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Abstract
The counterfactual approach to explainable AI (XAI) seeks to provide understand-
ing of AI systems through the provision of counterfactual explanations. In a recent 
systematic review, Chou et  al. (Inform Fus 81:59–83, 2022) argue that the coun-
terfactual approach does not clearly provide causal understanding. They diagnose 
the problem in terms of the underlying framework within which the counterfactual 
approach has been developed. To date, the counterfactual approach has not been 
developed in concert with the approach for specifying causes developed by Pearl 
(Causality: Models, reasoning, and inference. Cambridge University Press, 2000) 
and Woodward (Making things happen: A theory of causal explanation. Oxford Uni-
versity Press, 2003). In this paper, I build on Chou et  al.’s work by applying the 
Pearl-Woodward approach. I argue that the standard counterfactual approach to XAI 
is capable of delivering causal understanding, but that there are limitations on its 
capacity to do so. I suggest a way to overcome these limitations.

Keywords  Counterfactuals · Explanation · Causation · Interventions · 
Understanding · XAI

1  Introduction

Artificial intelligence algorithms, especially machine learning models in the form of 
deep neural networks, are being rolled out as a tool for decision-making in a number 
of domains. From medical diagnosis, to loan decisions and judgements about crimi-
nal recidivism, machine learning models are helping us to make decisions (Kon-
onenko, 2001; McGrath et al., 2018; Tollenaar & van der Heijden, 2013). Many of 
these models are opaque: no-one understands why the models return the outputs that 
they do. This gives rise to one of the central challenges for explainable AI (XAI), 
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namely to provide people with understanding of why machine learning models yield 
specific outputs.

A number of strategies now exist for meeting this challenge (for an overview, 
see Molnar (2020)). One of these, pioneered by Wachter et  al. (2018), appeals to 
counterfactual explanations: explanations concerning how a model’s inputs would 
need to change in order to yield an output of a specific kind. The use of counter-
factual explanations is now seen as one of the central ways to meet the demands 
imposed by XAI. This has led to the development of several strategies for identify-
ing counterfactual explanations, and to a critical literature on the use of counterfac-
tual approaches.1

Recent work on the counterfactual approach has reemphasised the importance of 
causal understanding. In a systematic review, Chou et al. (2022) argue that the pro-
vision of causal understanding is a necessary condition on XAI and thus that “causal 
approaches should be emphasised” (Chou et  al., 2022, p. 78). However, they also 
show that “the literature connecting causal relations to explainable AI is scarce.” 
(Chou et al., 2022, p. 66). One upshot of this lacuna, they argue, is that it remains 
unclear whether the counterfactual approach in fact provides information that sup-
ports causal understanding, namely understanding of what caused a given model to 
yield a given output, in a given case. Verma et al. (2020, p. 8) make a similar point 
in their review, noting that “although counterfactual explanations have been cred-
ited to elicit causal thinking and provide actionable feedback to users, they do not 
tell which feature(s) was the principal reason for the original decision, and why” 
(see also (Sokol & Flach, 2019, p. 3)). Chou et al. (2022) diagnose the problem in 
terms of the underlying framework within which the counterfactual approach to XAI 
has been developed. To date, the counterfactual approach has not been developed in 
concert with the framework developed by Pearl (2000) and Woodward (2003) for 
specifying causes, and so we are not yet in a position to know whether information 
that supports causal understanding has been produced.

Note that the formal aspects of the Pearl-Woodward framework have been imple-
mented in the context of the counterfactual approach to XAI (see, for instance, 
Karimi et al. (2021); Mahajan et al. (2019)). Chou et al. (2022)’s focus, however, 
is not on the formal components of the framework but, rather, on the approach to 
specifying causes embedded within that framework. In addition to providing formal 
tools for modelling causal systems, the Pearl-Woodward framework tells us what 
causation is. Chou et  al. (2022)’s contention is that counterfactual approaches to 
XAI have not been analysed in terms of this further aspect of the Pearl-Woodward 
account. Analysing counterfactual approaches to XAI in this way is important, since 
doing so is needed to determine whether these approaches identify genuine causal 
dependence.

1  For discussion and developments of the counterfactual approach see Barocas et al. (2020); Dandl et al. 
(2020); de Oliveira and Martens (2021); Dhurandhar et al. (2018); Karimi et al. (2021); Kasirzadeh & 
Smart (2021); Keane & Smyth (2020); Laugel et  al. (2018, 2019); Van Looveren and Klaise (2021); 
McGrath et al. (2018); Mothilal et al. (2020).
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In this paper, I build on Chou et al. (2022)’s work by analysing the counterfactual 
approach to XAI using the Pearl-Woodward approach to specifying causes. Because 
the Pearl-Woodward approach is also based on counterfactual dependence, I will 
henceforth call the counterfactual approach that builds on the work of Wachter et al. 
(2018) the standard counterfactual approach. I thus argue that the standard coun-
terfactual approach to XAI delivers causal information that supports understanding 
in the Pearl-Woodward sense of causation, but that it does not reliably deliver full 
causal information. I go on to propose a way of overcoming the limitations on the 
standard counterfactual approach by combining it more fully with the Pearl-Wood-
ward framework. The paper thus makes three advances: (i) it develops the connec-
tion between causal understanding and standard counterfactual approaches to XAI; 
(ii) it shows how the standard counterfactual approach to XAI can provide a basis 
for causal understanding, and where it faces limitations in this respect and (iii) it 
proposes a new, mixed strategy for XAI.

In recent work, Buijsman (2022) also considers the Pearl-Woodward frame-
work in the context of XAI, including its relationship to standard counterfactual 
approaches. This important work differs from the study undertaken here in a cou-
ple of ways. Whereas Buijsman (2022) focuses on Woodward’s notion of explana-
tion, I focus on his notion of causation.2 Causation, for Woodward, is necessary for 
explanation, but not sufficient. What is needed, in addition, is a generalisation con-
necting causes to effects, and it is the generalisation that interests Buijsman (2022). 
Moreover, Buijsman (2022) argues that we should replace the standard counterfac-
tual approach with one based on Woodward’s notion of explanation, I offer no such 
argument. Instead, I use Woodward’s notion of causation as a tool for assessing the 
capacity of standard counterfactual approaches to find causes. Ultimately, however, 
Buijsman and I make similar recommendations, which is to develop an approach to 
XAI that is based on the Pearl-Woodward framework.

Watson and Floridi (2021) are also interested in using the Pearl-Woodward 
framework for XAI. Again, while this work significantly advances our understand-
ing of XAI, it differs from the current study in key respects. By contrast to Buijs-
man (2022), Watson & Floridi (2021) are more focused on the formal aspects of 
the Pearl-Woodward framework. These formal aspects do not take centre stage here. 
More important is the notion of causation, and the Pearl-Woodward strategy for 
specifying causes. Moreover, like Buijsman (2022), Watson & Floridi (2021) are 
interested in developing a new approach to XAI based mainly on the Pearl-Wood-
ward framework. By contrast, my interest is in combining standard counterfactual 
approaches with the Pearl-Woodward framework to develop a dual approach to XAI.

Further discussion of the Pearl-Woodward framework can be found in recent 
work by Asher et  al. (2022) and Beckers (2022). Both approaches to XAI yield 
important insights into the application of the Pearl-Woodward approach. Asher et al. 
(2022) provide a logical framework for counterfactuals, along with a game-theoretic 
analysis of the procedure of giving explanations. A core focus of their approach is 

2  For recent, useful discussion of scientific explanation in AI, along with its connection to causation, see 
Dúran (2021); Nyrup & Robinson (2022).
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to provide a semantics for counterfactuals, in part by using causal models of the 
kind advocated by Pearl and Woodward. As with Watson and Floridi (2021), Asher 
et  al. (2022) focus more on formal matters, rather than the implementation of the 
Pearl-Woodward notion of causation, which is the focus here. The work of Beckers 
(2022) is much closer to the present study, insofar as he is interested in applying 
(and, indeed, refining) notions of causation. However, Beckers (2022) focuses pri-
marily on applying notions of causation to target systems: real-world systems that 
machine learning models represent. By contrast, my focus is on applying causation 
to machine learning models themselves, not their target systems.3

With these preliminaries aside, I can now lay out the plan for the rest of the 
paper. I begin, in §2, by briefly introducing XAI and the associated goal of produc-
ing information that supports causal understanding. In §3, I introduce the standard 
counterfactual approach to XAI and in §4 I introduce the Pearl-Woodward frame-
work for causation and apply it. In §5 I suggest supplementing the standard counter-
factual approach with the Pearl-Woodward framework before summarising the main 
findings of the paper in §6.

