. 
Through a simple index assessing the cumulative presence of signs of human activities on 
163 peatland sites, we found that the level of impact was higher for peatlands located in the 
Western branch of the cordillera, whereas current human population density, precipitation, 
and elevation were not significant predictors of the levels of impact. Also, starting in 2017, 
we implemented a pilot restoration initiative on a 21-ha peatland which had been drained 
and converted into pasture for at least 150  years. The restoration consisted of two ditch 
blocking techniques implemented to stop fast-moving water and promote the rewetting of 
the peatland. During the next 3 years, water table increased from 27 ± 3 cm below the soil 
surface to 7 ± 1 cm by 2021, while wetland plant communities are colonizing and closing 
the pools in the blocked ditches. Re-wetting of the peatland has led to an increase in the 
abundance of native species. This case study suggests that restoration initiatives are an effi-
cient and cost-effective approach to a better management of páramo peatlands, with high 
potential as a tool for mitigation and adaptation to climate change.
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1  High‑elevation Páramo peatlands in Ecuador

The páramo ecosystems, a complex mosaic of vegetation types occupying the Northern 
Andes —roughly from 8°N to 5°S, and between ~ 3000 m and the limits of perpetual snow 
— are a key environment of regional importance (Hofstede et al. 2014). Serving both as 
a high corridor allowing the movement of some species and as a diversification center for 
other taxa (Flantua et  al. 2019), the páramo is a regional reservoir of endemic biodiver-
sity and a natural laboratory where extremely fast evolutionary rates have been reported 
(Diazgranados and Barber 2017; Cortes et  al. 2018; Diaz-Acevedo et  al. 2020). At the 
same time, páramo ecosystems provide a wealth of ecosystem services including carbon 
sequestration, potable water supply, irrigation, recreation, agriculture, and soil stabiliza-
tion, which serve millions of people in the region (Buytaert et al. 2011).

Owing to the complex topography and the heterogeneous influence of geological set-
ting, glacial history, and volcanic activity, páramos are dotted by numerous and extensive 
peatlands that are receiving increased attention due to their biodiversity, their large carbon 
stores and high rates of carbon accumulation, and their role in water regulation and supply 
(Chimner and Karberg 2008; Benavides et  al. 2013; Mosquera et  al. 2015). In northern 
Ecuador, for example, peatlands can cover up to 23% of the páramo landscape and provide 
carbon storage in excess of 2000 MgC  ha−1 (Hribljan et  al. 2016, 2017). The structure 
and vegetation of these peatlands are heterogeneous, depending on the geomorphologi-
cal setting, local weather patterns, and elevation, ranging from small peatlands (< 0.5 ha) 
dominated by cushion-forming plants (mainly Plantago rigida and Distichia muscoides; 
Fig. 1a and b) in small topographic depressions to large peatlands (10 to > 100 ha) dom-
inated by graminoids, mosses, and shrubs at intermediate elevations (Fig.  1b  and c), or 
sedges and rushes in the bottom of large glacial valleys (Fig. 1e-h). In general terms, these 
communities are similar to those described previously for the Páramo and Puna environ-
ments of Bolivia, Perú, and Colombia (Cooper et al. 2010; Benavides and Vitt 2014).

Although páramo ecosystems cover only approximately 5% of the territory in Ecuador, 
and páramo peatlands represent roughly 20% of the páramo (Hribljan et al. 2017), carbon 
concentration in the peatland soils is so high (more than 2000 MgC/ha) that they could 
harbor a substantial proportion of the total carbon storage in the country (Hribljan et al. 
2016, 2017). From this perspective, the comparatively small area and the concentration 
of ecosystem services of páramo peatlands represent an excellent opportunity to protect 
and restore these critical ecosystems with high returns for relatively low investments. In 
this paper, we present a preliminary assessment of the conservation status of Ecuadorian 
páramo peatlands, describe a case study of restoration of a high-elevation peatland in 
Northern Ecuador, and discuss the challenges and opportunities for restoration and man-
agement of páramo peatlands as a tool for climate change mitigation and adaptation in the 
country.

