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Abstract
We propose a non-representationalist framework for deep learning relying on a 
novel method computational phenomenology, a dialogue between the first-person 
perspective (relying on phenomenology) and the mechanisms of computational 
models. We thereby propose an alternative to the modern cognitivist interpretation 
of deep learning, according to which artificial neural networks encode representa-
tions of external entities. This interpretation mainly relies on neuro-representation-
alism, a position that combines a strong ontological commitment towards scientific 
theoretical entities and the idea that the brain operates on symbolic representations 
of these entities. We proceed as follows: after offering a review of cognitivism and 
neuro-representationalism in the field of deep learning, we first elaborate a phe-
nomenological critique of these positions; we then sketch out computational phe-
nomenology and distinguish it from existing alternatives; finally we apply this new 
method to deep learning models trained on specific tasks, in order to formulate a 
conceptual framework of deep-learning, that allows one to think of artificial neural 
networks’ mechanisms in terms of lived experience.

Keywords Computational sciences · Deep learning · Phenomenology · 
Cognitivism · Cognitive science · Neuroscience
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1 Introduction

In the past years, deep learning (DL) has achieved impressive feats, its artificial neu-
ral networks (ANNs) competing with human performance on tasks involving the 
understanding or the generation of text (Devlin, et al., 2019; Brown, et al., 2020; 
Schulman, et al., 2022), images (Radford, et al., 2021; Ramesh, et al., 2021) or speech 
(Baevski, et al., 2020; Hsu, et al., 2021). DL has had a revolutionary impact in the 
industry and society, as well as in scientific research (DeVries, et al., 2018; Davies, 
et al., 2021; Jumper, et al., 2021). Specifically, ANNs’ ability to successfully mimic a 
number of human cognitive processes, has fueled comparative research between DL 
and cognitive sciences or neurosciences (Yamins, 2016; Kumar, et al., 2022; McClel-
land, 2022; Millet, et al., 2022). Recently, DL also motivated renewed philosophical 
perspectives upon old questions relating to the mind, brain and behavior (Buckner, 
2019; Sloman, 2019; Fazi, 2021; Perconti & Plebe, 2020).

Despite its successes, ANNs are notoriously hard to interpret, in the sense that we 
cannot exactly understand how they solve their tasks (Boge, 2022). For this reason 
they are sometimes referred to as “black boxes” (Castelvecchi, 2016). This opacity 
makes DL models susceptible to diverse interpretations through different conceptual 
frameworks. The most prominent framework for the interpretation of DL has been 
cognitivism, the first research program in cognitive sciences (MacKay, et al., 1956; 
Lees & Chomsky, 1957; Minsky, 1961). Relying on the functioning of the Turing 
machine, cognitivism defends cognition in terms of symbol manipulation: cognitive 
processes are thought to rely on representation of entities1 of an external pregiven 
world. This approach has been influential both in cognitive sciences and philoso-
phy of mind, with Fodor’s computational theory of mind being the most prominent 
(Fodor, 1983).

DL originates within connectionism, a computationalist framework that disputes 
that cognitive, computational processes are leveraged by symbol manipulation 
(McCulloch & Pitts, 1943; Rosenblatt, 1958; Rumelhart, et al., 1986). Aiming for a 
more “biological” resemblance of the distributed operations of the brain, connection-
ism brings forth the ancestors of DL models, such as Rosenblatt’s perceptron (Rosen-
blatt, 1958). Unlike cognitivism’s Turing machine, these mathematical models do not 
need to be implemented fully: they can learn how to solve tasks by slowly adjusting 
to new inputs. With these models, connectionism promotes a new conceptual frame-
work to think about human cognition as emergence of global states to fulfill cogni-
tive functions. It therefore initially opposes cognitivist’s symbol-like representations 
: “one-to-one mappings” between entity and representation (Rosenblatt, 1958)2.

1  We use the ontologically neutral term of “entity” as it does not matter for our purpose whether the ontol-
ogy of the world is conceived in terms of objects, properties, relations, processes, events, tropes, or other 
metaphysical categories. What is important is the representative relation holding between those entities 
and the mental symbols according to cognitivism. It should also be noted that this relation does not imply 
that the grammar of those symbols has to match the ontology of the world. For example, the representa-
tion of a process does not need to represent it as a process.

2  However, as Bechtel and Abrahamsen (1991) notes, from the 1980s, connectionists try to reconcile their 
theory with the predominant cognitivism, insisting that their models “should be embraced as a subsym-
bolic alternative to symbolic models of cognition”.
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Although it stems from connectionism, DL is today largely thought in terms of 
representation-based operations – relying on the cognitivist toolkit. In fact, connec-
tionist models’ self-organizational capabilities happen to be of use for the convinced 
cognitivist, because they can provide the otherwise unanswered explanation of how 
a system can learn symbols. ANNs learn symbolic representations of external prop-
erties on the basis of which they can execute further computations to solve tasks. 
This stance is quickly associated with neuro-representationalism (NR), combining 
a strong realism towards scientific entities with the idea that we experience a brain 
generated model of these entities (Churchland & Sejnowski, 1990; Milkowski, 2013; 
Mrowca, et al., 2018; Sitzmann, et al., 2020).

NR with the notion of representation is pervasive both in computational neurosci-
ence (Piantadosi, 2021; Poldrack, 2021) and DL itself (LeCun, et al., 2015; Ha & 
Schmidhuber, 2018; Gidaris, et al., 2018; Chen, et al., 2020; Goh, et al., 2021; Mat-
suo, et al., 2022). In Nature’s most cited paper, “Deep Learning” for example, ANNs 
are described from the first paragraph, as machines that can “be fed with raw data” 
and “automatically discover the representations needed for detection or classifica-
tion” (LeCun, et al., 2015). To the best of our knowledge, this framework is implicitly 
prevalent in deep learning literature. Often, deep learning researchers motivate their 
use of the cognitivist concept of representation by relying on NR; see this recent deep 
learning textbook for example:

More often than not, hidden layers have fewer neurons than the input layer to 
force the network to learn compressed representations of the original input. For 
example, while our eyes obtain raw pixel values from our surroundings, our 
brain thinks in terms of edges and contours. This is because the hidden layers of 
biological neurons in our brain force us to come up with better representations 
for everything we perceive. (Buduma et al., 2022)

Furthermore, DL researchers commonly interpret ANNs as learning “world models”, 
that mimic external world structures and dynamics to plan ahead (Ha & Schmidhu-
ber, 2018; Matsuo, et al., 2022). When used to understand the mind, these “world 
models” are oftentimes reduced to perception; the idea being the following: because 
perception is indirect, the brain must build internal models in an attempt to represent 
what could potentially be the perceptual space state of affairs (Von der Malsburg, 
1995; Ashby, 2014; Saddler, et al., 2021). This introduction of intermediate represen-
tations posits the existence of an external reality, the ontological structure of which 
can (arguably) be known independently of the way the mind relates to it (metaphysi-
cal realism), but that we can never directly access through our perception (represen-
tationalism). In philosophy, this form of representationalism is famously opposed 
by phenomenology, which puts on hold the question of the existence of an external 
reality in favor of a rigorous description of lived experience (Husserl, 1931; Merleau-
Ponty, 1945). Today, in cognitive science, and under the influence of phenomenology, 
representationalism is further challenged in the Embodied and Enactive Cognitive 
Science (EECS) research program (Varela, et al., 1991; Hutto & Myin, 2012; Chem-
ero, 2011; Di Paolo, et al., 2017; Gallagher, 2017).
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Taking into consideration these critiques of representationalism, this paper aims 
to provide a conceptual framework of DL that does not rely on symbols as the basic 
units of cognition. As such, we chose to rely on phenomenology, privileging insights 
from the careful description of reality as it appears to us in first-person perspective. 
Furthermore, following Lutz and Thompson (2003), we will leverage three levels of 
enquiry, or sources of exploration of cognition : the neurophysiological source, the 
phenomenological source and the computational source. Historically, the computa-
tional source was used to formalize and link the findings obtained from the two other 
sources. With DL successfully mimicking some of our cognitive processes, the com-
putational source now generates new data and becomes a new source of exploration. 
This observation opens up the possibility of computational phenomenology (CP): an 
exclusive dialogue between the computational and the phenomenological source that 
puts on hold the question of the material basis of cognitive processes (which belongs 
to the neurophysiological source). The point of such a dialogue is not to disqualify 
the neurophysiological source, but rather to provisionally let the two other sources 
free of any constraint or import coming from the third one. As such, this dialogue is 
more faithful to phenomenology (relying on first-person descriptions of experience) 
than EECS approaches that tend to recast phenomenology in a more naturalist, third-
person point of view. Turning to DL, we find that from lived experience, the apparent 
non-decomposability of ANN operations – their “black box” aspect – is not surpris-
ing as the underlying mechanics of many of our cognitive processes are unclear, 
or opaque, to us. This observation allows us to both propose new phenomenology-
drawn concepts to think of ANN operations, and to embrace the opaque processual 
nature of cognitive processes.