2 � Causal Understanding

In the simplest terms, a machine learning model is a system that takes certain val-
ues for variables as inputs, and yields certain outputs. These models are typically 
produced via the application of an algorithm to a large data set, which is used to 
‘train’ the way that the model produces outputs based on inputs. Once trained, the 
model can be fed input data of the kind used to train the model. The model will then 
process this data and deliver a prediction that can be used for decision-making pur-
poses. As noted, some machine learning models are opaque. The opacity of machine 
learning models is generally considered to be a problem. When a decision is made 
by an institution, and that decision has serious implications for an individual, the 
individual should be able to understand why the decision was reached or predic-
tion was made. This general ‘right to explanation’ translates directly into a right to 
understand why machine learning models produce their outputs, when those outputs 
are used by institutions to make decisions that affect people’s lives.

The project, then, of developing XAI is, in part, the project of providing explana-
tions of why machine learning models yield the results that they do. Wachter et al. 
(2018, p. 843) outline three goals for the provision of such explanations: 

1.	 To inform and help the subject understand why a particular decision was reached.
2.	 To provide grounds to contest adverse decisions.

3  In the useful typology of explanation provided by Cabitza et  al. (2023), Beckers (2022) focuses on 
‘causal explanation’ which Cabitza et al. (2023) take to be a matter of studying causation in a real-world 
system, whereas I focus on what Cabitza et al. (2023) call ‘mechanistic explanation’, which involves the 
way that the machine learning model works.
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3.	 To understand what could be changed to receive a desired result in the future, 
based on the current decision-making model.

As noted, a number of authors have emphasised the importance of causal under-
standing in the context of XAI (Buijsman (2022); Chou et  al. (2022); Holzinger 
et  al. (2019); Miller (2019); Shin (2021); Watson & Floridi (2021)). At the most 
general level, for a model M with a set of input variables X, causal understanding 
is a matter of correctly identifying those variables in X that caused M to yield a 
specific output � rather than � , on a particular run. Causal understanding is thus 
contrastive: it is a matter of understanding what caused M to have � rather than � as 
an output. Causal understanding also comes in degrees. When there are many vari-
ables that, together, caused the model’s output, one can gain information about just 
one of these variables, or all of them. One has partial causal understanding when 
one correctly identifies one or more causes of a model’s output. One has full causal 
understanding when one correctly identifies all causes of a machine learning mod-
el’s output, and does not misidentify any causes. Correct identification is a matter of 
true belief: one correctly identifies a cause x when one gains the belief that x caused 
M to output � rather than � and one’s belief is true.

It is important to differentiate the kind of causal understanding at issue from three 
other notions of causal understanding that are sometimes discussed in the context 
of XAI. First, there is understanding of the causal structure of a physical system, 
one that is distinct to a machine learning model. So, for instance, there might be a 
particular physical system being studied within physics. A machine learning model 
might be employed to try and understand the causal structure of that system (see the 
discussion in Dúran & Formanek (2018); Räz & Beisbart (2022); Sullivan (2022)). 
Causal understanding in this sense is a measure of how much the model can reveal 
about the causal structure of this other system. By contrast, the kind of causal under-
standing I am interested in concerns the causal structure of the machine learning 
model itself.

Second, there is understanding of the causal relationships between actual fea-
tures that are encoded by the input variables of a machine learning model (see, for 
instance, Karimi et al. (2021)). As with the first kind of causal understanding, this is 
understanding of the relationship between various facts in the world, such as the way 
that income and zip code causally interact in a real society. It is not understanding 
of what caused the machine learning model to yield a certain output which, again, is 
what interests me here.

Third, there is understanding of what an individual has the capacity to causally 
control (see, for discussion, Keane et  al. (2021); Keane & Smyth (2020)). Under-
standing of this kind involves an understanding of the causal options one has for 
action. This is quite different to understanding which inputs into a machine learning 
model caused it to output a specific value. The two notions can interact, however: 
understanding what caused a machine learning model to yield a specific outcome is 
important to understanding what one should change to receive a better outcome from 
the model which, in turn, requires understanding one’s causal options for change.

According to Chou et al. (2022, p. 61) the provision of causal understanding is 
a necessary condition on satisfying the demand for explanation that drives work on 
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XAI. The necessity of causal understanding makes sense from a philosophical per-
spective. Philosophers generally agree that the following is a necessary condition on 
explanatory understanding:4 

Understanding Why: S understands why p only if S believes that for some q, 
q caused p and S’s belief is true.

Causal understanding is thus needed to achieve the first of the three goals for XAI 
outlined by Wachter et al. (2018). As noted, the first of these goals just is the provi-
sion of explanatory understanding. Given that causal understanding is necessary for 
explanatory understanding, it follows that causal understanding is needed for XAI.

In what follows, I will use the Pearl-Woodward framework for specifying causes 
to assess whether the standard counterfactual approach manages to provide users 
with causal information. Why relate the standard counterfactual approach to the 
Pearl-Woodward framework in this manner? Doing so is non-trivial and, one might 
contend, it is unclear what the benefits might be.

The answer to this challenge lies with the connection between explanatory and 
causal understanding. It is this link that, in part, motivates the focus on counterfac-
tuals in XAI. As Miller (2019) notes in their seminal review, counterfactual expla-
nations are important precisely because they are supposed to provide information 
about causes (a point that has been subsequently emphasised in e.g., Asher et  al. 
(2022); Byrne (2019); Buijsman (2022); Chou et al. (2022); Kasirzadeh and Smart 
(2021)). Thus, providing counterfactual explanations is supposed to be a way of pro-
viding information about causation. This information is then supposed to form the 
basis for user’s beliefs about the causal factors that led a machine learning model to 
have a particular outcome.

It is important, however, to differentiate between two kinds of information about 
causation: genuine information and spurious information. Genuine information 
about causation, is information that accurately captures causal factors. Spurious 
information, by contrast, is information that, while appearing to be about cause and 
effect, fails to accurately capture causal factors. In the case of XAI, we need to pro-
vide individuals with genuine information about causation. If we don’t, then we are 
not providing them with information that can lead to explanatory understanding. For 
without genuine causal information, users are not in a position to form true beliefs 
about causal factors, which is needed to satisfy the necessary condition on explana-
tory understanding stated above.

This suggests the need for a method of certifying that the information given to 
users via a particular approach to XAI is genuine causal information. In the case 
of the standard counterfactual approach, this means certifying that the information 
communicated to users through counterfactuals accurately captures causal factors 
rather than, say, spurious correlations (Chou et al. (2022)). However, the only way 

4  Philosophers disagree about whether understanding of causes is sufficient for explanatory understand-
ing. In addition to understanding of causes, something else may be required, such as an explanatory story 
linking causes to effects (Pritchard, 2014); an answer to a vertical why-question (Lawler, 2019); or infer-
ential and explanatory abilities related to one’s understanding of causes (Hills, 2016).
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to certify that the information given to users is genuinely causal is to show that the 
information being provided satisfies a plausible picture of what causation is.