2  Assessment of human impacts on páramo peatlands 
in the Ecuadorian Andes

Despite their importance, páramo peatlands in Ecuador have been largely overlooked and 
explicit plans for their protection or management are lacking. On one hand, large-scale use 
of peat as fuel or potting substrate has not been reported in Ecuador. On the other hand, 
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Fig. 1  Examples of the general vegetation types found in páramo peatlands in Ecuador. a–b) Peatlands 
dominated by cushion-forming plants (e.g., Plantago rigida, Distichia muscoides); c–d) peatlands domi-
nated by graminoids and mosses (e.g., Cortaderia sericantha, C. nitida); e–f) peatlands dominated by 
sedges and rushes (e.g., Carex pichinchensis, C. lehmanniana); g–h) heterogeneous peatlands in the bottom 
of large glacial valleys usually exhibiting several vegetation types
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despite their unique functional and structural characteristics, the physiognomy of páramo 
peatlands tends to be less distinctive in comparison with the surrounding humid páramo, 
which may have resulted in peatlands being lumped together as undistinguishable com-
ponents of the páramo. At the same time, their relatively flat topography with abundant 
water makes them particularly vulnerable by facilitating their use for agriculture and cat-
tle raising. As in other regions (Chimner et al. 2010), peatland drainage (Fig. 2a and b), 
agriculture (Fig. 2c-f), overgrazing (Fig. 2f-h), and water removals are some of the most 
common impacts that Ecuadorian peatlands are experiencing (Laine et al. 2009). In order 
to provide a preliminary assessment of the conservation state of páramo peatlands in Ecua-
dor, we collected field information regarding signs of human activities on 163 peatlands 
encompassing all the major environmental gradients (elevation, latitude, and precipitation) 
that can be found across the high Andes of Ecuador. The types of activities recorded were 
selected based on previous observations of their frequency during field surveys. Although 
we tried to randomly select the peatlands, many of them are located in remote regions and, 
as a result, our sampling is biased by the availability of roads. This bias, however, was con-
stant throughout the country. Based on this information, we constructed an arbitrary index 
in which the presence of each activity adds a number of points to the index correspond-
ing to the potential impacts of that activity on the structure and function of the peatland 
(Table 1). For example, the presence of garbage would add only 0.5 points, whereas the 
presence of agriculture would add 6 points, as this activity drastically changes the structure 
of the soil and usually requires draining of the peatland. For this index, we did not take 
into account potential additive or synergistic effects of human activities. For example, the 
density or type of cattle, or the interaction between drainages and trampling, was not con-
sidered in the index. However, by adding the values corresponding to the presence of dif-
ferent human activities at each site, this index allows us to rank and characterize the level 
of anthropogenic impacts across the country. In order to explore the factors influencing 
the distribution of human impacts for each peatland site, we also gathered information on 
elevation (field data), human population density of the county in which each peatland was 
located (2010 National Census Data), precipitation, and mountain range (Eastern or West-
ern branch of the cordillera; see Supplementary Tab. S1). We tested for multicollinearity 
in the four independent variables by running a Pearson correlation analysis and a multiple 
linear regression using the tolerance and variation inflation factor options. In both analy-
ses, multicollinearity was not an issue and the tolerance values were greater than 0.4 and 
the variance inflation factor was less than 2.5 for all variables (Allison 1999). These two 
analyses were performed to ensure that the estimates for the negative binomial regression 
(see below) were valid. Because of the discrete nature of the response variable, negative 
binomial regression was used to analyze the data. These variables were used as explanatory 
factors against the level of impact, using the negative binomial distribution with the log 
link function to account for overdispersion of the data. We used an alpha level of 0.05 for 
detecting statistical significance, and the analysis was carried out using SAS® 9.4 via the 
GLIMMIX procedure (SAS Institute Inc. 2011).