It should be noted that the proposition contained in the following pages does not 
intend to constitute a research program but rather the outlines of such a program. As 
such, we are not suggesting that CP is the only valid approach to ANNs that ought to 
be adopted by researchers. At the preliminary stage we find ourselves in the develop-
ment of CP, it can only claim the status of an alternative conceptual framework to 
interpretations already present in the field of research. Thus, the contribution of this 
paper is threefold, we propose computational phenomenology, a new methodology 
and conceptual framework for philosophers and cognitive scientists to conceive (1) 
of the mind and its relation to (2) task-solving computational models; such a concep-
tual framework provides (3) DL engineers with a new experience-based toolkit by 
applying this methodology to the operations of ANNs.

2 Cognitivism and Neuro-representationalism in Deep Learning

DL is concerned with the design and the training of ANNs. An ANN sequentially 
connects layers of (non-linear) threshold-activated nodes with linear operations 
according to a set of weights to transform an input into an output. Layers between the 
input layer and the output layer are called hidden layers; the “deep” in DL refers to 
the multiple hidden layers in the ANNs.

The weights of an ANN are not fixed but are gradually adjusted to better solve 
a precise task. To enable learning, the deep learning researcher picks three main 
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ingredients, given some particular data: the network’s architecture (the way in which 
the different nodes are connected through the weights), a loss function (that models 
the objective of the task) and a learning rule (that dictates the way the weights are 
updated according to the loss function – and is almost always based on an algo-
rithm called backpropagation (Rumelhart, et al., 1986). Once the optimization of the 
weights – also called training – is done, ANNs allow inference: the propagation of 
new input all the way to output layers, causing the nodes of the hidden layers to acti-
vate in a particular way. In short, once the ANN is trained, the weights are fixed and 
allow the processing of new inputs; on the other hand, the activations are obtained 
through inference and always correspond to one given input. These weight-deter-
mined successive activations, or patterns of activations, are not easily interpretable. 
Importantly, this means that it is not possible – so far at least – to clearly decompose 
them into explainable steps, or symbol-based operations. The original connectionist 
framework sees them as nothing more than emerging states and is already satisfied 
that they allow solving a particular cognitive task (Varela, et al., 1991, p. 98). How-
ever, some researchers reject the apparent weaker explanatory power of this interpre-
tation in favor of reading of DL in terms of cognitivist’s mind-computer metaphor : 
i.e. conceiving cognition as symbolic computation (LeCun, et al., 2015; Buduma, et 
al., 2022; Matsuo, et al., 2022).

A cognitivist reading of an ANN relies on interpreting its pattern of activations 
as symbol-based operations. We argue that this reading isn’t motivated by technical 
reasons but that it is grounded in a philosophical worldview. Cognitivism, from its 
birth in the 1950s, relies on the mechanisms of the Turing machine to interpret human 
cognition (Putnam, 1967; Fodor, 1983). When one implements a Turing machine, 
one decides what a one or a zero in a given cell means, that is to say, to what it relates 
to in our world. This physically manipulable entry then carries a human-assigned 
meaning; it becomes a symbol that represents a given external entity, and on the basis 
of which Turing machines can carry out meaningful operations. In a second step, 
cognitivism transposes this functioning to the mind. The mind is thought to run on 
the basis of mental representations, that semantically encode properties of an exter-
nal pregiven world analogously to the symbols of a Turing machine3. Cognitivism 
therefore implies a metaphysical realism, the view that there exists an external world, 
with entities, independently of our perception or thoughts of it. Cognitivism can be 
systematized around the answers given to three major questions:

1) What is The World?
 An external reality that exists independently of our cognition of it.

2) What is A Representation?
 A symbol that stands for an entity of the world.

3  What precisely characterizes cognitivism, according to Varela, is not the commitment to the notion 
of representation, in a broad and relatively vague sense of the term, but rather the claim that cognition 
consists in symbol-based operations: “[The] notion of representation is—at least since the demise of 
behaviorism—relatively uncontroversial. What is controversial is the next step, which is the cognitivist 
claim that the only way we can account for intelligence and intentionality is to hypothesize that cognition 
consists of acting on the basis of representations that are physically realized in the form of a symbolic 
code in the brain or a machine.” (Varela, 1991, p. 40).
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3) What is The mind?
 A system capable of rule-based operations to carry out cognitive processes.

Metaphysical realism is however a philosophical assumption or standpoint, which 
cannot be proven by cognitivism: after all, by cognitivist lights, we only ever have 
access to our mental representations of the external world. Furthermore, in this set-
ting it isn’t clear how the correspondence between the entity and the representation 
is grounded. There is no possible way to step outside our mental representations and 
observe the real world and the way it relates to our representations of it in the same 
way the implementer of a Turing machine knows what symbol relates to what entity.

As a mathematical model capable – after training – to solve tasks without relying 
on the assignment of symbols (except for input and output nodes), the ANN is of 
special interest to cognitivism. Rather than questioning her conceptual framework 
– given that computation without representation suddenly seems possible –, the con-
vinced cognitivist supposes that ANNs do in fact rely on internal symbols to solve 
tasks. Henceforth, she obtains a model that does not need symbol assignment as it 
learns them. Following this position, ANNs offer cognitivism’s missing element and 
can be thought of as some sort of elaborate Turing machine that self-adapts to obtain 
symbol-like representations of some external properties. They are thought to simulta-
neously learn how to represent important properties – for themselves (as if they were 
the implementer of the Turing machine) – and how to use these representations to 
solve their task. This stance however relies on the supposition that ANNs do indeed 
learn Turing-like symbols4. Furthermore, it is not clear if cognitivism’s initial prob-
lem is solved as even by relying on the ANN it is not clear how our representations 
relate to the external world.

In today’s cognitive sciences and deep learning literature, this idea of a self-
organizing Turing machine is frequently taken up in a new version of cognitivism: 
neuro-representationalism (NR). In NR, cognitivism’s metaphysical realism takes the 
specific form of a strong scientific realism: the external entities that exist indepen-
dently of us become the theoretical entities of modern natural sciences. Additionally 
the cognitivist-interpreted ANN becomes a model of the brain; in other words, the 
brain is thought to learn Turing-like mental representations of the world. Finally, 
NR takes cognitivism’s representationalism to its extreme by making a claim about 
our conscious experience: we experience a brain generated model of these entities 
(Churchland & Sejnowski, 1990; Mrowca, et al., 2018; Sitzmann, et al., 2020); for 
criticism see (Zahavi, 2018; Hipólito, 2022). Frith puts it in slogan form: “my percep-
tion is not of the world, but of my brain’s model of the world” (Frith, 2007). Accord-
ing to NR, agents do not directly perceive a photon and its wavelength but only a 
mental representation of it – in this case, a certain color (Metzinger, 2009). NR too 
can be systematized around three major questions:

4  At this point the reader might argue that the fact that ANNs can be implemented on Turing machines 
does show that they do rely on symbols. The reason this argument fails is that, in such a case, the numbers 
on the tape of the Turing machine don’t explicitly stand for anything, since it was not the implementer 
who chose what they stand for.
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1) What is The World?
 The physical world, composed of the scientific entities discovered by science.

2) What is A Representation?
 A symbol learned by the brain that encodes an external entity of the world.

3) What is The mind?
 Composed of the cognitive processes responsible for mental phenomena – 
which consist in neural computations on the basis of the representations – and 
of the content of these phenomena, consciousness – which is given only by the 
representations.

NR’s concept of representation is pervasive in the DL field. In LeCun et al.’s paper 
(2015), we find a common cognitivist interpretation of ANNs from the first para-
graph, describing them as machines that can “be fed with raw data” and “automati-
cally discover the representations needed for detection or classification” (LeCun, et 
al., 2015). Following this view, the first layers of the ANN operate a feature extrac-
tion, computing relevant features, or representations, while the last layers adequately 
combine these – carrying out some form of “reasoning”. It is also common to con-
sider the layers as extracting features hierarchically, where the first layers compute 
“low-level” representations – such as edges in an image – and subsequent layers 
compute “high-level” representations – such as larger motifs in an image (LeCun, et 
al., 2015). An analogous interpretation can be found in computational neurosciences, 
when describing, for example, early vision as extracting low-level representations 
on the basis of which higher-level reasoning is carried out in the brain (Buduma, et 
al., 2022) Actually, the frequent implicit presence of cognitivism in DL research is 
revealed in the specific form that it takes, which is NR (Silver, 2015; Buduma, et al., 
2022; LeCun, 2022).