In short, causal certification is necessary for determining whether an approach 
satisfies the first goal of XAI outlined by Wachter et al. (2018), namely the provi-
sion of explanatory understanding. For there is a risk that, when providing an expla-
nation for why a machine learning model produces a certain output, one provides 
an explanation that, while psychologically compelling, does not convey genuine 
information about causal factors. Causal certification ensures that the information 
being provided to users is indicative of genuine causation, and thus provides a sound 
basis for explanatory understanding. Since the provision of explanatory understand-
ing is increasingly a focus of regulation around AI, causal certification is potentially 
needed to demonstrate regulatory compliance. For if one cannot show that the infor-
mation provided is a basis for explanatory understanding, then it is unclear that one 
has provided enough to satisfy a right to explanation.

One might reply that genuine information about causal factors is not necessary 
for explanatory understanding. The goal of providing explanatory understanding is 
achieved so long as one provides an explanation that a user will find plausible or 
satisfying. What we should do, then, is just focus on providing this kind of infor-
mation, regardless of whether it is genuinely causal. Here it is important to dif-
ferentiate between perceived understanding and genuine understanding. Perceived 
understanding is a subjective experience that occurs when one feels as though one 
understands, which can often occur when one is given an explanation that one finds 
satisfying. Genuine understanding, by contrast, is when one really does understand 
a phenomenon.

In contrast to perceived understanding, genuine understanding cannot be achieved 
just by gaining an explanation of some fact that one deems satisfying or plausible. 
Rather, as philosophers have shown, genuine understanding is a more demanding 
notion, characterised by having certain true beliefs and possessing specific capaci-
ties, rather than having subjective experiences (Hills (2016); Sullivan (2018); Wilk-
enfeld (2014, 2019)). Importantly, when one genuinely understands, one has true 
beliefs about causal factors, and one is able to draw a range of accurate inferences 
about causal factors, including accurate generalisation to other, similar cases (see 
Hills (2016) for a list of the relevant capacities). Such beliefs and inferential capaci-
ties may be gained when given an explanation that is psychologically compelling, 
but not necessarily. One may find an explanation compelling because it is familiar 
or, indeed, presents a clear plan of action, rather than because it gives one a true 
belief about causes or because it gives one the capacity to draw accurate causal 
inferences about the phenomenon being explained.

It is plausible that the kind of explanatory understanding at issue in XAI is, at 
least sometimes, genuine explanatory understanding, rather than just perceived 
understanding. We want to inform users of how something works not just in a 
manner that they find satisfying, but in a manner that gives them true beliefs 
about causes and supports their capacity to draw accurate causal inferences. But if 
that’s right then it is not enough to ‘scratch’ a user’s ‘explanatory itch’ by giving 
them a perceived sense of understanding only; genuine explanatory understand-
ing is needed. Because genuine understanding is so tightly linked to true beliefs 
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about causation, providing a basis for genuine explanatory understanding means 
supplying users with information enough to form accurate beliefs about causal 
factors, that can then underwrite inferential capacities. This, in turn, requires the 
provision of accurate causal information which, again, highlights the need to cer-
tify that accurate causal information is being provided.

In sum, one good-making feature of explanations provided in XAI is that they 
provide information that leads users to form true beliefs about causation. This is 
not the only sense in which those explanations may be good, but it is an important 
sense because genuine explanatory understanding requires that users form such 
beliefs. Accordingly, we need a system for certifying that the information pro-
vided to users by a given approach to XAI is genuine causal information.

There are, in fact, two ways in which an approach to XAI may be causally 
certified. First: basic causal certification. This is a guarantee that the information 
provided to users is always genuine causal information. Second: complete causal 
certification. This is a guarantee that the information provided to users is always 
a complete account of the causal factors that led a model to deliver a particular 
outcome.

Complete causal certification is needed for the second goal outlined by 
Wachter et  al. (2018) for XAI, namely that of providing grounds for contesting 
adverse decisions. One important way to contest an adverse decision is by show-
ing that the output of a machine learning model was caused by a particular input 
feature that should not have played any causal role. For instance, one may wish to 
contest an adverse loan decision on the grounds that the loan model’s output was 
caused by input features like race or age. In order for a user to properly decide 
whether to contest a particular decision, they need complete information about 
the causal factors that determined the outcome in their case. Without this infor-
mation, the user cannot determine whether, say, race or age are causally impor-
tant (assuming that their causal importance is sufficient grounds for recourse). 
Without a guarantee that full causal information has been given one cannot know 
whether one is in a sound position to contest the decision, and thus whether chal-
lenging the decision—which can be costly—is worthwhile.

The Pearl-Woodward framework is important for causal certification. What it 
provides is a framework for determining whether an existing approach to XAI 
always delivers genuine causal information, and, if it does, whether it always 
delivers complete causal information. The framework can thus be used to test 
whether an existing approach to XAI passes basic or complete causal certifica-
tion. If an existing approach fails to pass causal certification, then that pro-
vides a potential basis for criticising the approach. Since what it shows is that 
the approach is not providing the right kind of information to scaffold genuine 
explanatory understanding. In this way, the Pearl-Woodward approach can be 
used to select between competing approaches to XAI. If, by contrast, an existing 
approach passes causal certification, then this information can be provided in the 
form of a guarantee to users. That is, we can assure users that the explanatory 
information they’ve been given is genuine causal information. Any doubts about 
the causal status of the information being provided to users can thus be assuaged 
via causal certification. This is important since confidence in causal information 



355

1 3

Explainable AI and Causal Understanding: Counterfactual…

can underwrite trust (see Shin (2021)) and so having a way to offer causal certifi-
cation of approaches to XAI is of potential value to users.

As we shall see in §5, the Pearl-Woodward framework can also be used as a sup-
plement to existing approaches that fail to achieve causal certification. That is, the 
Pearl-Woodward framework can be used alongside an existing approach to XAI as 
a way to ensure that users are provided with complete causal information. Indeed, 
applying the Pearl-Woodward framework in this way is one of the core recommen-
dations of this paper. Thus, not only can the Pearl-Woodward framework be used 
to test other approaches to XAI, it can also be used to ensure that complete causal 
information is always provided to users, thereby placing users in the best position to 
contest adverse decisions.

The Pearl-Woodward framework and the attendant causal analysis is thus benefi-
cial for three, related reasons: (i) it provides a way to test the quality of the explana-
tions delivered by an approach to XAI, which is important for certifying that causal 
information is being provided; (ii) it can be used to issue guarantees regarding the 
quality of information being provided to users and (iii) it provides a framework for 
ensuring that all relevant causal information is provided. Upshots (i) and (iii) are of 
practical benefit insofar as they contribute to achieving the goals of XAI, and upshot 
(ii) is useful as it has the potential to underwrite trust in XAI approaches.

Despite these benefits, one may still question the use of the Pearl-Woodward 
framework. There are, after all, other ways of specifying causation, and one in par-
ticular looms large: the account of causation offered by Lewis (1973) which, is often 
cited as a motivation for the standard counterfactual approach. In the next section, 
then, I will introduce the the standard counterfactual approach to XAI and explain 
why Lewis’s approach shouldn’t be used for causal certification.

3 � Counterfactual Explanations

The standard counterfactual approach aims to achieve the goals of XAI through the 
provision of counterfactuals. Each counterfactual provides information about how 
the outputs of a machine learning model would have been different, under counter-
factual changes to the model’s input variables. So, for a specific machine learning 
model M that yields output � based on a set of input variables X, each counterfac-
tual has the following form: for a set of variables {X1...Xn} ⊆ X , with values x1...xn , 
had the values of variables X1...Xn been x′

1
...x′

n
 rather than x1...xn , M would have 

yielded output � rather than � . Counterfactuals of this form are then used to under-
write explanations for why M yielded the specific output that it did, in the following 
manner: M yielded output � because variables X1...Xn had values x1...xn . Had x1...xn 
been x′

1
...xn , M would have yielded � rather than �.