Based on this preliminary analysis, distribution of anthropogenic impact on páramo 
peatlands in Ecuador is heterogeneous (Fig.  3). Peatlands in the Western cordillera had 
significantly higher levels of impact (mean index ± standard error: 5.2 ± 0.4) than peatlands 
in the Eastern cordillera (3.3 ± 0.3; Table  2). Interestingly, although the Western cordil-
lera, especially in the central Andes of Ecuador, tends to have higher rural population, and 
lower precipitation levels, these variables were not statistically significant (Table 2). We 
think that this pattern could be explained by the nature of the data that we used. While 
the precipitation and human population density data entered in the model represent the 
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Fig. 2  Common anthropogenic impacts found in páramo peatlands in Ecuador. a–b) Agriculture and infra-
structure; c–d) overgrazing; e–f) drainages; g–h) soil disturbance. Typically, several of these impacts occur 
in the same sites
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recent (short-term) patterns of these variables, the location of the peatlands in the East-
ern or Western cordillera probably reflects their long-term historical effects. This pattern 
is also evident in the distribution of the individual impacts. While all the types of human 
activities were slightly more frequent in the Western than in the Eastern cordillera, the 
number of peatlands transformed to agriculture or pastures, and the number of peatlands 
that exhibited infrastructure was, respectively, 3.1 and 2.5 times higher in the Western than 

Table 1  Structure of the index used to quantify the concentration of impacts of human activities on Ecua-
dorian páramo peatlands. The presence of signs of each type of activity on any give peatland adds a number 
of points to the index for that site corresponding to the relative impact of that activity on the structure and 
functioning of the peatland. This index does not quantify the intensity or frequency of each type of distur-
bance. For details, see text

Type of activity Points

Garbage 0.5
Impacts on surrounding slopes (e.g., roads, fire scars, agriculture) 1
Infrastructure (e.g., houses, fences, water management infrastructure) 1.5
Cattle 2
Drainage 3
Agriculture/pastures 6
Total 14

Fig. 3  Distribution and intensity of anthropogenic impacts on 163 Ecuadorian páramo peatlands. Marker 
size increases with increasing concentration of signs of anthropogenic activities in each peatland, measured 
through an arbitrary index that ranges between 0 (no signs of human activity) and 14 (maximum concentra-
tion of signs of activities). For details, see text
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in the Eastern side of the Andes (see supplementary Tab. S2). This pattern was mostly due 
to the concentration of highly impacted peatlands that we recorded in the central provinces 
of Tungurahua, Chimborazo, and Bolivar. These provinces have a long history of human 
occupation with high population densities and strong ties to the páramo landscape. In con-
trast, influenced by the Amazon basin, the Eastern cordillera of Ecuador has much higher 
precipitation levels, especially in the Northern and Central Andes, and a much larger area 
of páramo in ecological reserves and national parks. In combination, these patterns suggest 
that national policies should emphasize sustained conservation for the Eastern sites, versus 
restoration and improved management initiatives in the Western peatlands. Moreover, peat-
land restoration initiatives could serve the double objective of improving water availability 
and quality for marginalized populations, while contributing to national and local opportu-
nities for adaptation and mitigation of climate change.

3  A case study of peatland restoration from Northern Ecuador

In 2017, we initiated a restoration project in the Chakana peatland, a 21-ha peatland located 
at 3750 masl within the Chakana Reserve owned by Jocotoco Foundation. On average, this 
peatland has 3.5 m of depth, an average carbon content of 23.5 ± 4.1%C, and mean bulk 
density of 0.22 ± 0.03 g  cm3. This peatland had been used for cattle grazing for at least 
150 years, and eight ditches (total length of 3.9 km) had been cut parallel to the slope of 
the peatland in order to drain it (Fig. 4). Additionally, between 2014 and 2015, 20 addi-
tional ditches (between 220 and 310 m in length) were cut across the slope of the peatland 
as part of a misguided initiative to increase the habitat for migratory bird species, add-
ing approximately 4.8  km of ditches (Fig.  4). As a result, native vegetation was almost 
completely replaced by exotic pasture species (mainly Anthoxanthum odoratum), and the 
peatland was permanently drained through the deeply cut ditches that water carved through 
time. Previous to this restoration initiative, cattle were permanently removed from the site 
as part of the conservation strategies carried out by Jocotoco Foundation.