A fundamental condition for the acceptance of the construct of NR is the existence 
of a pre-given world. Reenacting such an agent/world setting corresponds to a large 
field of DL called deep reinforcement learning (DRL) (Mnih, et al., 2015; Silver, et 
al., 2016; Eppe, et al., 2022; Wang, et al., 2022). DRL trains an ANN, considered as 
an agent, to select the right actions based on the observations (or states) of an external 
environment in order to maximize potential reward (Fig. 1). In this setting the ANN 
is typically thought to learn an internal world model that represents the dynamics of 
the environment and allows it to predict, reason, and plan (Ha & Schmidhuber, 2018; 

Agent 

state 
s 

DNN 

parameter 

 policy  
(s, a) )

Environment Take action a 

Observe state s 

Reward r 

Fig. 1 Model-free deep reinforcement learning. The ANN, or DNN (deep neural network), learns to 
pick an action based on observations of an external environment, in order to maximize reward. Taken 
from (Mao, et al., 2016)
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Goyal, et al., 2022; Mazzaglia, et al., 2022; Driess et al. 2022). The concept of “world 
model” is very important among researchers: it is often thought to be the key element 
to human-level intelligence (Matsuo, et al., 2022). While, in the literature the term 
“world model” can refer to different things, in the context of DL it means that the 
ANN does not rely directly on the external environment but operates on the basis of 
its “world model”. Once again, the motivation comes from the cognitivist assump-
tion that an agent does not have direct access to the world and therefore has to “won-
der” and “interact” with it through the mediation of internal representations. If this 
internal character is taken as far as making the world model the realm of perceived 
things, we get the key ingredient for NR: conscious experience, then, is (limited 
to) our model of the world. Subsequently, when the ANN learns to extract features 
from its environment, it is thought to be analogous to the brain learning to “come 
up” with internal representations of the hidden physical world. By this reasoning, 
DRL becomes a direct mathematical formalization of NR. In the Machine Learning 
research community, DRL – a growing field in neuroscience (Botvinick, et al., 2020) 
– is almost exclusively interpreted in this NR setting – in fact, the brain-in-the-world 
analogy is typically used to introduce the field of DRL (Fig. 2).

In short, although DL stems from connectionism, a program compelled to reject 
the challenges that come with assuming (Turing) symbol computation mechanisms 
on the neurobiological level, the majority of research today carried out in DL still 
incorporates the cognitivist toolkit, employing concepts (such as world models, rep-
resentation, etc.) which, then, returns cognition as reducing to NR.

The DL researcher might however object that the concept of representation is of 
technical use in numerous applications. Indeed, the term representation is often used 
as a synonym of the term embedding, a low-dimensional feature typically obtained 
by extracting node activations at a particular layer of a trained ANN. When working 
with images for example, an engineer can extract the pen-ultimate layer’s activa-
tions of an ANN trained on a first task and use it as a representation, or embedding, 
on a downstream task such as image classification (Chen, et al., 2020). Because this 
procedure works, the DL engineer might argue that ANNs do indeed rely on rep-

observation

reward

action

At

Rt

Ot

Fig. 2 Figure from deep mind’s introduction to rein-
forcement learning course (Silver, 2015). To introduce 
deep reinforcement learning, the brain-in-world anal-
ogy is used to explain the situation of the ANN in its 
environment
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resentations. This line of thought can be challenged. First of all, these embeddings 
correspond to one given datum (one precise image for example), not a certain general 
property of the data. Secondly, they are representations that the engineer chooses for 
downstream tasks, they are representations for the scientist; they do not stand one-to-
one for the datum – in fact, no perfect inverse mapping, that would allow retrieving 
the datum from an embedding alone, is technically possible5. The technical utility 
of embeddings only shows that patterns of activations at a particular level contain 
relevant material – that might be, in essence, non-decomposable – to solve a number 
of tasks. Should this reasoning hold, embeddings – just as the activations of an ANN 
– are hardly representations in the sense of Turing machine symbols.

In conclusion, little technical or empirical reasons plead in favor of the employ-
ment of Turing-like representations for the ANN. While in some cases it can be estab-
lished that some layers are more sensitive to particular patterns (for example edges 
in an image), the weights and activations of ANNs are notoriously hard to interpret 
(Zhang, et al., 2021). Even when some interpretation is possible (Olah, 2015; Goh, 
et al., 2021), the particular patterns could simply represent particular properties of 
some data for the engineer/scientist that interprets them given a certain task (Boge, 
2022). In any case, if some form of interpretation is possible decomposition into 
symbol-based operations seems nowhere near. This is why we employ the concept 
of ANN “non-decomposability” – as in non-decomposable into symbol-based opera-
tions – rather than vaguer “uninterpretability” that is sometimes used in DL literature.

Saying that ANNs are non-decomposable is spelled out precisely by saying that 
they are not elementwise representational (ER). ER would be obtained if “all model 
elements (variables, relations, and parameters) represent an element in the phenom-
enon (components, dependencies, properties)” (Freiesleben, et al., 2022). Such a 
strong form of representationalism does not seem to hold for ANNs even for quite 
simple setups (Freiesleben, et al., 2022). Nevertheless, we argue that the ideal of 
decomposing ANN operations all the way down to elements that represent external 
properties is still very much present in the field and that it stems from a particular 
philosophical framework, that is cognitivism. Motivated by the functioning of the 
TM, it seeks to identify symbol-like representations in ANNs and interpretable rules 
according to which the representations are manipulated. Possibly because of the tech-
nical difficulty (or impossibility) to realize this ideal, some authors argue that ANNs’ 
operations correspond to a sub-symbolic level that realizes symbolic operations on a 
higher level (Varela, 1991: p 100). It seems unclear however how an ANN can carry 
out higher-level symbol based operations without relying on any symbol-like opera-
tions internally.

In the next sections we will propose a conceptual framework for DL that doesn’t 
rely on this cognitivist ideal of decomposability. We will do so by considering deep 
learning from phenomenology.

5  When computing embeddings, the DL engineer wants to reduce the dimensionality of items in a dataset 
using an ANN. The inversion of this projection is not unique, as infinitely different inputs can generate 
the same embedding (for example as shown in DeepDream (Mordvintsev, 2015).
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3 The Phenomenological Critique of Cognitivism: Implications for 
Deep Learning

As seen in the previous section, NR takes a robust scientific realist stance, i.e. exis-
tence of an external pre-given objective world (that can be described by science and 
represented by cognitive processes); from then on, the question of consciousness 
becomes: how does it arise from natural processes? This is notoriously difficult and 
referred to as the hard problem of consciousness (Chalmers, 1995).

Phenomenology flips the problem around6. Instead of positing the existence of 
an outside world and questioning the emergence of consciousness, phenomenology 
seeks to describe how the world appears to us in lived phenomena (Merleau-Ponty, 
1945). It puts on hold any question regarding the existence of the external world (i.e., 
whether something is really out there or if we are simply hallucinating our reality), its 
ontology (i.e., the types of things that really exist), and the mind-world relationship 
(idealism, realism, etc.). Husserl (1931, § 32: 59–60) calls this bracketing of judg-
ment “epoché”, which aims at neutralizing what he calls the “natural attitude”. This 
attitude is characterized by a common-sense belief in the reality of external, discrete, 
ordinary objects. Merleau-Ponty (2012: p. 69) calls this natural attitude “objective 
thought” and interprets it as the shared assumption of idealism and realism, and as the 
unquestioned metaphysics of modern natural sciences7. Once every judgment per-
taining to the natural attitude/objective thought has been put into brackets, phenom-
enology takes as a starting point a passive stance with regards to phenomena. That is, 
it lets things appear as they appear spontaneously to the mind that is directed towards 
the world without trying to categorize them. The task of phenomenology is then to 
describe the structures of manifestation, producing an understanding of the mind and 
its interactions with the world that differs strongly from the views exposed in the pre-
vious section. One of the most fundamental features of the mind that phenomenology 
emphasizes is intentionality, that is the fact that mental states are directed towards 
something. For example, an episode of perception is always a perception of some-
thing. Following Husserl (1900; 1931, § 37), we will call the thing towards which 
the mind is directed the “intentional object”, and the conscious mental state directed 
towards the intentional object an “intentional act”.