The goal is usually to find counterfactuals of the above form that satisfy a con-
straint of proximity. Let a data point p for a machine learning model M with a set of 
input variables X be a particular setting of values for each variable in X. Then the 
set S of data points is the set of all possible combinations of settings for the input 
variables. Now, for a machine learning model M with output � consider all of the 
counterfactuals of the following form: had M received data point p′ rather than p, it 
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would have yielded output � rather than � . For each of these counterfactuals, com-
pare the counterfactual data point p′ with the actual data point p, along one or more 
dimensions. Proximity tells us to focus on those data points that flip the model’s 
output and that are closest to p with respect to the relevant comparison. Only coun-
terfactuals involving the closest data points are to be used in explanations of why 
model M yielded a specific output �.

To develop their approach, Wachter et al. (2018) identify an algorithm along with 
a metric that provides a measure of the distance between each data point. This algo-
rithm satisfies the proximity constraint by looking for the closest data points that flip 
the model’s output (see (1)–(3)).

To see how the standard counterfactual approach works, it is useful to consider an 
example. Suppose that Sara applies for a loan and is asked to provide information 
including: income, age, assets, address, marital status and debt level. The bank takes 
this information and feeds it into a machine learning model. The model returns a 
result � that is used by the bank to disqualify Sara for the loan. Sara demands to 
know why the model returned this specific result, rather than a result � that would 
have been more beneficial for her. In order to satisfy this demand, the bank pro-
vides her with a list of counterfactuals. These counterfactuals represent the smallest 
changes to Sara’s input data that would lead the machine learning model to produce 
� instead of � (see Table  1). This list of counterfactuals is then used to provide 
Sara with an explanation for why her loan application was rejected. It was rejected 
because her income and savings were too low, and because she was too young.

Counterfactual approaches vary in terms of the precise method used to retrieve 
a list of counterfactuals. A number of different algorithms have been suggested, as 

(1)arg min
x�

max
�

�(fw(x
�) − y�)2 + d(xi, x

�)

(2)d(xi, x
�) =

∑

k∈F

|xi,k − x�
k
|

MADk

(3)MADk = medianj∈P(|Xj.k − medianl∈P(Xl, k)|)

Table 1   A list of counterfactuals

The first line of Table 1 is the actual data input to the model for Sara
The other lines p 1 – p 3 are the smallest changes to the inputs for Sara’s data that would yield a different 
outcome
Blank spaces for p 1 – p 3 are values that are unchanged from their actual input values

Data point Age Income Savings Suburb Marital Debt Output

@ 25 60k 20k Fitzroy Single 200k �

p1 +4k �

p2 +4k �

p3 -6 �
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well as a number of different metrics (see Chou et al. (2022); Verma et al. (2020); de 
Oliveira and Martens (2021) for overviews). The identification of new algorithms, 
metrics and strategies for finding counterfactuals is driven by an appreciation of var-
ious constraints on which counterfactuals should be returned. One constraint that is 
common to almost all versions of the standard counterfactual approach is the prox-
imity constraint described above. However, there are a number of other important 
constraints that have been identified in the literature to date.

For instance, Keane and Smyth (2020) and Keane et  al. (2021) identify coun-
terfactuals that are plausible or actionable. A similar approach is taken by Kirfel 
and Liefgreen (2021). Actionable counterfactuals are those where the counterfactual 
data point p′ is closest to the actual data point p compatible with the shift from p to 
p′ being achievable by an individual. In a similar vein, Poyiadzi et al. (2020) include 
modifications to retrieve the most feasible data points, which are ones that are the 
easiest for the individual to access from the actual data point. Wachter et al. (2018) 
emphasise sparsity, which involves finding data points that involve changing as few 
input variables as possible while still changing the model’s output. Mothilal et al. 
(2020) emphasise diversity, where diversity is a measure of the number of counter-
factuals delivered, and is to be balanced with actionability.

I will return to some of these constraints later on. For now, I will simply note 
them and press on to consider how the standard counterfactual approach might yield 
causal information. As discussed, the output of the standard counterfactual approach 
is a list of counterfactuals. This list of counterfactuals will single out specific input 
variables. So, for instance, in Sara’s loan case, the list of counterfactuals singles out 
income, savings and age. Since this list of counterfactuals is the only output of the 
standard counterfactual approach, and since it is supposed to underwrite explanation 
and understanding, it is natural to try and read causation off the list. We can do this 
by focusing on the variables that are altered. Thus, in the case of Sara’s loan, we can 
infer that it was age, income and savings that caused the model to yield its specific 
output in her case, since it is those variables that, when changed, flip the model’s 
output.

For information generated in this way to underwrite genuine causal understand-
ing, the information must accurately capture causal factors. That’s because, as 
noted in §1, causal understanding is a matter of correctly identifying causes, which 
requires not just belief about causes but true belief, and accurate information about 
causation is needed for true causal beliefs. As Chou et al. (2022) argue, however, 
it is unclear whether the information generated from the standard counterfactual 
approach is genuine causal information. The standard counterfactual approach, 
they maintain, has not been developed within a framework that allows us to deter-
mine when we have correctly identified a cause. What is missing, in particular, is 
a method of specifying what causes what. Without such a method, we don’t know 
whether the information extracted from a list of counterfactuals matches the actual 
causal facts.

One might take issue with Chou et  al. (2022)’s argument, noting that Wachter 
et al. (2018) do in fact develop their account within a framework that can be used 
to specify causation. In fact, two such frameworks are mentioned in their paper. 
The first of these is Lewis’s (1973; 1979) and the second is the one outlined by 



358	 S. Baron 

1 3

Pearl (2000) and Woodward (2003). Subsequent work on the standard counterfac-
tual approach has also been developed with reference to these two frameworks. For 
instance, Mahajan et al. (2019) and Karimi et al. (2021) employ an approach to find-
ing counterfactuals based on the Pearl-Woodward structural equation framework. 
Similarly, Russell et al. (2020) develop an approach to counterfactuals using Lewis’s 
framework, defending it against objections from Pearl.

Chou et  al. (2022)’s criticism cannot be so easily set aside, however. For it is 
important to distinguish between two aspects of the Lewis and Pearl-Woodward 
frameworks. On the one hand, there is the formal recommendation about how to 
work with counterfactuals. Lewis proposes a method that is based on distance 
between worlds; Pearl and Woodward propose a method based on interventions and 
structural equation models. On the other hand, there is a way of specifying causes 
embedded within both frameworks, where a way of specifying causes is just a state-
ment of what it is for one thing to cause another. Within Lewis’s framework, causes 
are specified in terms of counterfactual dependence of a certain kind. For him, coun-
terfactual dependence of the relevant kind is sufficient for causation. Within the 
Pearl-Woodward picture, by contrast, causes are specified in terms of interventions 
on variables, which leads them to focus on a different class of counterfactuals.

Chou et al. (2022)’s point is focused on this second aspect of the Lewis and Pearl-
Woodward frameworks. Their point is that despite the use of the first aspect of the 
Lewis and Pearl-Woodward frameworks within counterfactual approaches to XAI, 
an approach to specifying causes (such as one of the two approaches just mentioned) 
has not been systematically applied in order to work out whether standard counter-
factual approaches manage to yield causal understanding. To return to the language 
of causal certification offered above: their point is that causal certification has not 
been achieved for the standard counterfactual approach to XAI. That’s because we 
have not yet verified that the counterfactuals being provided do indeed yield genuine 
causal information.

In fact, their point is a bit narrower than that: their concern is that the Pearl-
Woodward approach to specifying causes in particular has not been systematically 
applied to achieve causal certification. One might take issue with their focus on the 
Pearl-Woodward approach to specifying causes. For if Lewis’s approach to specify-
ing causes is assumed instead, then it could be argued that it is relatively easy to 
achieve causal certification for the standard counterfactual approach. That’s because, 
one might argue, for Lewis, counterfactual dependence is sufficient for causation. 
Accordingly, any true counterfactual reveals genuine causal information, and so the 
provision of any counterfactual explanation whatsoever provides a basis for infer-
ring true beliefs about how a machine learning model’s output causally depends on 
its input.