In order to restore the hydrology and vegetation of the Chakana peatland, we followed 
general approaches described for mountain peatlands (Chimner et al. 2017, 2019; Planas-
Clarke et al. 2020). Two different blocking techniques were used depending on the charac-
teristics of the ditches. Deep ditches with fast-moving water and following the direction of 

Table 2  Result of the negative binomial regression model used to analyze the effects of elevation (field 
data), human population density (2010 National Census Data), precipitation, and mountain range (East-
ern or Western branch of the cordillera), on the concentration of signs of human activities on Ecuadorian 
páramo peatlands. The analysis was carried out in SAS® 9.4 using the GLIMMIX procedure, using the 
negative binomial distribution, and the log link function to account for overdispersion in the response vari-
able

Type III tests of fixed effects

Effect Numerator DF Denominator DF F value Pr > F

Mountain range 1 158 5.86 0.0166
Population density 1 158 1.50 0.2222
Elevation 1 158 0.67 0.4147
Precipitation 1 158 1.34 0.2483
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the slope were blocked with a combination of wooden barriers and straw bales (Fig. 5a and 
b), with a separation between 3 and 10 m, depending on the steepness of the terrain. The 
barriers had the purpose of reducing the energy of the moving water, while the straw bales 
were placed downstream, behind the barriers, in order to provide a substrate for plant colo-
nization and further stabilize the blockades. For the 20 ditches cutting across the peatland, 
we only used barriers built with straw bales (Fig. 5c and d) because the channels were not 
very deep (30–40  cm) and the water velocity was low. On average, these barriers were 
placed every 10 m along the ditches, for an average of 20 barriers per ditch, or approxi-
mately 400 barriers in the whole peatland. As with the wooden barriers, the straw bales 
used in these ditches were covered with pieces of turf cut from the surrounding areas, in 
order to stabilize the barrier and accelerate the recovery of the vegetation. The construc-
tion of the barriers was carried out between November 2017 and February 2018, and the 

Fig. 4  Satellite images (Google 
Earth ©) of the Chakana peatland 
site before the restoration initia-
tive. A) Longitudinal ditches cut 
along the peatland at some point 
during the past 150 years of graz-
ing in this area. B) Additional 
ditches cut between 2014 and 
2015 to create habitat for migra-
tory birds
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Fig. 5  Examples of the barriers constructed with wood planks (a and b) or straw bales (c and d) to slow 
down water movement along the ditches, and promote rewetting in the Chakana peatland
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effects of the restoration have been evaluated by periodic monitoring including (i) 16 per-
manent vegetation plots (1 × 1 m) randomly placed on four of the horizontal ditches and 
sampled twice a year; and (ii) a system of vegetation plots (1 × 1 m) randomly distributed 
across the peatland, which were sampled in 2017 (30 plots), 2019 (30 plots), and 2021 (143 
plots). These quadrats were divided in a 10 × 10 cm grid, and species composition and per-
cent coverage were estimated by recording the first species coinciding with each of the 100 
resulting intersections of the grid. Additionally, we installed six ground water monitoring 
wells spread along the elevation gradient of the peatland, which were monitored at least 
eight times per year.

Water table depths averaged 27 ± 3  cm below the soil surface in 2018 but rose to 
7 ± 1 cm by 2021 (Fig. 6a; Mann–Whitney test W value: 49; p = 0.009) and annual variation 
at individual wells decreased by 25% during the same period, even during the dry season 
that this area usually experiences between July and August (see Supplementary Fig. S1). 
Together, these measurements suggest that the peatland has been rewetted and is becoming 
more hydrologically stable in response to the ditch blocking. Following the blocking of the 
ditches, vegetation expanded and is successfully filling in the ditches (Fig. 6b-d). Within 
a month after the construction of the dikes and as a result of the reduction in water veloc-
ity, the channels were colonized by algae (unidentified species). As the algae increased 
in coverage, it started dying and decomposing, thus adding organic matter which served 
as substrate for the establishment of other peatlands species, including Caltha sagittata 
and Eleocharis dombeyana. Specifically, the coverage of E. dombeyana increased from 1% 
6  months after the restoration to 85% after 3  years, with a concomitant decrease in the 
amount of open water in the channels.