Phenomenology and NR diverge significantly in the way they describe cognitive 
processes. For NR, which operates on a clear separation between subject and external 
world, a cognitive process can be cast as a sequence of symbol-based operations, 
from perception (sense data inputs) to a particular action (motor output), or storage 
of a new useful representation. With its bracketing, phenomenology considers cogni-
tive processes from a different point of view where it makes no sense to distinguish 

6  It is impossible for us to offer an all-encompassing account of the tremendously rich phenomenological 
tradition or to engage with exegetical issues pertaining to the thought of Husserl and other important 
thinkers in said tradition. We will limit ourselves to highlighting the points that are essential for the 
approach we want to sketch in these pages. For detail, see (Zahavi, 2008; Gallagher & Zahavi, 2020).

7  It is important to note that phenomenology is not per se incompatible with a moderate scientific realism 
which claims that natural sciences discovers real objective features of the world and produces true state-
ments about it (see, for example, Dreyfus, 1992), although it rejects the idea that the scientific image of 
the world is a complete and exhaustive descriptive-explanatory framework.
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an external entity from our representation of it; there are simply intentional objects 
that appear to me: consciousness and the world are given in one stroke. Therefore, 
cognitive processes are not considered as an algorithmic processing of perceptual 
inputs, but rather as habits that underlie and structure our lived experience, “that 
simultaneously [delimit] our field of vision and our field of action” (Merleau-Ponty, 
1945, p. 153).

Merleau-Ponty (1945, p. 143) offers a useful illustration of the problem posed 
to those conceiving of perception as indirect: the blind man’s cane. He depicts and 
opposes the position of the intellectualist (which seems identical to NR’s position), 
according to which the blind man infers the shape of external objects in two steps: 
first, by deducing the cane’s position given its pressure on the hand and then, by infer-
ring the shape given this position (Merleau-Ponty, 1945, p. 153). He argues that once 
that the blindman gets used to the cane, once he has it “in hand”, the habit precisely 
“relieves [him] of this very task” (Merleau-Ponty, 1945, p. 153). The cane becomes 
“an instrument with which he perceives”, its tip is “transformed into a sensitive 
zone”, expanding his perceived world (Merleau-Ponty, 1945, p. 154). The acquired 
cane-sensing skill is simultaneously a perceptual habit and a motor habit (there is no 
perception without movement of the cane) that structures conscious experience. It 
grounds an “organic relation between the subject and the world” that does not rely on 
symbol-like representations (Merleau-Ponty, 1945, p. 154).

Could this different perspective on cognition open up a different way to interpret 
computational models? Dreyfus, drawing upon Heidegger’s phenomenology, consid-
ers cognitive processes as acquired habits (and consequently opposes cognitivism’s 
representationalism). He argues that we do not acquire skills by storing representa-
tions but by a gradual refinement of our perception that offers new solicitations in 
given situations in the world; therefore, “the best model of the world is the world 
itself” (Dreyfus, 2007). He, for example, rejects the existence of an internal map: 
“what we have learned from our experience of finding our way around in a city is 
‘sedimented’ in how that city looks to us” (Dreyfus, 2007, p. 1144). Dreyfus insists 
that basic cognitive processes (he gives the examples of driving a car or playing 
chess) do not rely explicitly on symbols but are just the result of a gradual adapta-
tion – they are representation-less (Dreyfus, 2002). Therefore, he sees the advent of 
ANNs as a strong blow against cognitivism’s commitment to representations as they 
“provide a model of how the past can affect present perception and action without 
the brain needing to store specific memories at all” (Dreyfus, 2002, p. 374). From 
the phenomenological standpoint, ANNs seeming non-decomposabilty is particularly 
interesting because it evokes the opacity of our implicit habits (i.e. that do not seem 
to rely on representations).

However, the use of the term “brain” in Dreyfus’s previous citation marks an 
important conceptual shift that shouldn’t go unnoticed. Important observations that 
were acquired from the phenomenological source are mapped onto the functioning 
of the brain – a system understood in terms of and by scientific investigation that 
belongs to the neurophysiological source. Dreyfus’s implicit supposition of an over-
lap between the phenomenological and the neurophysiological is in tension with phe-
nomenology’s initial ambition to put on hold the question of existence of external 
objects. And this supposition can be taken a step further by trying to reduce the phe-
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nomenological to the natural – shifting from cognition explained from first-person 
perspective to cognition explained from third-person perspective.

This naturalization of phenomenology is constitutive of Varela’s formulation of 
enactivism, proposed as an alternative to cognitivism (Varela, et al., 1991). His enac-
tivism retains all major principles uncovered by the phenomenological source and 
uses them to think the coupling processes of an agent with its environment, consid-
ered in a naturalistic setting. It deems that, through sensorimotor activity, organisms 
become structurally coupled to their environment which allows them to enact a world. 
The “organic relation” between consciousness and world from first-person perspec-
tive becomes a “structural coupling” between organism and environment (Varela, et 
al., 1991, p. 206). When considering the relation between mind and computational 
models, this enactivism is interested in robots that can navigate autonomously in the 
external world; Varela et al. (1991) for example turn towards Brooks’s finite state 
machines (Brooks, 1991). This brings it closer to the understanding of cognitive pro-
cesses as a way to interact with the external world, rather than understanding them as 
habits that underlie our lived experience. Because enactivism aims to bridge phenom-
enology and neurophysiology, it operates upon a third-person separation between 
agent and environment; phenomenology doesn’t rely on this dissociation and consid-
ers experiences (that are structured by habits) in which the I and the world are inter-
twined. We therefore insist on the necessity of a clear epistemic separation between 
the phenomenological source and the neurophysiological source (in the tradition of 
Husserl’s epoché) to approach the question of the relationship between cognition 
and computation. This distinction opens up the possibility of establishing parallels 
between cognitive processes seen as habits and computational models in a way that 
is more faithful to phenomenology’s initial project. Parallels that will be useful to 
develop a representation-less toolkit for DL.

4 Computational Phenomenology and Deep Learning

In the previous section, we have highlighted the possibility to consider computa-
tional models from phenomenology without reducing it to structures uncovered by 
third-person sciences, such as by neurophysiology8. The first such method that distin-
guished phenomenology, neurophysiology and mathematical/computational model-
ing is neurophenomenology (Varela, 1996). Neurophenomenology aims to establish 
“reciprocal constraints” between first-person data from phenomenology and mea-
sured data of physiological processes, in order to allow a dialogue, or a “circulation”, 
between the internal (phenomenological) and external (scientific) accounts of a given 
cognitive process (Varela, 1996, p. 343); a third component is then used to provide 
a “neutral ground” between “these two kinds of accounts: formal (or computational) 
models (Lutz & Thompson, 2003). Some approaches specifically focus on math-

8  Note that mathematical formalizations tend to be seen only (possibly wrongly) as tools to describe 
objective natural processes. Phenomenology has therefore traditionally been skeptical of any attempts of 
mathematical formalization. Husserl for example, famously described Galileo as “at once a discovering 
and a concealing genius” because his mathematization of natural phenomena ends up covering up its 
origin: lived phenomena (Husserl, 1936, p. 53).

1 3

408



An Alternative to Cognitivism: Computational Phenomenology for…

ematically formalizing the structures of lived experience directly, referred to as the 
“CREA proposal” (Petitot & Smith, 1996; Petitot, 1999). However their obtained 
mathematical formalizations correspond to a “physical behavior” from which the 
“qualitative structure of a phenomenon” emerges (Petitot & Smith, 1996, p. 241); the 
computational model describes neurophysiological processes from which phenom-
enological events emerge (similar to connectionism).

More recently, Yoshimi (2011) proposed to associate phenomenological structures 
with neuro-computational structures, considering connectionist models. The first 
approach to propose computational models of the structures of lived experience with-
out necessarily assuming that they belong to the neurophysiological is Ramstead et 
al.’s (2022) computational phenomenology. This active inference-inspired approach 
seeks to build generative models that explain data from “our first-person phenom-
enology itself” (Ramstead, et al., 2022). In a second step, such models (of perception, 
or of action for example) can also be used in simulations (Sandved-Smith, et al., 
2021).

What all these approaches have not accounted for fully is the “trainability” aspect: 
computational models can now be trained, and therefore generate their own kind of 
data, in the same way as the neurophysiological and the phenomenological can. In 
our computational phenomenology account, we propose to use the term source to 
designate a distinct level of inquiry that can provide its own type of data9. Following 
the three fields of knowledge of Lutz and Thompson (2003), we therefore propose 
to distinguish three different sources to explore cognition: the neurophysiological 
source, the phenomenological source and the computational source – insisting that 
computational models are not simply tools to formalize data from other fields of 
knowledge but that they can generate their own.