Matters are not quite so straightforward, however. For one thing, Lewis does not 
take counterfactual dependence in general to be sufficient for causation. For Lewis, 
it is only very specific counterfactuals that are sufficient for causation. This restric-
tion is important, because as Lewis recognised, there are clear cases in which there 
is counterfactual dependence but no causation (Reutlinger (2016)). Consider, for 
instance, the way that a diamond is constituted by molecules that are in a tight lat-
tice. Given this fact, the following counterfactual seems to be true: if the diamond’s 



359

1 3

Explainable AI and Causal Understanding: Counterfactual…

molecules were not in a tight lattice, the diamond would not have been hard. This 
counterfactual is true, but it is not indicative of causation: the diamond’s molecules 
don’t cause it to be hard but, rather constitute it’s hardness (constitution is not sup-
posed to be a causal relation, see Baumgartner & Gebharter (2016)). Or, to take 
another example, when one writes down the word ‘party’ one has to write the ‘a’. 
So the following counterfactual seems to be true: had one not written ‘a’ one would 
not have written ‘party’. It is not clear, however, that this is a causal counterfac-
tual: writing ‘a’ does not seem to cause one to write ‘party’ in any obvious sense. 
Finally, philosophers have argued that counterfactuals within pure mathematics are 
true, such as ‘if 13 had not been a prime number, it would have had factors other 
than one and itself’ (Baron et al. (2017)). This counterfactual, while true, does not 
imply causation, since mathematical objects are not the right kinds of things to be 
causally related.

Lewis isolates the class of counterfactuals that are sufficient for causation in two 
main ways. First, he imposes a restriction on the causal relata: he demands that only 
counterfactuals involving independent events are sufficient for causation. Second, he 
imposes a complex similarity ordering over counterfactuals, that requires closeness 
in the laws of nature and in spatiotemporal distribution of matters of fact. Only the 
counterfactuals that are true by this measure of similarity qualify as causal (Lewis 
(1979)).

Now, one could try to use Lewis’s theory of causation to achieve causal certifica-
tion for the standard counterfactual approach to XAI. To do this one would need 
to demonstrate that the counterfactuals delivered by the standard counterfactual 
approach do in fact qualify as causal counterfactuals, in Lewis’s sense. Perhaps this 
can be done. However, there is good reason to move beyond Lewis’s approach and 
to thus take Chou et al. (2022)’s focus on the Pearl-Woodward approach seriously. 
For philosophers generally agree that Lewis’s theory fails to link counterfactuals to 
causation, even for the narrow set of counterfactuals that do satisfy his constraints. 
The consensus being that members of Lewis’s favoured class of counterfactuals are 
not generally sufficient for causation (see, for demonstrations of this fact, Harbecke 
(2021); Fine (1975); Schaffer (2000); Schulz (2011); Woodward (2003)).

Indeed, it is precisely this fact that partly motivates the Pearl-Woodward approach 
to specifying causes. As was the case with Lewis’s theory, it is only counterfactual 
dependence of a specific type that is sufficient for causation within the Pearl-Wood-
ward framework. However, the framework is tailor-made to avoid the counterexam-
ples that philosophers have raised against Lewis’s theory, and to thus settle on a 
class of counterfactuals that is more tightly linked to causation. The Pearl-Wood-
ward framework is also the most detailed system for understanding causation based 
on counterfactuals that has been developed to date. It enjoys widespread use both 
within philosophy and within science, and is considered to be a leading approach to 
specifying causes. If we are to move beyond the Lewisian picture, but stay within a 
broadly counterfactual approach to causation, then there really is no better option 
than the Pearl-Woodward framework.

In sum, then, Chou et  al. (2022) set up the following challenge: show that the 
standard counterfactual approach to XAI yields genuine causal information by sys-
tematically applying the Pearl-Woodward approach to specifying causes. In what 
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remains, I take up this challenge. In the next section, I briefly outline the Pearl-
Woodward approach to specifying causes. After that, I will reconsider the standard 
counterfactual approach in light of the Pearl-Woodward notion of a cause.

4 � Causal Discovery

For Woodward (2003, p. 59), causes are specified as follows:5 

Interventionist Causation (IC) X is a direct cause of Y with respect to a vari-
able set V if and only if there is a possible intervention on X that changes Y or 
the probability distribution of Y when one holds fixed at some value all other 
variables Zi in V.

There are a few things to note about this definition. First, IC uses variables. It is 
important to keep these variables distinct from the input variables of machine learn-
ing models, for reasons that will become clear as we go. Thus, we can call the vari-
ables that appear in IC Pearl-Woodward variables, or PW-variables, and the input 
variables to a machine learning model ML-variables. Second, causation in IC is 
specified with respect to a variable set. A set of variables is a way of representing 
the features of a system. Generally speaking, we can choose to represent the same 
system using multiple different variable sets, depending on how features of a system 
are grouped under variables. Third, causation in IC is defined in terms of an inter-
vention, which amounts to a possible way of changing the values of one or more 
PW-variables to a value other than the actual value.6 Fourth, holding variables fixed 
just means setting them at their actual values under an intervention. Fifth, IC is a 
definition of a cause. A cause is different from the cause. When we talk of the cause 
we mean the complete causal antecedents to some event. When we talk of a cause, 
we mean only one antecedent cause, as there may be many. Finally, IC is a defini-
tion of a direct cause. A direct cause X of Y is one that does not proceed via some 
intermediary Z.

IC is generally combined with a formal framework of causal models. A causal 
model is a way of representing the causal structure of a system. Each causal model 
can be represented as a directed, acyclic graph in which each PW-variable is a node, 

5  Note that I have altered Woodward’s definition slightly for readability, but those differences do not 
matter. A more substantive change is that I have omitted Woodward’s reference t:o types For Woodward, 
IC is a definition of causation at the type-level. Types are just repeatable events. For a machine learning 
model we are generally interested in what caused a model to have a specific output. This is, however, 
compatible with thinking of causation at the type-level. We just need to consider the specific output as 
a type of event: the event of a model yielding that specific output, which it could do on multiple distinct 
occasions. We can think of the cause of the model yielding this output as a type too: the model receiv-
ing a certain type of input, which it could do on multiple occasions. In this way, causation for a machine 
learning model can be specified at the type-level: this type of input leads to that type of output. However, 
since the discussion of types is not important in what follows, I set it aside.
6  Woodward (2003) specifies interventions in terms of the addition of possible causes to a system. Here 
I use Pearl’s (2000) method of specifying interventions in terms of ‘logical surgeries’ whereby the PW-
variable is changed directly, without the addition of an extra cause.
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the causal relations between variables are links and a set of structural equations 
describes the dependence between PW-variables. Interventions on PW-variables in 
a causal graph can be represented using Pearl’s (2000) do-calculus. The do-calculus 
is an operation on variables that changes the value of that variable, while leaving 
other variables unchanged. An intervention will generally break the structural equa-
tion that specifies the way in which the intervened-upon variable depends on other 
variables. In this way, the do-calculus makes the value of the intervened on variable 
depend only on the do-operation, and not on other variables.

The formal framework of causal models can be used to represent the causal 
structure of a system, once that causal structure is known. Prior to building a causal 
model, we generally need to determine what the causal structure of a system is. For 
this, we can use just IC plus a PW-variable set. We start by representing the fea-
tures of a system using PW-variables. We then intervene on each PW-variable, while 
holding the others fixed, to check for causation. This typically means checking a 
range of counterfactuals on the system to see if there are pairs of variables that sat-
isfy IC. When there are, we can record the relationships between those variables as 
causal relationships. Because the application of IC reveals causal information, it can 
also be used to test beliefs about causes, to see if they are true. So, for instance, the 
belief that x causes y in a system s can be tested by representing s with a PW-varia-
ble set V and then applying interventions to a variable representing x to see if there 
is a change to a variable representing y (holding all other PW-variables in V fixed). 
If there is, then the belief that x causes y is true. If not, then not.

