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Abstract  Studies of education and careers in science, technology, engineering, 
and math (STEM) commonly use a pipeline metaphor to conceptualize forward 
movement and persistence. However, the “STEM pipeline” carries implicit assump-
tions regarding length (i.e. that it “starts” and “stops” at specific stages in one’s edu-
cation or career), contents (i.e. that some occupational fields are “in” the pipeline 
while others are not), and perceived purpose (i.e. that “leakage,” or leaving STEM, 
constitutes failure). Using the National Survey of College Graduates, we empiri-
cally measure each of these dimensions. First, we show that a majority of STEM 
workers report skills training throughout their careers, suggesting no clear demarca-
tion between education and work. Second, we show that using on-the-job expertise 
requirements (rather than occupational titles) paints a very different portrait of the 
STEM workforce—and persistence in it (where substantial attrition remains evident, 
especially among women and African Americans). Third, we show that STEM-edu-
cated workers are well-prepared for but dissatisfied with non-STEM jobs, complicat-
ing our understanding of leaving. Collectively, these results recommend expanded 
conceptions of STEM education and careers and contribute to studies of science and 
engineering workforce transitions and diversity.
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Introduction

Social scientists have devoted considerable attention to understanding the “STEM 
pipeline” in the US, referring to education and work careers in science, technol-
ogy, engineering, and math (STEM). The metaphor appears simple: People move 
through their education, which is akin to a singular pipe. As long as they major 
in STEM subjects, graduate, and work in STEM careers, they “persist” and the 
pipeline is considered successful. But if at some point they stop studying STEM 
subjects, choose a non-STEM major, or take a non-STEM job, they are said to 
have “leaked” (Cannady et  al. 2014). Due to a national narrative that links the 
training of STEM workers to economic priorities (Mars et al. 2014), researchers 
and policymakers see leakage as a problem.

Others use a related metaphor, the “pathway,” which encourages theorizing 
about multiple pathways, on ramps, and off ramps (Kannankutty 2007), but the 
pathway shares with the pipeline fundamental similarities, such as the ideas of 
forward movement as normative and leaving as a problem. Thus, when social sci-
entists study why White and Asian males dominate the STEM workforce, they 
seek to uncover the discrimination and/or structural barriers that lead female, 
African American, and Latino students and workers to disproportionately leak 
from the pipeline (e.g., Cech et al. 2011; Rosser 2012; Glass et al. 2013).

The use of metaphor is common in the social sciences, and metaphors shape 
thinking about complex social phenomena (Brown 1976). However, metaphors 
can also mislead—particularly when their core assumptions are belied by the 
empirical reality they are meant to represent. Specifically, although the pipeline 
metaphor is often used to discuss and explain issues of preparation, persistence, 
and attrition in the STEM workforce, few studies have explored the meaning and 
scope conditions of these issues in practice.

We focus on producing a detailed, descriptive analysis of three fundamental 
dimensions of STEM training and employment. Each probes a basic assumption 
of the pipeline metaphor. The first assumption is pipeline length: Rather than 
assuming that the STEM pipeline “starts” and “stops” at certain stages in a per-
son’s career (typically ending with a degree), we empirically explore how long 
STEM-related learning actually lasts. The second assumption relates to pipeline 
contents: Rather than assuming that some fields are “in” the STEM pipeline and 
others are not, we explore whether different measures of STEM lead to different 
portraits of persistence. The third assumption is the pipeline’s purpose: Rather 
than assuming that the goal of the STEM pipeline is retention (making “leakage” 
problematic), we explore what are the actual consequences of “leaving.” We pre-
fer this more neutral term (over the more pejorative “leaking”) in recognition of 
the possible exercise of agency, which may be crucial in the narrower case of sci-
ence research careers (Szelényi et al. 2016; Cañibano et al. 2019).

We do not claim that these are the only dimensions of STEM careers and train-
ing that can be fruitfully measured. We focus on these for three reasons. First, 
these dimensions relate to STEM graduates and their work lives—those who 
persisted through formal education and obtained a STEM degree—and who thus 



3

1 3

Beyond the “STEM Pipeline”

represent significant personal and institutional investment. Second, these dimen-
sions can be clarified with data from the National Survey of College Graduates 
(NSCG), offering unique perspectives on movement through or out of the pipe-
line (see below). Third, each is fundamental to the ideas of persistence and leav-
ing, and is key for theorizing how STEM education contributes to employment.

More specifically, if STEM skill development is common after college, then 
social scientists may fruitfully consider STEM learning as continuing into and 
possibly through careers, suggesting work is not a discrete stage from education. 
If STEM skills are utilized in fields of employment that are not typically con-
sidered STEM, then measures of persistence and leaving may need to be reas-
sessed—with potentially important implications for the representation of women 
and people of color. Finally, if a STEM education confers benefits even to those 
who leave, then the meaning of leaving (or “leakage”)—and the conclusion of 
pipeline “success” or “failure”—may be different than previously thought. STEM 
education may successfully prepare graduates for any career.

This analysis of leavers can contribute to a portrait of STEM persistence and 
also leaver outcomes. Leavers may easily adapt to jobs unrelated to their degrees, 
or face special challenges. If they show a range of positive outcomes, such as 
earning higher wages than non-STEM graduates in non-STEM jobs, it suggests 
new meanings of leaving STEM and the value and purpose of STEM education. 
Specifically, positive outcomes can mean leaving is a strategic exercise of agency, 
and STEM education is valuable for any career, whether in STEM or out. In that 
sense, leaving, while potentially problematic for contributing to job segregation, 
may not be a “failure” that needs to be fixed.

We first review literature regarding the continuation of STEM training, the 
measurement of persistence, and the actual consequences of leaving. We then use 
four waves of NSCG data to examine the characteristics of STEM careers. This 
survey is unique in offering multiple measures of the STEM workforce, including 
how (and for how long) one continues to acquire STEM skills and whether (and 
in what way) one actually employs these skills on the job.

We report three key findings. First, STEM workers commonly continue to 
learn STEM skills and knowledge nearly forty years after graduation, suggesting 
no clear demarcation between education/student and employment/worker stages 
of a STEM career. Second, many putatively non-STEM jobs actually require 
STEM expertise—and a revised view of STEM employment shows dramatically 
different portraits of leaving (though significant gaps remain for disadvantaged 
populations, especially women and African Americans). Third, STEM gradu-
ates employed in non-STEM jobs face mixed outcomes, appearing well-prepared 
but dissatisfied. Thus, the assumption that the purpose of a STEM education is 
only STEM worker production may not be warranted (since leavers appear well-
prepared for non-STEM jobs) but their dissatisfaction raises concerns, and more 
research on the consequences of leaving would be fruitful. Collectively, these 
results recommend expanded conceptions of STEM education more generally 
(into lifelong learning for careers) and contribute to studies of science and engi-
neering workforce transitions and diversity.
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Three Dimensions of STEM Training and Careers

Pipeline Length: the Continuation of Training through STEM Careers

Few studies have addressed the continuation of training into STEM careers. Some 
research posits that STEM training begins in the preschool years (e.g., Aldemir 
and Kermani 2017) and extends at least to mid-careers (e.g., Lowell et al. 2009). 
Work on academia specifically has identified different stages of science careers 
(Cañibano et al. 2019), noting how learning continues after the PhD but becomes 
more focused on building on prior research (Laudel and Gläser 2008: 397). The 
bulk of research, however, focuses on the STEM pipeline in K-12 and college 
education (see Xie et al. 2015). An assumption here is that graduation is a demar-
cation, where STEM graduates switch from learning skills to deploying skills. 
Treating education as a separate stage from work implies STEM graduates need 
no new learning to work in STEM jobs unless they decide to change careers.