The rewetting of the peatland also resulted in a striking change in the plant community 
composition in the non-ditched areas in the peatland. In order to explore these changes, we 
performed a nonmetric multidimensional scaling (nMDS) using Bray–Curtis Distance in 
R® 4.1.1. For this, we used the species percent coverage recorded in 30 plots (1 × 1 m) in 
2017 and 2019 and 143 plots in 2021. Species that were present in less than 20 plots were 
excluded from the analysis. The r-function metaMDS was used for constructing multiple 
runs, finding the best solution for each dimensionality. The vegetation plots sampled in 2021 
clearly separated from the 2017 and 2019 plots, suggesting large changes in species com-
position (Fig. 7). Among these changes, some of the most important are a 10% reduction in 
the mean percent coverage of Anthoxanthum odoratum, an exotic pasture species, and a con-
comitant increase in the coverage of Plantago rigida, Bromus lanatus, and Geranium multi-
partitum, all native species that are frequent in high-elevation páramo peatlands, as well as 
in many upland páramo sites (personal observation). The increase in the representation of P. 
rigida is of special importance as this cushion-forming species is considered an important 
peat forming species in these Andean systems (Suárez et al. 2021). The rapid colonization 
by this species could be indicative of a recovery of the functionality of the peatland.

The estimated cost of this restoration initiative, including labor, materials, monitoring, and 
transportation is USD $10,000, or approximately USD $470  ha−1 (USD $119  ha−1  year−1). 
These costs could be further reduced if the restoration activities are implemented through 

Fig. 6  Results of the monitoring of the restoration of the Chakana peatland. a) Changes in percentage of 
ground cover in the channels that resulted from the construction of ditch plugs in 2017, with examples of 
corresponding pictures shown in panel b. c) Overall view of the changes in vegetation along the restored 
channels. d) Temporal trends in water table level in the Chakana peatland. Each point represents the mean 
and standard error of monthly water table measurements taken between 2018 and 2021 on six wells distrib-
uted throughout the peatland

▸
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participatory approaches with local people and other stakeholders with interest and respon-
sibility on the conservation of these ecosystems. At the same time, native vegetation is 
responding very quickly to the rewetting of the peatland. From this perspective, this pilot 
initiative strongly suggests that restoration can become a very efficient, and cost-effective 
approach to contribute to local efforts to improve adaptation to climate change, by protecting 
ecosystem services, and creating opportunities for local people and institutions.

Previous experiences in the Central and Southern Andes have shown that hydrological 
restoration in high-elevation peatlands is feasible and can have profound impacts on bio-
diversity and ecosystem services. In the Andes of Perú, for example, ditch restoration in a 
drained bofedal increased net ecosystem exchange, thus improving the capacity of the sys-
tem to store carbon (Planas-Clarke et  al. 2020). Similarly, a landscape-level study in the 
Bolivian Andes showed that areas with high density of check dams and other erosion control 
structures had a higher normalized difference vegetation index (NDVI), which suggested an 
increase in the greenness of vegetation in the bofedales (Hartman et al. 2016). Interestingly, 
traditional communities in Perú have also developed their own restoration and management 
techniques, using small flat stones (trancas) and other structures to manage flows of water 
as a way to expand and maintain bofedales that are used for herding llamas and alpacas 
(Verzijl and Guerrero-Quispe 2013). In the páramo of the Northern Andes, however, less 
information is available which calls for renewed efforts at developing and synthesizing what 
is known about better management practices and restoration initiatives in the vast system of 
peatlands that characterize this bioregion.