As discussed in §2, the Pearl-Woodward framework can be used as a test of 
causal certification for existing approaches to XAI. In order to show how IC can be 
applied to the standard counterfactual approach for this purpose, I will proceed in 
two stages. First, I will outline an application that is simplified in a key respect. Hav-
ing done that, I will then lift the simplification to consider a more complex applica-
tion of IC. Note that the simplification is just for expository purposes, it makes the 
initial application of IC a bit easier to follow, but beyond that is entirely dispensable.

4.1 � A Simple Model

In order to use IC for the purposes of causal certification, some set-up is required. 
For a machine learning model M, we must specify a set of PW-variables V and use 
them to represent the ML-variables for M. Every ML-variable corresponds to some 
PW-variable and distinct PW-variables correspond to distinct ML-variables.7 The 
output of M is represented by exactly one PW-variable which has just two pos-
sible values: the actual output � , and some pre-determined value of interest � . 
Each PW-variable that represents an ML-variable is set to the actual values of that 

7  Distinct PW-variables must correspond to distinct ML-variables otherwise, when we intervene on one 
PW-variable and hold fixed the others, we end up holding fixed the PW-variable we are intervening on. 
Every ML-variable needs to correspond to some PW-variable so that we can check all ML-variables 
using IC.
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ML-variable. The PW-variable that represents the output of the model is set to the 
model’s actual output.

As noted, the initial application of IC will operate under a simplifying assump-
tion: each PW-variable corresponds to exactly one ML-variable. Under this simpli-
fying assumption, the possible values of each PW-variable correspond to the pos-
sible values for the ML-variable that is being represented. The set of possible data 
points for the machine learning model thus gives us the possible values for each 
of the PW-variables that corresponds to an ML-variable, since the set of possible 
data points encodes all of the possible values for each ML-variable. The simplifying 
assumption allows us to drop talk of PW-variables and talk directly of intervening 
on ML-variables, which can be understood as counterfactual changes to those ML-
variables. That is what I will do while the simplifying assumption is in place.

Note that the simplifying assumption is not essential to the application of IC 
and will be disposed of entirely in §4.2. Disposing of the simplifying assumption is 
important, for it is extremely restrictive. What it does is effectively force us to con-
sider only counterfactuals in which a single ML-variable is altered and the output 
of the model is flipped. As Keane & Smyth (2020) have argued, however, counter-
factuals of this kind tend to be extremely rare. Indeed, many counterfactuals involve 
altering a large number (20+) of ML-variables to flip a model’s output. Thus, under 
the simplifying assumption, the application of IC is bound to miss a great deal of 
causal information.

At any rate, the initial, simplified set-up for applying IC is depicted in Fig. 1.
Having embedded a machine learning model within the Pearl-Woodward frame-

work, we are now in a position to test the standard counterfactual approach using 
IC. Recall that, for the standard counterfactual approach, we can extract informa-
tion about causation using the list of counterfactuals retrieved. Specifically, for a 
machine learning model with output � , we can look at the list of counterfactuals that 
has been retrieved, and infer that those ML-variables that take values that are differ-
ent to their actual values caused the model’s output to be � rather than � . When an 

Fig. 1   A simplified set-up for IC for set of PW-variables V, {V1,V2,V3,V4} and set of ML-variables X, 
{X1,X2,X3} for machine learning model M. Each ML variable corresponds to exactly one PW-variable. 
There is a PW-variable that corresponds to the model’s output. The possible values for the V

n
 that cor-

respond to the X
n
 just are the possible values for the X

n
 . The possible values for the PW-variable cor-

responding to the model’s output is just the pair of values � (actual value) and � (pre-determined value). 
The values for the V

n
 are set to the actual values for the ML-variables and the model’s output
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application of the counterfactual approach retrieves a list of counterfactuals in which 
certain variables are altered, I will say that these variables have been highlighted 
and the rest have not been highlighted. Thus, the information being extracted is that 
the highlighted ML-variables are the causal variables. So, for instance, in Table 1, 
income, savings and age are all highlighted, whereas debt level, address and marital 
status are not highlighted. We thus infer that income, savings and age caused the 
model’s output in this case, as previously discussed.

For information extracted in this way to underwrite genuine causal understand-
ing, it must be accurate. IC can be used to test the information for accuracy: for 
an ML-variable putatively identified as causal, one can check to see if it is in fact 
causal, by looking to see whether intervention on that variable satisfies IC. Thus, 
one can ask: is it the case, for a highlighted ML-variable, that there is some possible 
value of that ML-variable that flips the model’s output from � to � , while holding 
all other ML-variables fixed? If the answer is ‘yes’, then the application of the coun-
terfactual approach has successfully identified a cause, and has delivered genuine 
causal information. In this way, the application of IC can be used to provide basic 
causal certification of the causal information generated.

IC can also be used as the basis for complete causal certification. For a machine 
learning model with output � , we check to see if the highlighted ML-variables are 
in fact causal using IC as before. Thus, we begin with basic causal certification. 
After that, we use IC again to see whether there are any ML-variables that aren’t 
highlighted within the list of counterfactuals retrieved but that nonetheless satisfy 
IC with respect to the model’s output. If every highlighted ML-variable is causal 
and no other ML-variables are causal, then the application of the counterfactual 
approach has not omitted any factors that cause the model’s output. In this situation, 
we can certify that complete causal information has been delivered to the user.

Note that by applying IC in this manner we are considering similar counterfactu-
als to the ones delivered by the standard counterfactual approach. It is thus worth 
pausing to consider the difference between the standard counterfactual approach 
and the use of IC. There are two important differences. The first difference con-
cerns the counterfactuals that are under consideration. In the standard counterfactual 
approach, the counterfactuals that are retrieved are held under the proximity con-
straint, among others. When applying IC to provide causal certification we do not 
use a proximity constraint. Thus, IC does not look for causation between X and Y in 
terms of the closest changes to X that change Y. We are simply looking for any pos-
sible value for X that changes Y.

The second, related, difference concerns what we are trying to do when using IC 
versus when applying the standard counterfactual approach. The goal when applying 
the standard counterfactual approach is to provide counterfactuals that are ‘good’. 
What makes the relevant counterfactuals ‘good’ is controversial, but goodness 
appears to include features like plausibility or actionability. The goal of applying IC, 
by contrast, is to identify counterfactuals that are ‘good’ in a different sense. Rather, 
than identifying counterfactuals that are plausible, the goal is to identify counterfac-
tuals that yield genuine causal information.

We can see immediately that the standard counterfactual approach has at least 
the capacity to generate genuine causal information. Whenever an application 
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of the standard counterfactual approach yields a list of counterfactuals in which 
there is at least one counterfactual where only a single ML-variable has been 
altered, a cause has been correctly identified, at least according to the simpli-
fied picture we are working with in this section (see §4.2 for the generalisation). 
That’s because at least one highlighted ML-variable satisfies IC, since there is a 
possible value for the highlighted ML-variable that flips the model’s output hold-
ing the values of all other ML-variables fixed at their actual values. The standard 
counterfactual approach also has the capacity to generate complete causal infor-
mation. For it can happen that the list of counterfactuals retrieved highlights all 
and only the input ML-variables that satisfy IC. Nothing precludes this from hap-
pening. So, for example, consider again Sara’s loan example, and Table 1.

In this case, the standard counterfactual approach has successfully found three 
causal ML-variables: income, savings and age. That’s because each ML-variable 
satisfies IC. Thus, when we infer that income, savings and age are all causal, 
we have gained partial causal information. We can also suppose, for the sake of 
argument, that there are no other ML-variables that satisfy IC for this case. Thus, 
when we infer that income, savings and age are causal, we have thereby gained 
complete causal information. In this way, the standard counterfactual approach 
has the capacity to pass the test for causal certification.