Our interest is whether and how long learning might extend after gradua-
tion, or whether work is a discrete stage after education. STEM education may 
continue after a person accepts a STEM job if workers continue learning new 
skills or improving existing ones. Such learning is typically considered “training” 
rather than “schooling,” takes different forms, and imparts more specific knowl-
edge than formal schooling (Bills 2004; Bills and Hodson 2007). But this learn-
ing may be necessary to continue in a STEM career—and it might persist for 
decades, if not all the way up to retirement.

Social scientists have long identified a need for continual learning as a key fea-
ture of the postindustrial economy (Bills 2004). On-the-job learning can be nec-
essary to keep up with changing job demands (Valdés and Barley 2016). Though 
jobs may require training for any number of reasons, STEM jobs are especially 
likely to require continual training to upgrade skills (Barley and Kunda 2004). 
The National Research Council reported that IT workers needed to spend 1.5–2 
hours per day in some kind of training to maintain relevant skills (National 
Research Council 2001: p. 254). Technology-intensive jobs face such rapid skill 
obsolescence that “experienced STEM workers seeking employment in 2019 are 
often required to possess skills that were not required when they entered the labor 
market in 2007 or earlier” (Deming and Noray 2020: p. 1979).

If technological change is continually obsolescing skills, time since degree 
may be unrelated to the likelihood of skills-related learning. Research on this is 
mixed, however. One study in the Netherlands found that age (a proxy for time 
since degree) is negatively correlated with training among scientists and engi-
neers (De Grip and Smits 2012). This suggests that either employers’ willing-
ness to provide training or workers’ motivation to take it declines with age. Sur-
vey research on IT workers in the US, Canada, Australia, and England, however, 
has found that age is unrelated to work-related training (Charness and Fox 2010). 
Scant research has examined time elapsed since degree directly.

In sum, we know little about the continuation of STEM training through careers. 
If STEM workers continue to develop their skills and knowledge—especially if 
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unrelated to time since degree—this would seem problematic for a metaphor that 
may conceptualize education and work as discrete stages. Lifelong learning may 
be essential for STEM persistence.

Pipeline Contents: Measuring Persistence in STEM

The pipeline metaphor entails another demarcation—in STEM or out—and implies 
that researchers have clear ideas about which degree fields and jobs are in. This 
assumption points to another dimension of STEM careers, which is the measure of 
persistence.

Defining STEM is not straightforward, whether we are talking about fields or 
jobs. The challenge may be especially acute for jobs, where the scientific, techni-
cal, or computing content of specific job titles may vary across time or employers. 
Although the National Research Council argued that “job content and performance 
are most important” for assessing pipeline persistence (1986:4), most research and 
government policies define STEM using degree fields and occupational titles. There 
is even inconsistency within the US government: The National Science Foundation 
(NSF) uses both “S&E” (science and engineering) and “STEM,” with varying fields 
and occupations in each, while the Department of Homeland Security’s definition of 
STEM is different from both (National Science Board 2015; Department of Home-
land Security 2016).

Social scientists’ practices also vary, with little consensus or consistent ration-
ales. “Math” is, by definition, part of STEM, but many researchers exclude social 
science, business, and education degrees and occupations, no matter how quantita-
tive (e.g., Cech et al. 2011; Xie and Killewald 2012). Studies do not always explain 
categorization (e.g., Carnevale et al. 2011).

The lack of consensus may be due to inherent ambiguity in the STEM concept 
itself. One major example is health-oriented majors and occupations, where exper-
tise includes life sciences. Morgan et al. (2013) categorize “doctoral-track medicine” 
as STEM, and Xie and Killewald’s (2012) study of the “scientific pipeline” (they do 
not use the STEM acronym) excludes medical doctors.

Moreover, the scientific and technological components of fields and jobs change 
over time. Though evidence may be weak for an overall shift in technical skills 
demands (Handel 2016), researchers have long identified changes in skill require-
ments in some jobs, especially those requiring a college degree. This literature 
points to more jobs utilizing STEM skills in recent decades—what we might call 
a limited “STEMification” in the nation’s job markets.1 The most prominent exam-
ple may be finance “quants” (Patterson 2011); indeed, DHS now classifies quantita-
tive finance and economics as STEM fields (Redden 2018). Similar are people with 
degrees in mathematical sciences who work for companies like Facebook and use 
technology to enhance advertising (Vance 2011).

1  For example, the theory of “skill-biased technological change” asserts that technology changes have 
increased skill requirements over time but education has not kept up, leading to increasing premiums for 
the college-educated and increasing inequality in society (Goldin and Katz 2008; see also Hout 2012).
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Two other aspects of STEMification are important. First is the creation of new 
jobs in the innovation sector that require STEM skills. For instance, the fastest 
growing and highest paying job for entry level workers in 2019, “data scientist,” is 
still so new it lacks a category in Department of Labor and National Science Foun-
dation statistics (Hagan 2019); it is therefore unclear if it is counted in occupational 
definitions of STEM. Second is the growth in sheer numbers of tech jobs. Between 
the early 2000s and 2012, jobs in the internet sector increased by 634%. Other 
STEM areas that saw explosive growth were jobs in pharmaceuticals/life sciences, 
software, and R&D (Moretti 2012). New tech workers require managers to oversee 
them, project managers to oversee the development of new products, and sales rep-
resentatives to market these products (National Science Board 2015). All of these 
jobs may utilize or require advanced technological (STEM) skills.

The literature thus shows no consensus on which fields and jobs constitute STEM, 
and thus on the meaning of persistence in a STEM career. It also shows growing 
STEM components of existing jobs; new jobs (like data scientist) that would seem 
to be STEM; and growing numbers of STEM jobs, requiring new STEM manag-
ers and salespeople. Importantly, this calls into question literature on women and 
minorities because accurately measuring persistence and leaving from the pipeline 
requires clearly specifying what it means to be in or out. Defining STEM persistence 
to include jobs that require college-level STEM skills—rather than relying on old 
occupational categories that predate the rise of the internet—may shed new light on 
this issue and could reveal more persistence than previously suspected.

Pipeline Purpose: Understanding the Consequences of Leaving

A final important dimension of STEM training and careers that the pipeline met-
aphor obscures is the perceived purpose of a STEM education. This is crucial to 
interpret the meaning of leaving. Is STEM education only a process for producing 
STEM workers? Should leaving be considered a problem for researchers to study 
and policymakers to mitigate?

Research reveals little discussion of these basic questions. A place to start are the 
differing rationales for studying the STEM pipeline: concerns about having enough 
STEM workers to meet demand (Rosser 2012; Xie and Killewald 2012: 9); having 
enough STEM workers to drive economic growth (Carnevale et  al. 2011; Rosser 
2012; Xie, Fang, and Shauman 2015); and equalizing access to STEM jobs (e.g., 
Cech et al. 2011; Rosser 2012; Morgan et al. 2013; Wynn and Correll 2018). How-
ever, these rationales are not without problems. First, research indicates shortages 
occur in only a few STEM fields (e.g., software development; Xue and Larson 2015; 
Teitelbaum 2014). Second, what exactly constitutes innovation-driven growth, and 
which workers are crucial for producing it, are unknown (Kuehn and Salzman 2018). 
Third, regarding equal outcomes, very few studies systematically examine what hap-
pens to workers who leave STEM. If leaving somehow benefits the leavers—beyond 
the generic effect of a college degree (Hout 2012)—then leaving may not be failure 
or even a problem (though equalizing access and improving diversity in STEM may 
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be social goods in their own right). Assessing outcomes, negative or positive, can 
thus inform perceptions of the purpose of STEM education.