4  Challenges and opportunities for peatland restoration

Restoration of páramo peatlands in Ecuador is a promising alternative for enhancing 
ecosystem services from high-elevation ecosystems, including both mitigation and adap-
tation to climate change. Well-conserved páramo peatlands exhibit a high concentration 

Fig. 7  Nonmetric multidimen-
sional scaling (nMDS) ordination 
of individual plots for each 
sampling year: red dots: 2017, 
green dots: 2019, and blue dots: 
2021. Vectors show the direc-
tion and magnitude of selected 
species that presented changes in 
abundance through the sampling 
years. JunSti, Juncus stipulatus; 
AntOdo, Anthoxanthum odora-
tum; CarBon, Carex bonplandii; 
EleDom, Eleocharis dombeyana; 
PlaRig, Plantago rigida; Ger-
Mul, Geranium multipartitum; 
BroLan, Bromus lanatus 
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of ecosystem services and management targets (e.g., carbon storage, GHG uptake, water 
supply and regulation, biodiversity conservation) in a relatively small area (Buytaert et al. 
2011; Bremer et al. 2019). Direct beneficiaries of the services provided by páramo peat-
lands are numerous and include local people, water companies, large and small-scale farm-
ers, and electricity generation companies. In this context, management and restoration of 
these environments could be implemented with relatively low investments, large conserva-
tion returns, and active involvement of a diverse array of stakeholders. In order to promote 
these activities, additional information will be needed regarding what type or level of farm-
ing in peatlands is compatible with carbon storage, clean water supply, and other ecosys-
tem services provided by these environments.

The potential for functional restoration appears substantial, given both the extent of human 
impacts on these systems and the GHG consequences of these land uses (Sánchez et al. 2017; 
Planas-Clarke et al. 2020). As a result of their position in the landscape, many páramo peat-
lands could be seen as integrators of the effects of land-use practices either by receiving the 
effects of fire, agriculture, and grazing in their catchment areas or by conditioning the patterns 
of extraction and use of water from páramo regions. For example, intensively grazed areas of 
páramo peatlands have been found to release large amounts of methane, a potent greenhouse 
gas with 32 × the global warming potential of carbon dioxide, to the atmosphere (Sánchez 
et al. 2017). From this perspective, management and restoration of páramo peatlands could be 
used as a tool for promoting integrated land-use plans involving different users throughout the 
watershed. A promising example is the development of water funds, such as the Trust Fund for 
the Conservation of Quito’s Water Sources (FONAG). By collaborating with the water com-
pany of the city and other private stakeholders, FONAG can secure long-term funding which 
is used, among other things, to develop conservation and restoration initiatives of páramo peat-
lands, thus conserving the water sources that are critical for the city.

Finally, as a result of their high concentration of carbon and their ability to continue to 
take up  CO2 from the atmosphere for millennia, conservation and restoration of páramo 
peatlands could be seen as a substantial contribution to the mitigation of the effects of cli-
mate change (Planas-Clarke et al. 2020) and as an important tool for supporting national 
efforts at carbon accounting and reporting for international agreements. In general, tropical 
countries have concentrated their carbon accounting efforts in forest biomass. However, the 
recent realization of the large amounts of carbon stored in high-elevation peatlands in the 
Tropical Andes (Hribljan et al. 2015, 2017) opens a promising new path to explore oppor-
tunities for adaptation and mitigation of climate change, by engaging local people and 
national institutions in the conservation and restoration of these carbon rich ecosystems.

Regarding the challenges for future restoration of páramo peatlands, perhaps one of the 
most important obstacles emerges from the very nature of these ecosystems. By forming 
in relatively flat areas within the rugged topography of the Andes, páramo peatlands offer 
attractive land for agriculture and grazing and, in drier regions, the most reliable source of 
easily accessible water for human consumption. As a result of these factors, it might be dif-
ficult to remove or modify the stressors that are affecting these peatlands, thus reducing the 
feasibility of their restoration. This problem is compounded by current lack of incentives 
and alternatives that could encourage local people to engage in the conservation or restora-
tion of páramo peatlands. Research efforts should be focused on finding socially accept-
able sustainable alternatives to these land uses, or on the cost-effectiveness of providing 
payments for ecosystem services to landowners. For example, in Peru, alternative grazing 
systems use water management structures and native camelids rather than sheep or cattle, 
which are thought to have less erosive impact because they have a different, softer hoof 
anatomy (Verzijl and Guerrero-Quispe 2013). Is this system ecologically, socially, and 
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economically feasible in the region and, if so, what are the GHG consequences of this graz-
ing system relative to the current uses? Camelids are also ruminants, and do produce meth-
ane during digestion (Dittmann et al. 2014; Clauss et al. 2020) but to our knowledge the 
whole-ecosystem GHG consequences of camelids vs. ruminants have not been examined.