In fact, neuroscience researchers have long ago recognized the computational as 
a source of exploration for cognition. Notably, the advent of this new source has 
strengthened the tendency of neuroscientific research to cast aside the phenomeno-
logical source by implicitly assuming a close correspondence between physiologi-
cal processes and conscious experience. In DL-based computational neuroscience, 
numerous research completely dismisses the phenomenological source and compares 
ANN processes to brain processes (comparison which does seem quite natural given 
DL’s initial structural inspiration being the brain); examples include Yamins’ para-
digmatic research on vision in brains and in ANNs (Yamins & DiCarlo, 2016), other 
recent investigations (Kumar, et al., 2022; Millet, et al., 2022) and even proposed 
research programs (Doerig, et al., 2022; Cohen, et al., 2022).

To restore the phenomenological source and give it an epistemic role in DL 
research, we propose a new formulation of computational phenomenology (CP), 
defining it as an epistemic dialogue between the phenomenological source and com-
putational source (in an analogous way to neurophenomenology). Specifically, we 
consider circulation of knowledge between phenomenological descriptions of a given 
cognitive process (and its corresponding habit) and the mechanisms of trained com-

9  A source is therefore defined epistemologically and not ontologically: it doesn’t designate a level of 
reality but a set of methods from which we can obtain a specific type of data. We owe the term to Bitbol 
(2006).
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putational models on a corresponding task. In line with the phenomenological tradi-
tion, we bracket the question of the existence of the external world and provisionally 
let the two sources free of any constraint or import coming from the neurophysiologi-
cal source. Therefore CP doesn’t help itself to the third-person separation between 
agent and environment (which neurophenomenology as well as enactivism rely on) 
and considers cognitive processes, and corresponding habits, in which consciousness 
and the world are intertwined. CP’s goal is to uncover structural invariants and guid-
ing constraints between phenomenology and computational modeling.10 However, it 
also provides a ground to develop a new framework to think computational models 
different from the existing ones (cognitivism, connectionism or NR).11 Figure 3 illus-
trates the three sources of exploration of cognition and the subsequent inquiries they 
can generate.

Once the computational is recast as a source (because it generates data), it makes 
sense to select the models that yield the most impressive results, that are best at 
solving cognitive tasks. Therefore it is natural for CP to turn towards DL. CP is thus 
not simply the application of a vocabulary derived from phenomenology to DL. It is 
indeed a dialogue between two sources and phenomenologists could just as well let 
their practice be informed by the concepts and formal tools developed in deep learn-
ing as the reverse. In the next sections, we will engage in such a dialogue between 
phenomenology and deep learning systematically, covering important dimensions 
of cognition: perception, action, imagination and language. We will see that ANNs 
non-decomposaibilty is particularly interesting when considering phenomenological 
descriptions. However, we will not limit our investigation to highlight a shared opac-
ity in DL and in phenomenology. We will rely on common DL interpretation tech-
niques12 to highlight similarities between specific cognitive processes, cast as habits, 
and ANNs trained on an analogous task. This investigation will notably allow us to 
redefine the term of representation. Specifically, we abandon the idea of symbol-
like representations underlying our cognition and will characterize the decomposable 
phenomenal content of our cognitive processes – that means, our conscious repre-
sentations. In what follows, we offer clear directions within our account of com-
putational phenomenology to its employment within specific DL/cognition areas: 
perception (4.1), imagination (4.2), and language (4.3).

10  Furthermore, we must emphasize that the question of the possibility of artificial consciousness or 
phenomenal experience in ANNs is outside the scope of CP. The fact that there are structural invariants 
between phenomenology and computational modeling for a given cognitive task does not imply that all 
systems exhibiting such structures possess a phenomenal experience. One of the goals of CP is to establish 
which type(s) of mathematical modeling is most adequate to match certain structures of experience, but 
not to establish a metaphysics of mind that would, for example, define the physical structure that an entity 
must have in order to be conscious.
11  Our CP approach can be considered a “cousin” of Ramstead et al.’s active inference formulation (2022). 
The main difference being that Ramstead’ et al.s CP mathematizes the underlying structures of experience 
directly, whereas our version identifies common mechanisms between AI systems and corresponding first-
person experiences of cognitive processes in the perspective to formulate an alternative to cognitivism.
12  For a review of such interpretation techniques see (Räuker, et al., 2023).
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4.1 Merleau-pontian Perception: A New Setting in which to Consider Learning

Merleau-Ponty’s phenomenology gives a central role to the body (Merleau-Ponty, 
1945). In his theoretical framework, the functional unit that allows the imbrication 
of consciousness and world through action and perception is the corps propre (one’s 
own body). The corps propre is not the body considered as an object, but the body I 
live as, and through which I have a world. It is the body I discover by investigating 
the underlying structures of the first-person perspective; as opposed to the biological 
body discovered by “objective thought” that is “unaware of the subject of perception” 
(Merleau-Ponty, 1945, p. 214). It does not rely on the concept of brain, as the brain 
cannot be identified as the origin of perception from the lived phenomena themselves 
just as “it would be absurd to say that I see with my eyes or that I hear with my ears” 
(Merleau-Ponty, 1945, p. 214). When it comes to explaining cognition, the biologi-
cal body (including the brain) is the functional unit of the neurophysiological source 
whereas the corps propre is the functional unit of the phenomenological source. Con-
sidering perception by modeling the former as an ANN tends to fall into NR. An 
alternative is given by investigating the similarities between the latter and DL.

It turns out the ANN is a good candidate in modeling the way the corps propre 
adjusts its grip on the world. The corps propre enables learning from past experiences 
by sedimentation into habits. Merleau-Ponty uses this term to stress that experiences 
aren’t stored separately, as symbols in a Turing machine or entries on a hard disk, 
but rather consolidate into new habits in an analogous way solid material settles 
(sediments) at the bottom of a liquid. The seemingly uninterpretable way the particles 
settle resembles the adjustment of weights during the training of an ANN. The sedi-
mented habits form a “contracted knowledge” that isn’t “an inert mass at the founda-
tion of our consciousness” but is “taken up” in every “new movement” towards the 

Phenomenological 

Source

Neurophysiological 

Source

Computational 

Source

Computational 

Phenomenology

Neurophenomenology

Computational 

Neuroscience

Fig. 3 The three sources of exploration of cognition. Modern computational sciences promote a circulation 
of knowledge between neuroscience and computational sciences ; in consequence they tend to exclude 
the phenomenological aspect of cognition. In response, we propose computational phenomenology, an 
epistemic dialogue between the phenomenological and the computational, in a similar vein than neurophe-
nomenology, a dialogue between the neurophysiological and the phenomenological
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world (Merleau-Ponty, 1945, p. 132) in the same way that at inference, all the weights 
of an ANN are mobilized to propagate the content of each input. In accordance with 
ANNs that do not store all the examples in the form of representations but rather ben-
efit from them by weight adjustment, the corps propre’s intentional acts are not based 
on a superposition, but a sedimentation of experiences. Intentional acts allowed by 
the corps propre include the perceptual synthesis: the detachment of a privileged 
object from an indifferent background. As such our perceptions are grounded on a 
perceptual tradition, that contracts the history of previous experiences in a way that 
remains wholly opaque to the subject of perception – opacity, or non-decomposabil-
ity, that is also characteristic of ANNs.

That perception is grounded on the sedimentation of past experiences means that 
what we learn is directly transcribed in the way the world shows up to us. The adjust-
ment of perception corresponds to the search for an optimal grip on the lived world 
that allows confident action. This means that the features of the world that appear to 
us do not correspond to some encoded properties of external realities. This finding 
turns some of NR’s most elementary assumptions completely on their head: the space 
that I experience in perception, for example, is now conceived as the result of my 
grip on the world. The orientation of the whole of our perception – what we consider 
as being “top”, “bottom”, “left” and “right” – at any given time, translates a certain 
equilibrium I reached in my lived world, rather than the encoding of some universally 
given directions.

But how does this redefinition of perception – as a dynamically adjusted founda-
tion of our experiences rather than a faithful reconstruction of external entities – 
allow a dialogue with DL models? Let’s consider two related cases where perception 
is perturbed by rotation of our visual field. When I look at an upside-down face for 
some time, it becomes “monstrous”: I see a “pointed and hairless head” with a “blood-
red orifice” on its forehead and “two moving eyeballs” where the mouth should be 
(Merleau-Ponty, 1945, p. 263). My lack of interaction with inverted faces translates 
into an unstable grip. An ANN trained to recognize faces that would be presented to 
it systematically the “right side up”, would fail if they were suddenly turned around. 
In such cases, the neural network is said to have difficulty generalizing, i.e., adapting 
to a new type of data. Analogously to the corps propre, an ANN is constantly trying 
to adjust its “grip” on the data, and doesn’t rely on a translation into symbols – that, 
in this case, would have allowed it to instantly revert the inflicted rotation.