One area to search for possible STEM education effects on leavers is wages. Few 
studies have explored whether STEM graduates in non-STEM jobs make more, the 
same, or less than non-STEM graduates in similar jobs.2 It may be that the STEMi-
fication processes turning more jobs into STEM jobs also add technical components 
to non-STEM jobs—components that do not require college-level STEM skills but 
for which a STEM degree nevertheless provides superior preparation. Alternately, a 
STEM education may convey significant but more latent benefits (such as ways of 
thinking, collaborating, or problem-solving) that provide generalizable advantages 
in the workplace, leading to higher wages for STEM graduates across all sectors.

A second area where we may find effects of STEM education for leavers is happi-
ness or satisfaction at work. Research on STEM education and later job satisfaction 
is very limited. One study found that STEM majors tend to be satisfied with their 
jobs, a result driven by earnings (Wolniak and Pascarella 2005). More generally, job 
satisfaction tends to be lower when workers perceive a mismatch between their edu-
cation and their job, regardless of education level, job attributes, and worker char-
acteristics (Lee and Sabharwal 2016). If STEM pipeline leavers are unhappy due to 
mismatch, leaving may imply failure.

A final way we might assess the success or failure of STEM education is in alter-
native evidence that STEM education benefits STEM graduates who work in non-
STEM jobs. Wage is one indirect measure, but superior career preparation may not 
be recognized with higher wages. Another approach would be to examine likeli-
hoods of taking skills-related training. We understand that training to improve job-
related skills and knowledge may be a noisy (and inverse) measure of preparation for 
work. Training can indicate a skills deficit that is being ameliorated or employers’ 
belief that workers are worthy of investment (Bills 2004; Waddoups 2016); simi-
larly, the absence of training may indicate either that there is no skills deficit or that 
a deficit exists but is not being ameliorated for some reason, such as lack of opportu-
nities or motivation.

Still, an analysis of training can contribute to a portrait of the preparation and 
“success” of STEM leavers, who may struggle to adapt to jobs unrelated to their 
degrees—or they may find their STEM degrees prepare them well. Specifically, a 
combination of lower likelihood of training, higher wages, and higher job satisfac-
tion could indicate that leavers (compared to non-STEM graduates in non-STEM 
jobs) benefit from their STEM education; that STEM education prepares individuals 
for jobs in and outside of STEM; and that leaving, while still potentially problematic 
for contributing to occupational segregation, is not “failure” in the sense of negative 
outcomes for workers.

2  Addressing a different but related question, Carnevale et al. (2011) found that many STEM graduates 
voluntarily leak or “divert” to non-STEM jobs—especially managerial, professional, and healthcare pro-
fessional jobs—for higher earnings. However, this study’s definition of STEM might be too narrow (and 
thus its definition of leakage too broad) insofar as it focused on occupational titles rather than actual 
utilization of STEM skills.
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Data

To empirically address the above questions, we utilized the National Survey of Col-
lege Graduates (NSCG). The NSCG is a biennial, nationally-representative survey 
conducted by the NSF and designed to provide data on American college graduates. 
A variety of scholars have utilized it, including sociologists (e.g., Morgan 2000) and 
economists (e.g., Hunt 2016).

For the present study, the NSCG has several advantages. To our knowledge, it 
is the only dataset that contains information on the educational and occupational 
histories of respondents; information on skills-related training after graduation; and 
a unique approach to defining STEM, commensurate with our empirical interests. 
Specifically, the survey follows the NSF definitions of S&E (comparable to STEM), 
S&E-related (explained below), and non-S&E (non-STEM) fields and jobs. But it 
also contains a question about respondents’ use of STEM expertise at their jobs. The 
inclusion of questions about training and this alternative measure of STEM employ-
ment allow for rich explorations of multiple dimensions of the STEM workforce.

In most cycles, the NSCG focused only on STEM workers. However, in 1993, 
2003, 2010, 2013, and 2015, it provided representative coverage of the nation’s col-
lege-educated population. Specifically, the target population consisted of all indi-
viduals who (1) lived in the US during the survey reference week, (2) had at least 
a bachelor’s degree, and (3) were under the age of 76. We omit the 1993 NSCG, 
because it did not contain the question identifying STEM expertise usage on the job. 
Employing the remaining four waves of data allows us to discern whether our results 
are robust over time and also to comment tentatively on trends.

In all analyses that follow, we focus on a subset of available data defined by two 
criteria. First, we omitted respondents who were unemployed during the reference 
week (and so for whom questions regarding current occupation were inapplicable). 
Second, we omitted respondents whose first bachelor’s degree was in an “S&E-
related field”—a mixed category consisting predominantly of “Health” fields (e.g., 
nursing, physical therapy, audiology) but also “Science and mathematics teacher 
education,” “Technology and technical fields,” and “Other S&E-related fields” 
(actuarial science and architecture/environmental design). This group included 
fewer than 10% of employed respondents in all four years, and it is unclear where 
they should fit in the primary STEM/non-STEM distinction with which this paper is 
concerned. In the subsections that follow, we provide additional detail on the central 
variables in our analyses. Additional, subsidiary variables (namely, those used as 
control variables or for a single analysis) are described as they are introduced.

STEM/Non‑STEM Education

To distinguish between STEM and non-STEM educational specializations, we use 
the major of each respondent’s bachelor’s degree (or first bachelor’s, if applicable). 
The NSF classifies majors into seven categories: (1) computer and mathematical 
sciences; (2) biological, agricultural and environmental life sciences; (3) physical 
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and related sciences; (4) engineering; (5) social and related sciences; (6) non-S&E 
fields; and (7) S&E-related fields. As noted above, we omitted respondents in cat-
egory (7) from all analyses. We considered categories (1) through (4) to represent 
“STEM” educational backgrounds and (5) and (6) to represent “non-STEM” back-
grounds (see Xie and Killewald 2012 for a similar exclusion of social scientists from 
the definition of “STEM”).

STEM/Non‑STEM Occupation

Classifying occupations as STEM or non-STEM is also central to the aims of this 
study. To explore the meaning of STEM persistence, we use and compare two dif-
ferent measures of the STEM workforce. First, the NSF applies the same seven-
category classification to categorize the occupation of employed respondents. We 
consider the same four groups as constituting STEM occupations and the remaining 
groups as non-STEM.3 Second, to explore the possibility that many jobs not nor-
mally considered STEM now require STEM skills—as well as the possibility that 
many putative STEM workers’ job activities do not include strictly technical tasks 
(National Science Board 2015)—we include a measure based on respondents’ self-
reported usage of college-level STEM skills on the job. Specifically, respondents 
indicate whether their job duties “require the technical expertise of a bachelor’s 
degree or higher in engineering, computer science, math, or the natural sciences.” 
We considered respondents who said “yes” to be STEM and “no” to be non-
STEM workers. We use this latter measure in our analyses of the duration of train-
ing and the consequences of leaving, and both measures in our analysis of STEM 
persistence.