Another important obstacle is the lack of appropriate reference sites to guide restora-
tion and conservation initiatives. In areas like the central portion of the Western branch of 
the Ecuadorian Andes, it is very difficult to find relatively undisturbed peatlands. More-
over, historical descriptions or studies of these systems are lacking, making it very hard 
to define targets for restoration. From this perspective, restoration initiatives can only be 
implemented with a very vague sense of the type of biotic community that will be restored. 
If additional funds and human resources are available, this problem could be partly solved 
through the use of stable isotopes and macrofossils (Skrzypek et al. 2011). However, our 
experience in the Chakana peatland also suggests that hydrological restoration can lead the 
plant community to revert to one dominated by native species. In the absence of reference 
vegetation data, the target for restoration initiatives could be hydrologic, biogeochemical 
(e.g., GHG fluxes), or land-use based rather than vegetative. In any case, this limitation 
highlights the need to increase research into the structure and function of páramo peatlands 
throughout the region, in order to inform future conservation and restoration initiatives.

A final but very important challenge for the restoration of páramo peatlands emerges from 
the striking unfamiliarity that people in Ecuador show towards páramo peatlands ecosystems. 
Although these wetlands are a prominent element of páramo ecosystems and have a crucial role in 
the supply of water across the Andean region of the country, the vast majority of people have vir-
tually no knowledge even about their existence. This lack of knowledge extends into the academic 
and management realms, and it is only in the last decade that the first studies have been done 
looking into the structure and function of these peatlands. As a result, páramo peatlands have been 
ignored and their conservation has been largely contingent upon the conservation of the larger 
páramo landscapes in which they occur. In order to promote public support, funding, and develop-
ment of local capacities for the conservation of páramo peatlands, large efforts are needed in terms 
of informing the general public about the importance, uniqueness, and intrinsic values of these 
ecosystems. Only then will we be ready to use the full potential of páramo peatlands as tools for 
climate change mitigation, biodiversity conservation, and protection of ecosystem services.

5  Implications for climate change mitigation

Páramo ecosystems have been recognized for the high carbon content of their soils and their role 
in water regulation and supply (Tonneijck et al. 2010; Benavides et al. 2018; Lazo et al. 2019). 
Although ample variation in soils characteristics occurs across the region, in general, it is accepted 
that these large accumulations of soil carbon are a consequence of the reduced decomposition 
of organic matter that results from cold weather and, in some areas, stabilization effects brought 
about by the presence of volcanic ash deposits (Poulenard et al. 2003, 2004; Tonneijck et al. 2010). 
Under these conditions, páramo soils have been acting as important carbon sinks since at least the 
end of the last glaciation. However, a recent report suggests that upland páramo ecosystems could 
be losing carbon, probably as a result of recent changes in temperature and precipitation in these 
tropical mountains (Carrillo-Rojas et al. 2019). If this pattern is widespread, it would represent a 
serious threat to the integrity of páramo ecosystems and to the services they provide. In contrast, 
páramo peatlands could be more resilient than the surrounding well-drained páramo, because 
organic matter decomposition might not be controlled only by temperature and soil characteristics, 
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but also by water table levels which could rise if precipitation increases, as has been projected by 
some climatic models for the Northern Andes (Cuesta et al. 2012). In this context, the conser-
vation and restoration of high-elevation peatlands, with their high rates of carbon accumulation 
and their disproportionate role in water regulation (Mosquera et al. 2015; Hribljan et al. 2016), 
could become a fundamental tool for adaptation and mitigation to climate change in the Northern 
Andes. Specifically, if peatlands can maintain negative climate forcing despite increasing tempera-
tures in the páramo, their contribution to carbon dynamics could be essential in terms of maintain-
ing the role of these landscapes as regional carbon sinks.
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