However, while having the capacity to pass the test for causal certification is 
a good start, what we really want to know is whether the standard counterfactual 
approach in fact passes the test for causal certification. Recall that basic causal 
certification is the guarantee that an approach to XAI always yields genuine 
causal information; whereas complete causal certification is a guarantee that an 
approach to XAI always provides complete causal information. In order for the 
standard counterfactual approach to pass causal certification, the application of 
IC must deliver both guarantees.

Unfortunately, no guarantee can be provided that the standard counterfactual 
approach always supplies complete causal information. Thus, the standard coun-
terfactual approach does not pass the test for complete causal certification. Here, 
surprisingly, the proximity constraint is enough to generate a problem. Under the 
proximity constraint, the list of counterfactuals that is returned will feature only 
those counterfactuals that involve the smallest changes to input ML-variables that 
flip a model’s output. Because of this, the proximity constraint always runs the 
risk of leaving some ML-variable out that in fact satisfies IC.

To see this, suppose we have a machine learning model M with input ML-
variables X1...Xn , output � and just three data points: p@ , p1 and p2 . The point p@ 
is the actual data point, whereas p1 and p2 are counterfactual data points. Suppose 
that the data points are ordered with respect to closeness as follows: p1 is closer 
to p@ than p2 . Suppose also that both p1 and p2 flip the output of the model from 
� to some desired outcome � . In the case of p1 , this is due to a change in just one 
input ML-variable X1 , in the case of p2 this is due to a change in just one input 
ML-variable as well, X2 , where X1 ≠ X2 . Under the proximity constraint, only 
one of these data points will be retrieved in a list of counterfactuals. Because p1 
is closer than p2 , only p1 will end up in the final list. By IC, however, both X1 and 
X2 are causal, since in both cases there is a possible value for each ML-variable 
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that flips the model’s output (holding all other ML-variables fixed). So a causal 
factor has been left out.

Note the point is not that an application of the standard counterfactual approach 
under the proximity constraint will always leave out some causal ML-variable. A given 
application might in fact capture all of the causal ML-variables. The point, rather, is that 
the proximity constraint introduces an ever-present possibility of mismatch between the 
highlighted ML-variables in a list of counterfactuals and the ML-variables that in fact 
satisfy IC. That’s because, under the proximity constraint, the standard counterfactual 
approach will only ever retrieve counterfactuals involving the smallest changes to input 
ML-variables. It is always possible, however, that the ML-variables that are not high-
lighted in such a list nevertheless flip the model’s output at more extreme values and 
thereby satisfy IC. The proximity constraint will generally ignore these extreme values 
and so there’s simply no guarantee that the list of counterfactuals returned will include 
an exhaustive catalogue of the ML-variables that are causal.

On certain ways of implementing the standard counterfactual approach, the issue is 
quite stark. Consider the plausibility and feasibility constraints, introduced briefly in 
§2. These constraints prevent the counterfactual approach from returning lists of coun-
terfactuals in which protected attributes are changed. Thus, not only is there no guaran-
tee that all causal ML-variables will be captured under these constraints, there is some-
thing close to a guarantee in the opposite direction: when ML-variables that correspond 
to protected attributes in fact satisfy IC, they will be excluded.

The problem is by no means isolated to plausibility and feasibility constraints, how-
ever. As before, proximity alone is enough to generate a problem. To see this, suppose 
that Alex applies for a loan. He is asked to provide information including: income, age, 
assets, address, marital status, debt level and, this time, race. The bank takes this infor-
mation and feeds it into a machine learning model. The model returns a result, which 
the bank uses to disqualify Alex for the loan. Now, Alex suspects that the race ML-
variable caused the result in his case. If he is right, then he has a basis to contest the 
bank’s decision.

But suppose that the bank is of a nefarious bent, and that they intentionally build a 
distance measure over data points that always places data points that flip the model’s 
output in which the race ML-variable is changed further away than data points that flip 
the model’s output and in which some other ML-variable is changed. Then changes 
to race will always be considered more extreme than changes to income, savings or 
debt level. Thus, race will always be excluded from the list of counterfactuals that 
is retrieved simply because of the proximity constraint and a poor choice of metric. 
More generally, because, as noted, under the proximity constraint there is no guarantee 
that full causal information has been provided, the way is always left open for an ML-
variable that is causal and thus important for contesting decisions to not be correctly 
identified.

4.2 � Lifting the Simplification

So far, the application of IC to the standard counterfactual approach has shown that 
such an approach does not pass complete causal certification. Before considering a 
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way to address this limitation, it is important to first revisit the simplifying assump-
tion that I made when preparing the way for IC. I assumed that PW-variables corre-
spond to exactly one ML-variable. By dropping this assumption we allow that PW-
variables correspond to multiple ML-variables. This turns PW-variables into vectors 
of ML-variable information. The possible values for each PW-variable are thus the 
possible combinations of values for the ML-variables that a single PW-variable 
represents.

As noted, causation in IC is relative to a set of PW-variables. So far I have just 
been looking at one natural set of PW-variables, namely the set of PW-variables 
delivered by the simplifying assumption. Once we drop that assumption, we need to 
consider multiple different sets of PW-variables. In each set, there are PW-variables 
corresponding to n ML-variables such that every ML-variable corresponds to some 
PW-variable. In each set there is also a PW-variable that corresponds to the output 
of the model. Figure 2 depicts this set up for the application of IC.

Note that each ML-variable can only correspond to exactly one PW-variable. 
That’s because, if we allow that the same ML-variable corresponds to multiple PW-
variables, then we can’t apply IC. IC requires that we intervene on one PW-variable 
while holding other variables fixed. If the same ML-variable corresponds to two dif-
ferent PW-variables, V1 and V2 , then we won’t be able to intervene on either variable 
while holding the other fixed. For instance, suppose that V1 corresponds to ML-vari-
ables X1 and X2 ; whereas V2 corresponds to ML-variables X2 and X3 . If we intervene 
on V1 to change the values of X1 and X2 together, then we can’t hold V2 fixed, because 
V1 corresponds to X2.

Once we move to this more general setting, it becomes clear that the standard 
counterfactual approach always yields genuine causal information. An application of 
the standard counterfactual approach will reliably return at least one counterfactual 
in which there is a possible setting for a group of ML-variables that flips a model’s 
output. With respect to this group of ML-variables, there will always be some PW-
variable set in which there is a PW-variable, Vn that represents the group of ML-var-
iables at issue. Moreover, it will always be the case that an intervention on Vn (while 
holding all other PW-variables fixed) will change the PW-variable that represents 
the model’s output within this variable set. This is so even if the number of ML-var-
iables that we have to change is quite high. Even if we must alter 20+ ML-variables, 
there will be a set of PW-variables in which those factors are grouped under a single 
PW-variable. We can thus capture the way in which changes to a large number of 

Fig. 2   A complex set-up for 
IC for set of PW-variables V, 
{V1,V2,V3} and set of ML-
variables X, {X1,X2,X3} for 
model M. An intervention on V2 
changes the values of both X2 
and X3 at once
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variables flip a model’s output, by intervening on the PW-variable that corresponds 
to the group of ML-variables at issue. The group of ML-variables represented by a 
single PW-variable will thus, jointly, be a cause since the PW-variable at issue satis-
fies IC for a given PW-variable set.