Worker Training

Our focus on training continuation and consequences of leaving both relate to the 
use of training to improve skills. Social scientists have long used worker surveys to 
study participation in training (e.g., Knoke and Ishio 1998). We measure training 
using a binary variable derived from the following question: “During the past 12 
months, did you take any work-related training, such as workshops or seminars?” 
Respondents were instructed to include conferences or professional meetings only if 
they attended a training session and to omit college coursework for which they were 
enrolled in a degree program. Those who said “yes” were also prompted to answer a 
series of follow-up inquiries regarding the reasons for their training. In the analyses 

3  In order to provide a more comprehensive analysis—and recognizing that workers in virtually any 
occupation may or may not say their job requires STEM expertise—we do not exclude “S&E-related” 
occupational fields the same way we exclude “S&E-related” educational fields (and, for the second sec-
tion of results, we consider these fields as “non-STEM”). However, as a reviewer helpfully pointed out, 
the health professions in particular may warrant special attention—especially insofar as continuing edu-
cation (“training”) is required for licensing in many health professions. Consequently, except in Table 2 
(where healthcare workers are explicitly identified), we replicated all other analyses in this paper after 
excluding “health-related occupations” and report whether or how results varied in footnotes.
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that follow, “skills-related training” refers to all respondents who indicated that they 
took training “to improve skills or knowledge in your current occupational field” 
(regardless of whether or what other options were selected). The full list of available 
options is reproduced in the “Appendix”.4

These questions provide a rare opportunity to examine the prevalence (and corre-
lates) of skills-related training in the US. Nonetheless, their limitations are important 
to acknowledge. First, the questions do not differentiate between distinct instances of 
training, each potentially motivated by different reasons. Second, the questions focus on 
formal settings such as workshops or seminars. As such, they exclude informal, poten-
tially independent self-training practices that employees might pursue (see, e.g., Bills 
and Hodson 2007)—and if anything, should therefore provide a conservative estimate 
of continued education in the STEM workforce. Third, we do not know if the question 
focusing on improving “skills or knowledge in your current occupational field” relates 
to STEM skills specifically. STEM workers may take training in their current occu-
pational field that improves their skills or knowledge related to project management, 
teamwork, or leadership. However, given the research, some of which is cited above, 
on rapidly changing technology and rapidly obsolescing skills, there is strong reason to 
believe that much of this training is related to STEM skills specifically.

Results

Continuation of Training into STEM Careers

To assess the continuation of and demarcations in STEM education into the careers 
of STEM workers, we first look at the prevalence of training among incumbent 
STEM workers (whom we define as those using college-level STEM expertise on 
the job). Though different from formal schooling for a degree, skills-related train-
ing can be considered an extension of STEM education because it similarly entails 
preparation for work.

Figure  1 shows the prevalence of skills-related training among STEM workers 
across all four survey years. Although there is a slight downward trend over time—
from 59.3% of workers in 2003 to 57.2% of workers in 2015—in all four years, over 
half of all STEM workers report taking skills-related training in the last year.5 It is 
clear that learning for work is very common for STEM workers and graduating with 
a degree does not typically end STEM education.6

5  If we omit workers in health-related occupations, the prevalence of training decreases very slightly (by 
.8% in 2003, 1.3% in 2010, 1.4% in 2013, and 1.7% in 2010) but the overall pattern is similar.
6  In addition to asking respondents the reasons they took training, the NSCG asks which among these 
reasons was most important. If we instead count only those respondents who said skills improvement was 
the most important reason for their training, the prevalence of skills-related training is predictably lower: 
38.1% in 2003, 37.4% in 2010, 35.3% in 2013, and 34.7% in 2015.

4  Some options were available in certain survey years but not others and the wording of commensurable 
options varied slightly between 2003 and later surveys. Across all survey years, however, skills develop-
ment was by far the most common reason respondents cited for training, accounting for 93–94% of all 
respondents who trained.
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Although the majority of STEM workers in each survey year can thus still be con-
sidered to be both learners and workers, these results could instead be interpreted dif-
ferently if we argue that over 40% of STEM workers do not seem to be learning new 
skills. We would caution against this interpretation, however. First, the data for each 
year only document training in the preceding twelve months, so workers who do not 
train in a given year may still train later. Second, as noted above, the NSCG prompts 
respondents to think of training only in terms of “workshops or seminars” and other 
formal settings. For both of these reasons, these results likely understate the amount 
of (formal and informal) learning occurring throughout STEM workers’ careers.

Next, we look at the prevalence of skills-related training depending on the number 
of years since respondents received their most recent degree. This distribution is pre-
sented in Fig. 2. Across all four survey years—and up to thirty years after obtaining 
their most recent degree—it is still the case that over half of STEM workers have taken 
formal training sometime in the last year to improve skills or knowledge.7 After this, 
the prevalence of training begins to decline, although consistently over 40% of STEM 
workers continue to train until 40 years after their most recent degree and consistently 
over 30% of STEM workers continue to train until 45 years after their most recent 
degree (sample sizes at this point are considerably smaller, reducing precision).8

Fig. 1   Proportion of STEM workers who reported taking skills-related training in the past 12 months, by 
NSCG survey year

7  This finding holds even when workers in health-related occupations are excluded.
8  To formalize this analysis, we ran a simple logistic regression predicting the likelihood of skills-related 
training based on time elapsed since most recent degree. Both linear and quadratic terms were statisti-
cally significant at p <.05 for three of four survey years—suggesting the likelihood of training reaches 
a maximum at 11.7 years after graduation in 2003 and 2010 and 17 years after graduation in 2015. The 
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In summary, using a very conservative measure of training, we find that more 
than half of workers who use college-level STEM skills on the job indicate they 
are still learning after receiving their last degree. Moreover, this learning contin-
ues at nearly consistent frequencies across survey years and does not show attenua-
tion until decades after the degree was obtained. Indeed, great percentages of STEM 
workers continue to learn job-related skills and knowledge well into the advanced 
stages of their careers—perhaps even until retirement.

Measuring STEM Persistence

The NSCG contains multiple modes of measuring whether respondents work in 
STEM jobs: one based on traditional NSF classifications derived simply from occu-
pational field and one based on respondents’ individualized self-reports of whether 
their job requires “the technical expertise of a bachelor’s degree or higher in engi-
neering, computer science, math, or the natural sciences.” These two measures pro-
vide divergent impressions of the extent and composition of STEM persistence and 
leaving and alternate means of measuring STEMification.

First, in Table  1, we note the overall percentage of STEM graduates who cur-
rently work in STEM jobs (as described earlier, we consider a “STEM graduate” 
anyone who earned their first bachelor’s degree in one of four “STEM” fields). Inter-
estingly, according to both measures, the proportion of STEM graduates who work 
in STEM has not changed much between 2003 and 2015: It decreases by about 1.5% 

Fig. 2   Proportion of STEM workers who reported taking skills-related training in the past 12 months, by 
years since most recent degree and NSCG survey year

Footnote 8 (continued)
quadratic term was not significant in 2013 but the linear term (significant at p <.001) indicated that the 
log-odds of training decrease by .01 with each successive year.
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using the occupational definition and increases by about 2% using the expertise defi-
nition. However, the magnitude of persistence is markedly different: If we use the 
occupational definition of STEM, about 40% of STEM graduates have persisted in 
each survey year; if we use the expertise definition, this proportion rises consider-
ably (to over 70%). In other words, even though only 40% of STEM graduates go 
on to work in “STEM occupations,” 70% of STEM graduates claim to utilize STEM 
skills on the job.9

What accounts for this discrepancy? In Table  2, we examine career choices of 
STEM graduates more closely. Specifically, we report the top ten jobs in each of the 
four permutations of whether a job (1) is classified as a STEM occupation and (2) 
requires STEM expertise. The smallest category of workers—containing, on aver-
age, 2.2% of STEM graduates across survey years—are those who work in “STEM 
occupations” but say their job does not require STEM skills. Eight of the top ten 
jobs are considered “computer and information scientists” by the NSF. The larg-
est category of workers—consisting of almost 40% of STEM graduates—are those 
who work in STEM occupations and say their job requires STEM skills. The top ten 
jobs include a broad mix of computer and information scientists but also engineers, 
chemists, and biological scientists.