The corps propre can also readapt in cases of spatial level shifting. In one of 
Wertheimer’s experiments, a subject observing his room for a few minutes through a 
mirror that tilts it by 45 degrees, suddenly sees his visual spatial level shift when he 
projects himself into this new setting. The “spectacle” offered by the tilted room is 
a call to a new “virtual” corps propre. That is, the body with “the legs and arms that 
it would take to walk and act in” the room, to open the cupboard or sit at the table 
(Merleau-Ponty, 1945, p. 289). At that point perception adjusts in a way to guide 
actions in this new setting: the spatial level shifts. What exactly triggers this tilting? 
Before the shift, the orientation of the (intentional) objects in the mirror is not natural 
and does not allow the usual interaction with them. It is therefore the objects – and 
particularly faces, according to Merleau-Ponty – that are the sign of a tilted visual 
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field and serve as anchor points to switch to a new oriented phenomenal space in 
which they are the “right side up”. It turns out an ANN learns a similar “trick” to 
identify rotated images: RotNet, trained to identify the rotation angle (0, 90, 180, 
or 270 degrees) of rotated images, also relies on the orientation of objects and faces 
present in the scene (Gidaris, et al., 2018). Indeed, attention maps – which overlay the 
input image with network activations – reveal a high attention attributed to faces in 
rotation angle classification (Fig. 4). The orientation of the objects themselves, which 
allows them to serve as anchor points, is given by a “perceptual itinerary”, a learned 
order in which I visit its important features. DeepFace (Taigman, et al., 2014), a 
neural network that learns to identify a specific person from their face, also relies on 
certain learned key points as shown by higher activations at pixels corresponding to 
the eyes and mouth (Fig. 5).13

We have first highlighted similarities between the corps propre’s grip adjustment 
and the training of an ANN; we have then shown a case where an ANN and corps pro-
pre learn a similar “trick”. But what do these correspondences actually show? First, it 
is interesting to note that simple mathematical functions fitted with a simple learning 
rule (in this case, gradient descent) end up relying on similar tricks than the corps 
propre to solve analogous tasks. Furthermore, they show how computational learning 
can be conceptualized in the lived world, in conscious experience, rather than with 
respect to an inaccessible external world. Indeed, the input to the spatial level adjust-
ment process are not some photons or other scientific entities but our previous lived 
experience (which calls for an adjustment if it does not allow an optimal grip). Think-
ing these kinds of processes in terms of ANNs paves the way for a new framework 
to conceive DL, in which learning happens in the lived world. Furthermore, ANNs’ 
non-decomposability is good news in this setting because it opens up the idea that 
some processes could, by nature, be non-decomposable into operations on symbols – 
in the same way adjustment processes are opaque to the subject of perception. They 
allow us to interpret cognition from the phenomenological source without relying 
on unconscious representations. As for conscious representations (phenomenal con-
tents), we have seen with the case of the orientation of space or of intentional objects, 
that they are not the encoding of some external entity but the result of an optimal 
grip on the world. The training of ANNs can therefore, by analogy, be thought of 
as the gradual constitution of an artificial optimal grip, which means they converge 
towards an equilibrium given a task and some data, without having to learn specific 
fine-grained representations of properties14. We will now seek to further characterize 
conscious representations in the two following sections.

13  However, these key points are not visited in a certain order. The ANNs inference lacks the temporal 
dimension of our lived perceptual synthesis.
14  The analogy is limited to this non-representational aspect of optimal grip adjustment, as ANNs typically 
lack the embodied aspect of the corps propre that places it in a situation of constant self-adjustment. As 
we only consider particular habits and analogous computational tasks, this shared non-decomposability 
is sufficient.
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4.2 Sartrean Imagination: Conscious Re-presentation of Sedimented Experiences

If ANNs are thought to model processes of the corps propre, their training is recast 
as a sedimentation of past experiences in order to obtain an artificial optimal grip on 
the lived world by refining the perceptual synthesis which determines the way things 
appear to us. But how can the world be “the best model of itself” when I imagine 
something? Do we not store some representations of things to be able to later form 
mental images of them? Indeed, cognitivism might turn to this form of explanation 
relying on the Turing-machine’s functioning, positing that we save some representa-

Fig. 5 Architecture of the DeepFace model and activations corresponding to a given input. First blue 
square from the left is the most telling (Taigman, 2014)

 

0º rotation 90º rotation 180º rotation 270º rotation

Attention maps of Conv5 feature maps (size: 6 × 6)

Fig. 4 Attention maps of the artificial neural network Rotnet that learns to recognize the angle of rota-
tion of an image (Gidaris, 2018)
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tions to be able to later access them. This explanation corresponds to Hume’s under-
standing of mental images as faint copies of past perceptions. In The imaginary, 
Sartre rejects Hume’s copy principle because it falls under what he calls the “illusion 
of immanence”. He holds that mental images are not copies contained in conscious-
ness and recasts them as imaging consciousnesses (Sartre, 2004). If Hume’s copy 
principle is best explained with the Turing-machine, we will show that Sartre’s imag-
ing consciousness better resembles the cascade of activations of an ANN.

Sartre rejects the idea of the mental image as a copy; in fact, he considers it as 
incompatible with the dynamic nature of consciousness: indeed, it would be “impos-
sible to slip these material portraits into a conscious synthetic structure without 
destroying the structure, cutting the contacts, stopping the current, breaking the con-
tinuity.” (Sartre, 2004, p. 6). The act of imagining something cannot rely on a symbol, 
or any object it would be heterogeneous to; rather, the act of imagining and the men-
tal image are one. “The majority of psychologists [mistakenly] think that they find 
the image in taking a cross-section through the current of consciousness”, Sartre says 
(Sartre, 2004, p. 15); this error is repeated by anyone trying to interpret DL using the 
cognitivism framework by trying to find representations in the “current” of success-
ful activations of an ANN inference. Therefore, we should rethink the mental image 
– that is an imaging consciousness – as the complete inference of an ANN.

What does it mean for a mental image to be an imaging consciousness? And why 
cannot it be a representation that would be retrieved by consciousness? Just like the 
perceptual synthesis, the imaging consciousness is an intentional act. And in both 
processes, the object is aimed at as a corporeal object while never entering my con-
sciousness. Indeed, when I perceive the chair, it would be absurd to say that the chair 
enters into my consciousness; in the same way an imagining consciousness does not 
rely on a copy of a chair that would be in my consciousness. Both intentional acts do 
not rely on separable symbols. However, even if it relies on a perceptual tradition, 
the perceptual synthesis “encounters” the object it aims at (Sartre, 2004, p. 7). This 
does not seem to be the case for the imagining consciousness. On what knowledge 
can it rely? How can it aim at the sensitive elements of objects it first encountered in 
perception?

To picture something as possessing certain sensible qualities, to aim at my friend 
as “blond, tall, with a snub or aquiline nose, etc.”, my imaging consciousness “must 
aim through a certain layer of consciousness that we can call the layer of knowl-
edge” (Sartre, 2004, p. 57). From Sartre’s descriptions, we can formulate a hypoth-
esis according to which the imaging consciousness re-employs certain tracks of the 
perceptual synthesis. In DL mechanisms, this could mean that the imaging conscious-
ness uses the sedimented weights of processes belonging to the perceptual synthesis 
(such as the process that allows the orientation of an object). In fact, there exists a 
technique in DL – called DeepDream – that allows one to generate images from a 
trained image classification network: for example, by tweaking random noise in order 
to maximize the activation of a final output node corresponding to one particular 
label (Mordvintsev, et al., 2015) (Fig. 5). Recently, (Fei, et al., 2022) have employed 
a similar technique to visualize what they call the “imagination” of a model trained 
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to bring closer an image and a matching textual description in a higher-level feature 
space. In a similar way, my imaging consciousness could try to strongly re-activate 
the processes that allow me to recognize (in perception) my friend as being “blond, 
tall, with a snub or aquiline nose, etc.”. This, of course, would be only one possible 
way to do it; the general idea we want to convey is that past perceptual experiences 
might sediment into perceptual habits, and that in a second phase some structures, or 
some “regions”, of these habits might be used, or re-activated, by imaging conscious-
nesses (which are themselves are particular type of habits). As such, an imagined 
object isn’t really red because we stored its color in symbol form, it is red because 
we employ a certain red-making process (that relies on the process used to recognize 
objects as red in perception): we imagine redly.