Across survey years, about a quarter of STEM graduates leave according to both 
definitions of the STEM workforce: employees who neither work in STEM jobs nor 
report using STEM skills. About half of these workers are in the top ten jobs listed, 
largely health- and management-related occupations as well as sales and marketing 
occupations. Finally—and most provocatively for our understanding of STEMifica-
tion and leaving—about a third of STEM graduates report working in non-STEM 
occupations but nevertheless utilizing STEM skills. About 61% of these workers are 

Table 1   Percentage of STEM 
graduates who work in STEM, 
by two definitions of STEM

Occupation definition (%) Expertise 
definition 
(%)

NSCG year
  2003 41.96 70.54
  2010 39.63 72.45
  2013 39.58 72.04
  2015 40.48 72.68

9  Predictably, this story changes slightly once we omit workers in health-related occupations—who by 
definition do not work in STEM according to their occupation (so the denominator decreases but the 
numerator stays the same). Excluding these respondents, according to the occupation definition, the per-
centages of STEM graduates who persist in STEM increases by about 5 or 6 percentage points each 
year and according to the expertise definition, the percentages of STEM graduates who persist in STEM 
increase by about 2 or 3 percentage points each year. Results from replications by field of degree, gender, 
and ethnicity (as shown in Tables 3 and 4) are available by request.
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Table 2   Top 10 occupations for STEM graduates who leave/stay in STEM, by two definitions of STEM

Note: This table was generated using average statistics across all four survey years (2003, 2010, 2013, 
2015). The classification scheme changed slightly after 2003; categories only present in 2003 are omitted

Occupation 
definition

STEM STEM Non-STEM Non-STEM

Expertise 
definition

STEM Non-STEM STEM Non-STEM

% STEM 
graduates

38.24% 2.17% 33.69% 25.90%

1. Computer engi-
neers- software

Computer support 
specialists

Diagnosing/treating 
practitioners

Diagnosing/treating 
practitioners

2. Software develop-
ers- applications 
and systems 
software

Other computer 
information sci-
ence occupations

Top-level managers, 
execs, admins

RNs, pharmacists, 
dieticians, thera-
pists, physician asst, 
nurse practitioners

3. Electrical and elec-
tronics engineers

Computer system 
analysts

Other management 
related occupa-
tions

Other management 
related occupations

4. Mechanical engi-
neers

Network and 
computer systems 
administrators

Teachers: Second-
ary- computer, 
math or sciences

Top-level managers, 
execs, admins

5. Civil, including 
architectural/sani-
tary engineers

Software develop-
ers- applications 
and systems 
software

Engineering manag-
ers

Accountants, auditors, 
and other financial 
specialists

6. Computer system 
analysts

Medical scientists Other mid-level 
managers

Other administrative

7. Computer support 
specialists

Web developers Computer program-
mers

Other marketing and 
sales occupations

8. Chemists, except 
biochemists

Database adminis-
trators

Accountants, audi-
tors, and other 
financial special-
ists

Sales- retail

9. Other computer 
information sci-
ence occupations

Computer engi-
neers- software

Computer and infor-
mation systems 
managers

Insurance, securities, 
real estate and busi-
ness services

10. Biological scientists Biological scientists RNs, pharmacists, 
dieticians, thera-
pists, physician 
asst, nurse practi-
tioners

Health technologists 
and technicians

in the jobs listed. The most common is “diagnosing/treating practitioners,” includ-
ing dentists, psychiatrists, physicians, and veterinarians. Multiple categories include 
various kinds of managers. The list also includes secondary teachers (in “computer, 
math or sciences”); computer programmers; financial specialists; and other health-
related occupations, such as nurses and physician assistants. The finding that health 
occupations appear in both STEM expertise and non-STEM expertise categories 
was not anticipated; we return to this issue in the conclusion.
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Table 3   Percentage of STEM graduates who work in STEM, by field of degree and two definitions of 
STEM

Occupation  
definition

Expertise 
definition

Computer and mathematical sciences
  NSCG 2003 49.34% 74.94%
  NSCG 2010 48.35% 73.94%
  NSCG 2013 47.80% 73.35%
  NSCG 2015 50.29% 74.66%

Biological, agricultural and environmental life sciences
  NSCG 2003 19.34% 53.01%
  NSCG 2010 19.60% 58.63%
  NSCG 2013 19.91% 56.78%
  NSCG 2015 18.84% 55.72%

Physical and related sciences
  NSCG 2003 42.47% 69.92%
  NSCG 2010 40.67% 73.30%
  NSCG 2013 39.57% 72.01%
  NSCG 2015 41.89% 74.86%

Engineering
  NSCG 2003 56.47% 82.81%
  NSCG 2010 51.52% 83.43%
  NSCG 2013 51.42% 84.60%
  NSCG 2015 52.52% 85.55%

10  One concern is this finding is an artifact of the wording of the expertise measure, where respondents 
with a degree in the life sciences may not realize that a question about expertise in “the natural sciences” 
refers to them. Although we return to this issue in the conclusion, we are less concerned here because the 
relatively high degree of leaving among life science graduates is also documented using the occupation-
based measure of STEM—which presumably does not suffer from this limitation.

Now that we know where leavers go, Table 3 shows where they began. In other 
words, it provides persistence details by comparing our two measures of STEM 
employment for specific STEM degree fields. Both measures agree that the great-
est persistence occurs among bachelor’s degrees in engineering: Across all survey 
years, over half of such graduates go on to work in STEM occupations and over 80% 
report that their job requires STEM expertise.

Meanwhile, leaving is most common among degrees in the biological, agricul-
tural and environmental life sciences—where fewer than 20% go on to work in 
STEM fields and fewer than 60% report that their job requires STEM expertise.10 
Interestingly, while the occupation definition consistently suggests leaving is far 
more widespread than the expertise definition, the magnitude of this difference var-
ies by degree field. For instance, in 2015, twice as many graduates with a computer/
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mathematical sciences degree leave under the occupation definition (50%) compared 
to the expertise definition (25%), whereas leaving among engineering majors is 
over three times as common under the occupation definition (47%) compared to the 
expertise definition (14%).

Our two measures of STEM work also present contrasting trends over time. 
According to the occupation definition, the proportion of STEM graduates who 
enter STEM jobs remains fairly constant between 2003 and 2015—except among 
engineering majors, where there is a slight decrease. According to the expertise defi-
nition, however, computer/mathematical science majors are the only graduates who 

Table 4   Percentage of STEM 
graduates who work in STEM, 
by gender, ethnicity, and two 
definitions of STEM

Occupation  
definition

Expertise  
definition

Gender
 Male
  NSCG 2003 45.69% 73.65%
  NSCG 2010 43.76% 76.14%
  NSCG 2013 44.14% 76.77%
  NSCG 2015 46.21% 77.93%

 Female
  NSCG 2003 31.32% 61.65%
  NSCG 2010 29.41% 63.30%
  NSCG 2013 29.21% 61.26%
  NSCG 2015 28.16% 61.37%

Ethnicity
 White
  NSCG 2003 40.63% 70.32%
  NSCG 2010 37.69% 71.71%
  NSCG 2013 38.41% 71.52%
  NSCG 2015 38.61% 71.42%

 Asian
  NSCG 2003 52.66% 74.74%
  NSCG 2010 50.61% 77.83%
  NSCG 2013 49.00% 77.77%
  NSCG 2015 53.66% 80.78%

 Black
  NSCG 2003 36.41% 63.51%
  NSCG 2010 35.70% 65.08%
  NSCG 2013 33.95% 64.43%
  NSCG 2015 31.59% 62.99%

 Latino
  NSCG 2003 37.80% 68.34%
  NSCG 2010 35.69% 72.90%
  NSCG 2013 35.07% 70.70%
  NSCG 2015 33.08% 71.19%
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were as likely to use STEM skills on the job in 2015 as in 2003—all other STEM 
graduates were more likely to use STEM skills in the 2010s than in 2003. This dif-
ference might be explained by the increased use of software (STEMification).

Finally, Table 4 shows how contrasting measures of persistence impact our meas-
urement of gender and ethnic inequalities in STEM. The occupation definition of 
STEM again underestimates the scale of persistence vis-à-vis the expertise defini-
tion. Both definitions show a familiar portrait of inequality: Women are less likely 
to persist in STEM than men and Blacks and Latinos are less likely to persist in 
STEM than Whites. However, the specific contours of these differences, and trends 
over time, vary. For instance, the occupation definition suggests male persistence 
in STEM has remained fairly constant while female persistence increased slightly, 
whereas the expertise definition suggests female persistence has remained fairly 
constant whereas male STEM graduates have been increasingly likely to use STEM 
expertise on the job since 2003. The expertise definition shows different trends with 
respect to ethnicity as well: While all ethnic groups except Asians are less likely 
to work in STEM occupations in 2015 compared to 2003, all ethnic groups except 
Blacks are more likely to use STEM skills in 2015 compared to 2003. In fact, by 
2015, about 71% of White and Latino STEM graduates and 81% of Asian graduates 
use STEM skills on the job, while Black STEM graduates continue to exhibit the 
least persistence, at only 63%.

If STEM education is meant to prepare people for STEM jobs, then accurately 
identifying STEM jobs is an essential first step to assess the success of school-to-
work transitions. The fact that large percentages of STEM graduates report using 
college-level STEM skills in a wide variety of jobs suggests persistence in STEM—
and a STEM workforce that extends into a variety of different fields, including man-
agement and health.

Consequences of Leaving STEM

In this section, we look at STEM graduates who have left STEM beyond simply 
identifying where they work. Specifically, we assess whether a college-level STEM 
education is valuable even if workers do not believe they are using college-level 
STEM expertise, and whether leaving should thus be considered a failure of STEM 
education. Could a STEM education prepare people to work even outside of STEM? 
Might leaving—taking STEM education to non-STEM jobs—even represent a kind 
of success?

Here we look again at the data on training. We focus in Table 5 on workers who 
say their job does not require the expertise of a bachelor’s degree in STEM and 
assess the impact of having one. Specifically, we run four logistic regression mod-
els—one for each survey year—where the response variable is whether the respond-
ent took skills-related training in the past year. To isolate as much as possible the 
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Table 5   Predictors of attending skills-related training for jobs not requiring STEM expertise

2003 2010 2013 2015

Coef SE Coef SE Coef SE Coef SE

Demographic characteristics
  Age −.002 .002 .001 .005 .005 .004 .004 .004
  Gender
     (Male)
     Female .299*** .038 .042 .076 .196*** .056 .109 .070
  Ethnicity
     (White)
     Asian −.177** .061 −.061 .133 −.238* .098 −.391*** .112
     Black −.096 .051 .137 .111 −.019 .093 −.101 .097
     Latino −.118* .049 .086 .140 .230** .088 .056 .092
     Other .026 .096 .094 .219 .248 .148 −.117 .172
  Citizenship/visa status
     (Native citizen)
     Naturalized citizen/

permanent resident
−.356*** .044 −.360*** .097 −.371*** .086 −.010 .090

     Temporary resident −.688*** .153 −1.036*** .283 −.638*** .192 −.218 .439
  Children
     (No children in house-

hold)
     Children in household .241*** .041 .330*** .083 .204*** .057 −.001 .070
     Female*children in 

household
−.112* .053 −.009 .114 −.046 .084 .188 .097

Educational characteristics
  Field of first bachelor’s 

degree
     (Non-STEM)
     STEM −.171*** .042 −.142* .061 −.196*** .050 −.246*** .064
  Highest degree type
     (Bachelor’s)
     Master’s .297*** .032 .515*** .084 .356*** .052 .402*** .059
     Doctorate −.267*** .069 −.011 .146 −.170 .100 −.308** .107
     Professional 1.040*** .054 1.233*** .118 1.137*** .086 1.267*** .100
  �Years since most recent 

degree
−.009*** .002 −.007 .005 −.013*** .004 -.007 .004

Occupational characteristics
  Employer sector
     (For-profit)
     Education .931*** .040 1.191*** .087 1.035*** .059 1.214*** .069
     Self-employed .178** .056 .205 .143 .151 .088 .165 .110
     Non-profit .741*** .054 .749*** .099 .673*** .073 .706*** .080
     Government .640*** .041 .695*** .128 .588*** .077 .848*** .085
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Note: Logistic regression coefficients. For categorical variables, reference category is in parentheses
* p<.05; **p<.01; ***p<.001

Table 5   (continued)

2003 2010 2013 2015

Coef SE Coef SE Coef SE Coef SE

  Employer size
     (10 or fewer employees)
     11–24 employees −.135* .065 .113 .140 −.192 .098 .007 .112
     25–99 employees −.012 .058 .052 .119 .073 .088 −.154 .098
     100–499 employees .212*** .054 .313** .120 .134 .090 .113 .095
     500–999 employees .241*** .066 .090 .139 −.044 .099 .027 .118
     1000–4999 employees .338*** .055 .205 .131 .209* .089 −.068 .091
     5000-24999 employees .369*** .056 .426*** .129 .262** .095 .042 .101
     25000+ employees .389*** .057 .347* .143 .213* .085 .164 .095
  Full-time/part-time 

status
     (Part-time)
     Full-time .837*** .041 .727*** .075 .806*** .061 .891*** .070

Constant −1.012*** .103 −1.190*** .213 −1.149*** .139 −1.232*** .182
N 42,421 25,368 36,564 31,001

effect of a STEM education, explanatory variables include a wide array of demo-
graphic, educational, and occupational factors that could potentially affect the likeli-
hood of training (e.g., Knoke and Ishio 1998).11

Several trends are noteworthy. The likelihood of skills training is greater for those 
with a master’s degree and (especially) a professional degree in all four years and 
those who work in for-profit jobs are consistently least likely to train (compared to 
working in government, education, or non-profits). A variety of other terms show 
inconsistent effects over time (for instance, having children in the household is asso-
ciated with an increased likelihood of training in all years except 2015, and women 
are more likely than men to train in 2003 and 2013). Of primary interest to us, how-
ever, is that having a bachelor’s degree in STEM (compared to non-STEM) is asso-
ciated with a significantly lower likelihood of training to improve skills in all four 
survey years.

Though the negative effect of a STEM degree is robust controlling for a vari-
ety of factors that might affect training, it is possible that STEM degree holders 
in non-STEM jobs work in different non-STEM jobs—jobs where learnable skills 
or knowledge are less likely to be required. To test this possibility, we replicated 

11  Here and in most subsequent analyses—as well as in significance tests reported earlier—standard 
errors are calculated using replicate weight files provided by the NSF. Due to small sample sizes, repli-
cate weights could not be employed for our robustness check controlling for occupation and so traditional 
standard errors are used.
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all four models including fixed effects for the occupation of each respondent 
(using the level of precision reflected in Table  2)—ensuring we are comparing 
the likelihood of training by those with and without STEM degrees in identical 
jobs (as precisely as the NSCG can measure them). The results show that in all 
years except 2010 (where the sample size is smallest), the effect continues to be 
negative and significant: Even at the same (non-STEM) jobs, individuals with 
STEM degrees are less likely to train than those with non-STEM degrees.

To assess whether STEM and non-STEM graduates working in non-STEM jobs 
differ with respect to other outcomes, we precisely replicated the four models in 
Table 5, but using eleven alternative response variables (and standard linear regres-
sion, rather than logistic regression, as appropriate): one measuring respondents’ 
(annualized) salary; one measuring respondents’ overall job satisfaction (assessed on 
a four-point scale where 4 = “very satisfied,” 3 = “somewhat satisfied,” 2 = “some-
what dissatisfied,” and 1 = “very dissatisfied”); and nine measuring respondents’ job 
satisfaction (assessed identically) regarding specific dimensions of their job.