Once the mental image recast as an imaging consciousness, Sartre establishes two 
characteristics of the aimed object in the way it appears to us. These also apply, 
analogously, to images generated by DL. Mental images are given as an “undifferen-
tiated whole”, meaning that they can possess qualitative properties but be quantita-
tively undefined: it is possible for example to have a mental image of the Pantheon 
but to be unable to count the columns – it can have an undetermined number of them 
(Sartre, 2004, p. 87). Furthermore, they do not obey the “principle of individuation”: 
when I imagine my friend for example, she can appear simultaneously from the front 
and the profile. Both the qualitative undefinition and the superposition of various 
viewpoints can be observed in images generated by DeepDream (Fig. 6) or other 
DL image generations techniques (Fei, et al., 2022; Ramesh, et al., 2021). These 
properties, or failure cases, of imagination from the phenomenological source can 
be observed analogously in DL based image generation. The TM, on the other hand, 
cannot explain an “undifferentiated” Pantheon; it is more in line with Hume’s copy 
principle, where one either has a stored copy of the Pantheon and can retrieve or one 
does not and cannot output anything. Dedicated DL models better explain borderline 
cases of mental images considered from the phenomenological source than the TM, 
cognitivism’s go-to model, does.

Fig. 6 DeepDream images 
that maximize activations cor-
responding to particular image 
labels. (Mordvintsev, 2015)
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In conclusion, Sartre’s concept of imaging consciousness can be modeled by the 
inference of an ANN taken as a whole process, wherein one does not look for any 
symbol-like representations. It relies on previously sedimented perceptions allow-
ing it to re-present (show again) properties aimed at by the perceptual synthesis by 
re-activating them. Examples of such properties include the color and even the ori-
entation of an object. We use the term re-presentation to stress that previous expe-
riential content is re-activated, rather than symbolically represented: we imagine 
redly instead of accessing the symbol red in our internal database15. Analogously, the 
inference of an ANN re-activates particular regions given its weights. If a particular 
region can be identified to play a specific role in the transformation carried out by the 
ANN its activation patterns can be seen as a re-presentation. With this understanding 
of re-presentations, we can drop the idea of symbol-like representations that serve as 
a mediation between the data and the ANNs operations.

4.3 Language: Concepts as Conscious Re-presentations

Computational phenomenology also has to address a major aspect of cognition that 
is also an important research domain in deep learning: language. Language and con-
cept-based reasoning heavily rely on individuated units or conscious symbols. These 
units provide the ability to group and recognize things by subsuming them under the 
same concept.16 These concepts can be employed even in the absence of any instance 
of it, for example in a propositional act. In such a case a concept is linked with a 
series of sounds, to a word. These “meaningful cores” can also be explored from the 
phenomenological source, although we must immediately indicate certain limits of 
the correlation of this source with the computational source. Indeed, the lived world, 
according to Husserl’s conception as well as that of Merleau-Ponty, is an intrinsi-
cally intersubjective world (Husserl, 1936; Merleau-Ponty, 1945). A phenomenologi-
cal approach to language cannot do without this intersubjectivity and the communal 
character of the acquisition, use, and transmission of language. In this sense, having 
a language and being with others are inseparable. ANNs do not have features equiva-
lent to the intersubjectivity of the lived world, which imposes limits on the scope of 

15  Our conception of re-presentations shares numerous aspects with Barsalou’s perceptual symbols (1999). 
However, our re-presentations are considered from the first-person perspective (and not from the neu-
rophysiological source). Furthermore, they do not stand for any external entity as TM symbol would 
– accordingly, if one were to follow our terminology, the term of perceptual symbol would be misleading.
16  A question that could be addressed to us would be how the use of symbols is possible for a cognition 
interpreted from a non-representationalist perspective. The most important point, in our opinion, which 
allows us to dissolve this doubt, is the following: it is necessary to distinguish the idea that cognition 
consists of operations on internal representations (representationalism) from the idea that cognition can 
produce and use symbols and representations. Our position amounts to rejecting the first idea while retain-
ing the second.
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computational phenomenology for the study of language. However, some cognitive 
processes take place at the individual level in the use of language, and it is at this 
level that the correlation of the two sources must be placed in this context. In the rest 
of this section, we outline the framework within which the dialogue between the two 
sources can take place on the question of language.

To begin with Merleau-Ponty, a word is a “phonetic gesture”, generated through 
my body and its vocal cords, that “produces a certain structuring of experience” in 
the same way than my perceptual habits do (Merleau-Ponty, 1945, p. 199). As they 
crystallize into words, concepts become communicable: in the same movement “the 
body opens itself to a new behavior and renders that behavior intelligible to external 
observers” (Merleau-Ponty, 1945, p. 199). We can consider concepts as conscious 
re-presentations by extending the sartrean conception of imagination.

As we did for perception and imagination, we could consider concepts as being 
cognitive processes that rely on conceptual habits. This thesis can be mapped to 
ANN mechanisms : the inference of the ANN can stand for the concept as a cogni-
tive process (or conscious re-presentation), the training – or sedimentation of past 
experiences – can stand for the formation of the conceptual habit. Similarly to men-
tal images concepts might also reemploy some sedimented tracks of other habits 
(perceptual or imaginative17). Here particular ANNs can be used to reason about 
different functions of concepts understood as cognitive processes. Panaccio proposes 
two fundamental roles of the concept: its representational role and its inferential role 
(Panaccio, 2011).

The representational role refers to a concept’s relationship to perception allowing 
recognition and re-presentation. The concept red allows me to perceive objects as 
red in my lived world and also to re-present redly in imagination. As such concepts, 
and associated words, are structuring lived experience; they are not name tags of 
external properties. Merleau-Ponty stresses this point by analyzing a study of Gelb 
and Goldstein where patients with color name amnesia were incapable of grouping 
objects of the same color (Merleau-Ponty, 1945, p. 197). From DL, models of image 
classification – where a concept (a word) is associated with an image – would then be 
of interest to investigate the representational role of concepts. In such cases, the task 
of image recognition sediments into weights which determine the pattern of succes-
sive activations at inference (perception) and allow re-activation (imagination). The 
aspect of experience-structuring can also be observed analogously: a recent DL study, 
for example, showed that semantic segmentation emerges when training a network to 
caption images (Xu, et al., 2022).

The inferential role refers to a concept’s relationship to language. Inherent to 
my concept of a cat is the ability it gives me to draw inferences from it: “a cat is a 
mammal”, “a cat has four legs”, etc. Interestingly, I can possess only the inferential 
dimension of a concept: even if I never saw a platypus, and even if I have no idea 
what it looks like, I might still know that it is a mammal. In such cases, we first 

17  Sartre for example speaks of “illustrations” and “symbolic schemas”, that are two different kinds of 
mental images that can accompany our recollection of a particular concept (Sartre, 2004, p. 87).
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encounter the word and then form the corresponding concept based on the things 
we learn it implies (Panaccio, 2011, p. 61). To model the inferential role of con-
cepts drawing from deep learning, we can turn to DL language modeling (Brown, 
et al., 2020; Devlin, et al., 2019). Under masked language modeling, sentences are 
fed word by word to an ANN; however, certain words are randomly masked, and 
the task of the model is to predict them. Once trained, the ANN allows the genera-
tion of highly coherent text. Recent DL research has shown promising results for 
approaches relying on both of these concept roles (Fei, et al., 2022; Li, et al., 2020; 
Radford, et al., 2021) – two roles that most of the concepts of everyday use play 
simultaneously.

This last section on mental language and language allows us to generalize our pro-
posal. In the lived world we can isolate some cognitive processes that structure our 
experience, for example that give the objects their orientation or allow me to recog-
nize them as falling under the concept of red. These processes continuously rely on a 
sedimentation of past experiences, which allows an optimal action-orienting grip on 
the world. Habits, resulting from the sedimentation, also allow re-presentation, in the 
form of imagination or recollection: I can form mental images and I can draw infer-
ences from my concepts (even those I only “encountered” through language and not 
through direct perception). These re-presentations can be thought of as re-activations 
of sedimented weights of an ANN. Finally, in all these processes, conscious repre-
sentation (or concept) and cognitive process are one: cognitive processes are not to 
be decomposed into symbols and their content is to be thought of as a process and 
not as an object. Both the mechanism of an ANN (processual) and its seeming non-
decomposability support this thesis.

5 A New Toolkit for Deep Learning and A Novel Mathematization of 
Cognition

Computational phenomenology is a novel approach to work towards a computa-
tional interpretation of cognitive processes as described from first-person perspec-
tive. Rather than mathematizing cognition considered as emerging from the external 
world as described by science, it takes a new background of exploration: conscious 
experience. The CP recipe is the following: (1) place oneself in the lived world, (2) 
isolate a particular cognitive process and (3) compare it to the mechanism that a 
computational model uses to solve an analogous task. We believe CP has potential 
for practical applications in both phenomenology and deep learning. By applying 
the CP recipe, the phenomenologist could find some clues as to what aspects of 
a particular habit to investigate; he could for example consider the mechanism of 
RotNet and test if its tricks are also analogously realized by the corps propre (rely-
ing on faces for example). Inversely, the CP recipe could provide the deep learning 
engineer some new ideas to design DL setups : for example by trying to gener-
ate images using the weights of trained recognition networks in an analogous way 
to the mechanism of sartrean imagination. From phenomenology to deep learning, 
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one could even hope for some insights to tackle some more fundamental aspects of 
modern DL – could be investigated: a first-person-perspective credible learning rule 
(an alternative to backpropagation) or a way to make the inference of an ANN more 
temporal (like the habits of the corps propre are)18. We hope our theoretical ground-
work will enable such transdisciplinary approaches, like there have been many for 
neurophenomenology.