Results are summarized in Table 6. To emphasize trends, we do not report control 
variables or the values of coefficients (available from the corresponding author by 
request) and instead focus on whether the effect of having a STEM bachelor’s degree 
(compared to a non-STEM bachelor’s degree) is statistically significant, and in what 
direction (positive or negative).

First, we find there is little indication of a salary advantage: In three of the four 
years, the salaries of STEM and non-STEM graduates are statistically indistinguisha-
ble (STEM graduates make significantly more in 2003 only). Second, in all four years, 
STEM graduates are less satisfied than non-STEM graduates with their non-STEM 
jobs. Third, regarding the source of their job dissatisfaction, the NSCG provides many 

Table 6   How STEM graduates compare with non-STEM graduates in jobs that do not require STEM 
expertise

Note: Cell values reflect the sign (positive/negative) and significance level of the “STEM” (field of first 
bachelor’s degree) effect in OLS regressions with the response variables listed above. Control variables 
are suppressed (and include all other effects in Table 6). Empty cells reflect non-significant effects
*p<.05; **p<.01; ***p<.001

2003 2010 2013 2015

Salary higher*
Job satisfaction (overall) lower* lower* lower* lower**
Job satisfaction (specific items)
 Salary lower*
 Benefits
 Job security
 Job location lower* lower*
 Opportunities for advancement lower* lower*
 Intellectual challenge lower*** lower** lower*** lower***
 Level of responsibility lower* lower**
 Degree of independence lower*** lower**
 Contribution to society higher**
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reasons for respondents to choose, but only one reason is statistically significant in all 
four years: Compared to non-STEM graduates, STEM graduates in non-STEM jobs 
are consistently less satisfied with the intellectual challenge of their jobs.12

Taken together, these results suggest mixed, though mostly negative, conclusions 
regarding the preparation that STEM degrees provide for jobs that do not require 
college-level STEM skills. The lack of a discernible salary boost suggests no special 
advantage from a STEM degree. Meanwhile, the consistent comparative dissatisfac-
tion of STEM graduates in non-STEM jobs, particularly regarding their intellectual 
challenge, suggests that a STEM education might actually over-prepare employees 
for non-STEM work—leading them to be bored.

It is more challenging to interpret the finding of less training for skills and knowl-
edge by STEM graduates in non-STEM jobs. This pattern could mean they have no 
skills deficit, or their deficit is not being addressed, or something else. It is difficult 
to imagine that STEM graduates face discrimination that excludes them from train-
ing. The large array of control variables—including gender, ethnic background, and 
the presence of children in the household—also means our findings are unlikely to 
be an artifact of other differences between STEM and non-STEM graduates. Unfor-
tunately, other possible explanations, such as differing ambitions or ability levels of 
STEM and non-STEM graduates, are impossible to assess here.13

The explanation we suggest is linked to the overall portrait of outcomes, and spe-
cifically to the finding of STEM graduates’ intellectual dissatisfaction in non-STEM 
jobs. Though these jobs do not require college-level STEM expertise per se, they 
may still have technical, scientific, or mathematical components that give STEM-
educated workers a comparative advantage—enough that they need not train, but 
not enough for consistent wage rewards. Put another way, non-STEM graduates 
may be entering non-STEM jobs with a skills deficit—and STEM graduates with 
a skills surplus—which is also why they do not find these jobs to be “intellectu-
ally challenging.” This interpretation coincides with other evidence. For example, a 
survey of recruiters for Fortune 1000 companies found that 60% saw workers with 
STEM degrees as “more in demand” than those without and that “STEM skills 
are in demand by employers for jobs that are traditionally considered non-STEM” 

12  This pattern holds even controlling for occupation. All major trends discussed in this section of results 
(related to differences between STEM and non-STEM graduates in terms of training, overall job satisfac-
tion, and satisfaction with intellectual challenge) also persist (and increase in magnitude) when health-
related occupations are excluded. Other noteworthy findings in Table 6 that might fruitfully be explored 
elsewhere are that in 2003 (and only in 2003) STEM graduates expressed that they were more satis-
fied than non-STEM graduates with their (non-STEM) job’s contribution to society; and in 2015, STEM 
graduates were less satisfied than non-STEM graduates with more aspects of their work than in any other 
year—six of nine dimensions.
13  One is that these workers, who may have chosen to not use their STEM education in their careers, are 
also choosing not to improve their skills or knowledge—they have, in a sense, given up career ambition. 
If this was the case, however, we might expect them to have lower salaries than non-STEM graduates; 
they do not. Another possibility is that STEM graduates are faster learners than non-STEM graduates—
so fast that they are less likely to need formal training. This is certainly possible; some research shows 
STEM majors have higher scores on the SAT, GRE, and other standardized tests (Wai et al. 2009; Wai 
2015). The premise of STEM education efforts in schools and in policies, however, is that anyone can 
perform STEM work if properly trained.
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(Bayer Corporation 2014: 620). Still, the finding of lower satisfaction casts doubt on 
the notion that STEM education serves the joint purpose of supplying workers for 
STEM and non-STEM jobs—a conclusion we return to below.

Discussion and Conclusion

We have understood the STEM pipeline metaphor as a way to think about educa-
tion and career processes, but also as containing assumptions about how STEM 
training and career processes can and should work. In contrast, we have sought to 
empirically describe important dimensions of the STEM workforce, demonstrating 
and transcending the limits of this metaphor as a frame for education, training, and 
career research.

We have argued that understanding STEM education and career processes can be 
improved in three ways: understanding (1) the duration and continuation of STEM 
training into STEM careers (or the “length” of the pipeline and whether it has criti-
cal demarcations); (2) the measurement of persistence in STEM (or the “contents” 
of the pipeline, and which jobs should be considered “in” or “out”); and (3) the con-
sequences of leaving (or the “purpose” of the pipeline and whether “leakage” is a 
problem or denotes failure). The payoff is a more nuanced and empirically accurate 
picture of workforce development in this important area.

What does this picture look like? Regarding the continuation of training, we 
found that more than half of STEM graduates who have moved into STEM work 
continue skills-related training. Moreover, this learning continues with no discern-
ible decline even 30 years after degree attainment (after 40 years, over 40% are still 
training). Though entering the world of work means getting paid for the deployment 
of skills and knowledge, learning does not stop at any clearly demarcated point (or 
pipeline “end”)—belying the notion of a clear separation between education and 
work or between student and worker.

Survey limitations do not allow a more in-depth exploration of this learning, but 
a major takeaway is for scholars and policymakers to consider STEM education as 
a lifelong phenomenon and not only a matter of formal, degree-oriented education. 
Preschool, K-12, college, and graduate school experiences are certainly impor-
tant and crucial parts of STEM training. But only studying these stages of learning 
implies that career preparation ends at graduation and that obstacles and barriers 
that occur after the end of degree-focused learning are not significant. If that mes-
sage is imparted to learners, it could be a recipe for disillusionment. For scholars 
and policymakers concerned about representation of women and ethnic minorities 
in STEM, it is essential to follow the entire educational journey of these individuals 
for as long as it lasts. Put simply, work is commonly another stage of learning—one 
that STEM workers commonly take on for life (see Bills 2004 for a similar argument 
regarding a broader range of careers).

Regarding the measurement of STEM persistence, we found that defining STEM 
jobs in terms of whether bachelors-level STEM expertise is required (based on the 
subjective reports of workers themselves) significantly affects the amount of per-
sistence and leaving. Namely, there are far more jobs that require high-level STEM 
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skills and knowledge than the definition of STEM based on occupational titles 
implies, suggesting a large number of jobs are indeed STEMified.

If we consider these STEM-expertise jobs to be part of the STEM workforce—
entailing at once a more flexible and precise measurement of pipeline “contents” 
that does not simply define entire categories of employees as “in” our “out,” regard-
less of their actual job experiences—our overall estimates of persistence and leaving 
change radically. Leaving plummets from 60% to 30%. Put another way, while only 
40% of STEM graduates work in traditional STEM occupations, 70% continue to 
use STEM skills on the job. This gap is explained especially by moves to manage-
rial and health occupations, though the range of jobs requiring STEM expertise is 
very wide. We also found that although the STEM pipeline is usually discussed as 
a monolithic aggregate, persistence varies greatly by field of degree, as over 80% 
of engineering majors use STEM skills in their work compared to less than 60% of 
biology/life sciences majors.

This understanding of persistence also provides a very different picture of STEM 
diversity. Specifically, we see that at the stage of full-time employment, persistence 
is a bigger problem for women than for racial and ethnic minorities. By 2015, wom-
en’s persistence doubles when we define STEM work in terms of expertise, and it 
reduces somewhat the gap with men. However, women’s persistence remains sig-
nificantly lower—a difference of more than 16%. A key takeaway here is that factors 
related to leaving STEM at the stage of work are not limited to traditional STEM 
occupations.

The race/ethnicity story during full-time employment shows different patterns. 
First, except for the White deficit relative to Asians in traditional STEM occupa-
tions, none of the leaving differences reach double digits. Second, whereas the Afri-
can American persistence deficit increases slightly when we use the expertise defi-
nition of STEM work, for Latinos, the persistence deficit vis-à-vis Whites shrinks 
from a few percentage points to nearly zero. Meanwhile, the White deficit compared 
to Asians is almost cut in half, down to less than 10%.

Employment persistence problems thus affect different workers differently. 
Women face significant pushes or pulls out of STEM at high rates with either def-
inition of STEM work. Since STEM expertise jobs are often managerial, African 
Americans and Asian Americans may face obstacles moving to the managerial track 
(on discrimination against Asians in management; see Varma 2002). When we con-
sider all STEM expertise jobs collectively, the reduction of Latino leaving is a sur-
prising finding that warrants further study.

The large impact that the STEM-expertise definition has on measurements of 
persistence should give researchers pause regarding conclusions that rely on occu-
pational definitions only. There is little reason to think that occupational labels cre-
ated several decades ago capture what workers do today. Like the “hybrid research 
careers” in the study of science research (Cañibano et  al. 2019), STEM careers 
throughout the economy are undergoing change as old, non-STEM jobs like “anima-
tor” are replaced with new STEM jobs like “image-mastering engineering” (Moretti 
2012: 45). In research science, there are jobs where STEM skills are likely neces-
sary: research foundation program officers, science journal editors, and research lab 
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managers. Any of these positions may require at least college-level STEM expertise, 
and be considered part of the STEM workforce.

Finally, regarding the consequences of leaving STEM and the purpose of a STEM 
degree, our results are more complex. We found that STEM graduates in non-STEM 
jobs made similar incomes to non-STEM graduates in non-STEM jobs, but were 
less likely to report skills-related training and were less satisfied with their jobs, spe-
cifically the lack of intellectual challenge. We cautiously interpret these results to 
suggest that even non-STEM jobs may be undergoing (a lighter version of) STEMi-
fication. In these cases, skills learned by STEM majors are useful, but only such that 
they are less likely to need training—and rather than exceling at their jobs, STEM 
graduates are bored by them. This dissatisfaction indicates that while STEM educa-
tion provides excellent preparation for a broad range of jobs, it is indeed a prob-
lem, if not necessarily a “failure,” when STEM graduates leave to take non-STEM 
jobs. Coupled with the lack of income advantage that such workers experience, this 
may be especially problematic to policymakers hoping to frame STEM degrees as a 
means of social mobility.

Our work is limited in a number of ways. One is that our focus on STEM edu-
cation does not take into account people who start with non-STEM degrees and 
move into STEM jobs. The pipeline metaphor posits a singular pipeline with 
leaks and does not easily accommodate this population, which may include 15% 
of STEM workers (Kannankutty 2007). Although it is possible to reconceptualize 
the pipeline as two flows (STEM and non-STEM graduates) heading to one desti-
nation (jobs requiring STEM expertise), we do not explore this issue here.

We also acknowledge weaknesses in our measures, although we believe they are 
the most faithful to our empirical interests that are currently available. Earlier, we 
noted that the NSCG questions on training—which do not record intensity or fre-
quency and prompt respondents to think of training narrowly and formally—likely 
understate our key results. Another concern is that the STEM expertise question 
prompts respondents to think about a degree in math, computer science, or engi-
neering, while using the vaguer term “natural sciences” as a catch-all for life sci-
ences, chemistry, physics, and others. Respondents who use skills and knowledge 
based in these latter fields may not see the expertise question as directed at them 
and thus be counted out of our measure of STEM workers (see note 10).
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This is especially relevant to the medical workers who show up in both STEM 
expertise and non-STEM expertise categories and yet are considered only “S&E-
related” according to the NSF’s occupation definition of STEM. Although results 
from our replications with health-related occupations omitted were highly con-
sistent with those reported in the main text, the categorization of medical occu-
pations is a longstanding ambiguity in STEM research and policymaking. Some 
medical workers may not affirmatively respond to the appropriate survey question 
despite their use of college-level life sciences, and so they appear to leave even 
with the expertise definition of STEM. This would understate the level of pipeline 
persistence, such that STEM persistence is even more common than we report. 
Future research could explore the potentially unique issues of STEM learning, 
persistence, and measurement within specialized occupational fields such as med-
icine and academia.

Future research could also fruitfully explore other dimensions of STEM training 
and career processes. For example, we know little about how much STEM educa-
tion is necessary to maintain forward movement in STEM-expertise jobs. Is it neces-
sary to major in STEM subjects, or to minor in them, is taking certain college-level 
classes sufficient, and how does this vary by field? At the career stage, how much 
training is necessary for career maintenance and advancement, what forms can this 
learning take, how does this vary by field, and how does it vary by employment 
sector (industry, academia, government R&D)? Here, research may fruitfully take 
into account the rise of non-degree credentials, such as certificates, that have been 
prominent in IT fields, especially for those who already have a postsecondary degree 
(Ewert and Kominski 2014). Future research might also examine STEM graduates 
who do not use their STEM expertise on their jobs. Who are these workers; why did 
they leave STEM; and if they are dissatisfied with the intellectual challenges of their 
jobs, could their skills be better utilized by their employers?

We encourage researchers to approach STEM education and employment as a 
complex social infrastructure linking educational institutions to workplaces, careers, 
and lifelong learning. For anyone interested in STEM jobs and spurring innovation 
with equal opportunity, the findings reported here suggest attention would be fruit-
fully given to the full range of STEM learning and occupational experiences.
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Appendix

Table A1   Wording of "reasons for training" questions on the NSCG

Available options in the 2003 NSCG
	 “To gain further skills or knowledge in your occupational field”
	 “To increase opportunities for promotion, advancement, or higher salary”
	 “To facilitate a change in your occupational field”
	 “Required or expected by employer”
	 “For licensure or certification”
	 “To learn skills or knowledge needed for a recently acquired position”
	 “Other—Specify”
Available options in the 2010, 2013, and 2015 NSCG
	 “To improve skills or knowledge in your current occupational field”
	 “To increase opportunities for promotion or advancement in your current occupational field”
	 “To facilitate a change to a different occupational field”
	 “Required or expected by employer”
	 “For licensure or certification in your current occupational field”
	 “For leisure or personal interest”
	 “Other—Specify”

Note: Bolded options are considered “skills-related training” in the main text

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
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