CP is skeptical about the feasibility of a decomposition of ANNs into operations 
on symbol-like representations that would encode one, and only one, property of the 
input domain. However, this does not mean that CP rejects all forms of DL interpreta-
tion. For instance, we have seen that attention maps used in DL are analogous to the 
careful attention of the phenomenologist to her experience, and that techniques such 
as DeepDream, which aim to maximally activate particular nodes, are akin to phe-
nomenological investigations of imagination to understand perception. Furthermore, 
even when specific units in ANNs have been found to strongly relate to a particular 
concept, such as in the work of Bau et al. (2019) and Goh et al. (2021), this need not 
invalidate CP altogether. First, these findings only demonstrate the existence of some 
concept-specific neurons and only in a non-exclusive manner (meaning that the iden-
tified neurons might also play a role in other aspects of the transformation carried out 
by the ANN). Which makes them compatible with our position according to which 
some regions of an ANN can play a particular role in the transformation of inputs 
into outputs. Second, the ablation techniques that are typically used to reveal these 
particular neurons also have a counterpart in phenomenology. Indeed, Merleau-Ponty 
famously considered cases of neuro-psychopathologies where specific brain portions 
were missing and studied their effects on the patients’ lived experience (1945). In 
general interpretation techniques of DL are limited to probing the ANN rather than 
decomposing it systematically into rule-based operations; this arguably mirrors the 
position of the phenomenologists that has to find tricks to investigate habit sedimen-
tation while dealing with the opacity of the corps propre’s cognitive processes. In 
the future, developing CP-inspired interpretation techniques for DL could be another 
promising avenue for investigation.

Applying CP to DL we have arrived at a conceptual framework that lies in stark 
opposition to cognitivism and neuro-representationalism. We take as a starting point 
the lived world rather than the world interpreted in physicalist terms. From this 
perspective, we reject the existence of unconscious symbols underlying our cogni-
tive processes and propose a theory of conscious re-presentations as re-activations 
of sedimented habits that are fused to their associated processes. Finally, this per-
spective also does not allow us to draw a boundary between mind and world, like a 
naturalist can separate an organism from its environment. Consciousness remains the 
background of our investigation, and even in the investigated cognitive processes a 
“subject of the cognition” is not easily found – Merleau-Ponty for example, says that 
perception is better described by “one perceives in me” than “I perceive” (Merleau-

18  This aspect was raised in footnote 13: the perceptual synthesis (one of the habits of the corps propre) is 
temporal – we constantly adjust what we see in time – whereas the inference of an ANN isn’t (the sequen-
tiality of its operations can’t be equated to lived temporality).

1 3

420



An Alternative to Cognitivism: Computational Phenomenology for…

Ponty, 1945, p. 223). Still a functional unit, the corps propre, can be isolated to better 
explain the way I adjust my grip on the world. This has an interesting consequence: 
from CP the quest for an autonomous agent, or even an AGI, is not necessarily the 
ultimate goal, as we rather isolate and study particular cognitive processes (of the 
corps propre). Finally, to summarize:

1) What is The World?
 The lived world, that can be investigated from first-person perspective.

2) What is A Representation?
 A conscious representation is an act that is inextricably linked to its correspond-
ing process. This act is realized by re-activation of habits obtained by sedimenta-
tion of past experiences.

3) What is The mind?
 The mind is not delimitable. However, cognitive processes can be isolated 
and explored through consciousness. All the cognitive processes belong to the 
corps propre and have a common objective: obtaining an optimal grip on the 
world.

Unsurprisingly, this framework that we have obtained by applying CP to DL, is bet-
ter modeled using the mechanisms of ANNs than those of a Turing Machine. As we 
mentioned previously (cf. Section 4 above), CP does not involve a simple transfer 
of vocabulary from phenomenology to deep learning, but rather seeks to establish 
a new methodological approach aimed at integrating the data provided by the phe-
nomenological and the computational sources. In the context of this integration, we 
propose to consider the training of ANNs as a way to constitute an artificial optimal 
grip on some data, analogously to the way the corps propre adjusts its grip on the 
lived world. Instead of learning to faithfully represent existing properties with the 
use of symbols, ANNs learn to re-employ particular tracks that are the result of their 
past experiences. In fact, past experiences are sedimented into habits. These habits 
can further be reemployed in other tasks by re-activation, allowing re-presentations. 
When thought of as modeling processes of the corps propre, the ANN’s inference 
can be seen as an intentional act – such as the perceptual synthesis, the imaging 
consciousness, or even the use of a lexical concept. The fact that DL is non-decom-
posable is not seen as a weakness in this framework, as conscious representations, 
or concepts, are inextricably linked to their corresponding cognitive processes. We 
nevertheless agree that some regions might be responsible for some particular aspects 
of the transformation carried out by the ANN; while rejecting the idea that it relies 
on operations on internal representations (for itself). In the end, the DL engineer, or 
computational neuroscientist, might rely on the CP framework or the NR framework 
depending on the cognitive process he is considering. If she considers learning as 
happening in lived experience – as when someone is learning to drive a car or play 
chess for example – she might rely on the former; if she considers it as happening in 
the physical world – as with the perception of a certain wavelength for example – she 
could rely on the latter.
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We have proposed a new methodology to move the field of DL and phenomenol-
ogy forward as well as an alternative conceptual toolkit to consider DL. It considers 
the computational from lived experience and therefore puts on hold the question of 
the material basis of consciousness. Therefore, it distinguishes itself from cognitiv-
ism and neuro-representationalism; but also from connectionism and some forms 
of enactivism (like Varela’s) that think of consciousness in terms of emergence. 
Notably, it has led us to a novel type mathematization that cannot be conceived 
from the scientific-realism-grounded NR position. Indeed, by considering ANNs 
to model the processes structuring our experience, we oppose Galilean mathema-
tization, criticized by Husserl, that necessarily implies a commitment towards the 
existence of external objects: for example, of physical bodies to which the law 
of gravitation can apply. As such, CP opens up a novel form of computational 
modeling – that “precedes” the laws that govern objects – of the processes by 
which I learn to perceive, imagine, or think things. Become mathematizable not 
only the physical laws applying to objects but also the mechanisms that allow me 
to perceive an (intentional) object as a delimited object distinguished from its back-
ground – perception of objects from which I can start to formulate the hypothesis 
of the existence of an external physical world.

In such cases, and more generally for all processes considered by computational 
phenomenology, what do the mathematical models tell us? What do they corre-
spond to? Two interpretations are possible. Either we remain faithful to classical 
phenomenology by keeping the neurophysiological source bracketed. In that case, 
we consider that we are modeling mechanisms of the spontaneous mind that are 
neither identical nor reducible to the physical states with which they are correlated, 
but rather allow the creation of a world around us. Furthermore, qualia are part 
of the starting point of our investigation and their emergence does not need to be 
explained: the hard problem of consciousness is thus avoided. Otherwise, we return 
to naturalism and consider that the cognitive processes involved in the unveiling 
of the physical world are themselves reducible to physical events19. The invariant 
mechanisms we have isolated by applying computational phenomenology – that 
rely on reactivating sedimented lived experiences – could be confronted with the 
neural operations of the brain. Such an informed return to the neurophysiological 
source could provide an opportunity to surpass cognitivism and neuro-representa-
tionalism in modern neuroscience20.

19  After all, the order in which we learn to conceive things does not necessarily entail an order of existence. 
As Sellars puts it: “we must distinguish between primacy in the order of being and primacy in the order of 
conceiving” (Sellars, 1971, p. 408).
20  Following this second interpretation, a CP-informed neuroscience would reject the notion of neural 
representations, following neuroscientists that find it misleading (Freeman & Skarda, 1990; Brette, 2019), 
having identified it as the well-known map-territory fallacy (confusing models of reality with reality 
itself) (Korzybski, 1933). It might find common grounds with anti-representationalist theories such as 
the dynamical systems approach (Van Gelder, 1995; Freeman, 2000; Favela, 2021; Hipólito, 2022) or 
instrumentalist accounts of the Free Energy Principle (Friston, 2013; Andrews, 2021; van Es, 2021; Parr, 
et al., 2022).
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