The standard counterfactual approach is thus guaranteed to reveal at least one 
cause constituted by at least one ML-variable according to at least one set of PW-
variables that correspond to ML-variables. As a result, it passes basic causal certifi-
cation. So, for instance, instead of Table 1, suppose that the standard counterfactual 
approach delivers Table 2 below:

We can see that the standard counterfactual approach still yields causal informa-
tion. That’s because there is a set of PW-variables that correspond to ML-variables 
whereby interventions on the PW-variables satisfies IC. For instance, consider the 
PW-variable set containing three PW-variables, V1 , V2 and V3 that are specified as 
follows: V1 corresponds to income and marital status; V2 corresponds to savings and 
debt level; V3 corresponds to age and address. Then what Table 2 tells us is that if we 
alter V1 , while holding all other PW-variables fixed, the PW-variable corresponding 
to the model’s output will change. Thus, V1 satisfies IC. We can thus correctly infer 
that income and marital status together are causal. One way to capture this idea is by 
introducing the notion of a part of a cause: x is part of a cause of y when x on its own 
is not a cause of y, but x in conjunction with factors z1...zn is a cause of y. Then we 
can say that the ML-variables for income and marital status are both parts of a cause 
of the model’s output.

The point quickly generalises. Once we have lifted the simplifying assump-
tion, there will always be some variable set under which at least one counterfactual 
yielded by the standard counterfactual approach provides information about genu-
ine causal factors. Indeed, this is true even when the only counterfactuals that are 
returned contain a large number of feature differences. For there will always be a 
model whereby we can set a single PW-variable to the group of ML-variables that 
differ, no matter how large that group is. Thus, what the application of IC in this 
more general setting reveals is that the standard counterfactual approach always 
delivers causal information, and so passes basic causal certification.

Unfortunately, this more general setting does not help the standard counterfactual 
approach to achieve complete causal certification, and so this limitation remains. 
Indeed, if anything, the problem is amplified. For there are many more ways for ML-
variables to be causal, since they need not be causal individually but in concert with 
other variables. If, however, there are many more ways for the input ML-variables 

Table 2   Multiple ML-variables are changed in each counterfactual

Data point Age Income Savings Suburb Marital Debt Output

@ 25 60k 20k Fitzroy single 200k �

p1 + 4k -20k �

p2 + 4k Married �

p3 − 6 Carlton �
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to be causal, then there is a much larger body of causal information that a list of 
counterfactuals might omit. Once again, this matters. Consider again the case of 
Alex’s loan. Suppose that race on its own is not, in fact, causal: it does not satisfy 
IC for a set of PW-variables in which exactly one ML-variable corresponds to each 
PW-variable. It could still be the case that changing race and income together flips 
the model’s output. Thus, the race ML-variable may be part of a cause, despite not 
being a cause on its own. Accordingly, not only does Alex need a guarantee that no 
information about ML-variables being individual causes has been left out, he needs 
a guarantee that no information about ML-variables being parts of causes has been 
left out. This is a more demanding requirement and one not easily met.

In a moment, I will consider how to meet this requirement. However, before 
pressing on it is worth considering two potential difficulties with the application of 
the Pearl-Woodward framework. First, one might worry that complete causal certi-
fication is unattainable. In order to achieve complete causal certification, we must 
potentially provide users with information about a large number of causal factors, 
particularly once causation involving multiple ML-variables working in concert is 
taken into account. But this information, one might argue, is too expansive to be 
cognitively manageable. As I suggest below, however, we can synthesise this infor-
mation into a list. In this way, the cognitive burden of comprehending all of the 
causal factors can be outsourced to a searchable database, one that can be integrated 
with a toolkit and user interface. Such an interface would allow a user to search for 
causal factors that may be important to their particular situation, without having to 
take in the entire catalogue of causal factors. In this way, human understanding of 
causal factors can be scaffolded.

The second difficulty relates more directly to the Pearl-Woodward framework. 
Within that framework, all of the variables in the PW-variable set are assumed to 
be statistically independent of one another. But, one might argue, this is not real-
istic when we consider machine learning models. That’s because, in some cases, it 
may be that there are interactions or dependencies between multiple ML-variables. 
The statistical independence of the PW-variables would thus seem to force the inde-
pendence of the ML-variables they represent. In such a situation, one might argue, 
the Pearl-Woodward framework distorts the real structure of the machine learning 
model, which undermines the legitimacy of using IC as a test for causal certification.

There are two things to say here. First, the difficulties posed by the independence 
constraint can be avoided by shifting between different variable sets. For instance, 
suppose that two ML-variables interact with one another, and so can’t be indepen-
dently manipulated. Rather than using a simple model of the kind discussed in §4.1, 
whereby each PW-variable corresponds to just one ML-variable, we can employ a 
model in which PW-variables are allowed to correspond to groups of ML-variables 
(as in this section). By corresponding to a group of ML-variables, the ML-variables 
grouped are not incorrectly represented as independent of one another. Indeed, they 
are represented as in some sense dependent by virtue of falling under a single PW-
variable. It is only really in the simplified case in §4.1 that ML-variables are all 
represented to be statistically independent. In the more complex setting described in 
this section, the PW-variables don’t unrealistically represent all ML-variables to be 
statistically independent.
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Second, even for a simple model in which each PW-variable corresponds to 
exactly one ML-variable, it is possible to intervene on multiple PW-variables 
together, thereby altering the underlying ML-variables in a way that does not vio-
late any dependence. To do this we can employ a ‘fat-handed’ intervention, which 
involves manipulating multiple PW-variables in a single intervention (Baumgartner 
& Gebharter (2016); Scheines (2005)). One potential drawback of using fat-handed 
interventions, however, is that Woodward’s definition of causation does not clearly 
allow for causation to be identified through such interventions. When applying IC, 
we should thus use the option for handling dependence between ML-variables speci-
fied in the previous paragraph.

While the dependencies between ML-variables can be handled within the Pearl-
Woodward framework, it is worth emphasising that applying that framework is a 
sensitive matter. For what one must do is try to apply it only in a way that respects 
the dependencies between ML-variables. This potentially reduces the number of dif-
ferent ways of grouping ML-variables under PW-variables that should be considered 
when trying to identify causal factors. What happens if none of the ML-variables are 
statistically independent? In this situation, we are limited to using a single variable 
set, in which we have a single PW-variable that represents all of the ML-variables en 
masse. We are then forced to intervene on this one PW-variable. Even in this case, 
however, we can still apply IC. When an intervention on a single PW-variable flips 
a model’s output and changes all of the ML-variables, then all of these variables are 
revealed as partial causes. Thus, the application of IC still works to identify causal 
factors even in this hypothetical situation, so long as we allow that ML-variables can 
be parts of causes.

5 � A Hybrid Approach

The application of IC yields two main results. First, the standard counterfactual 
approach passes the IC test for basic causal certification. That’s because it reliably 
generates genuine causal information about causes constituted by at least one ML-
variable. One important consequence of this is that users can be given a guaran-
tee that the information provided by the standard counterfactual approach to XAI is 
genuine causal information. This is potentially important, as it can help to answer 
user queries about whether the information they’ve been given is genuinely causal, 
which has the potential to build trust in the explanatory information being provided. 
Second, the standard counterfactual approach does not pass the IC test for complete 
causal certification, mainly because of the proximity constraint. This is a problem in 
those cases where a user needs to know whether or not any causal factors have been 
left out.

In this section, I propose a way to overcome this limitation by supplementing the 
standard counterfactual approach with the Pearl-Woodward framework. Note that 
this is a distinct application of the Pearl-Woodward framework from the use of IC 
discussed so far, and is logically independent. Thus, even if one is not attracted to 
the proposal I sketch below, one can still use the methodology outlined above as a 
test for causal certification. At any rate,  the idea is to adopt a two-stage approach. 



370	 S. Baron 

1 3

In the first stage, the Pearl-Woodward framework is used to derive a complete list 
of causal information. In the second stage, the standard counterfactual approach is 
used to reveal a list of counterfactuals that satisfy other constraints like plausibility, 
feasibility, diversity, proximity, sparsity and so on. The user is then provided with 
both lists.

In order to implement the first stage of this approach, we need to apply IC to 
reveal all of the causal information about why a given machine learning model has 
output � rather than � . We do this using the method already described for applying 
IC to machine learning models. The only difference is that we now do it in a much 
more comprehensive manner. We first define sets of PW-variables for representing a 
given machine learning model. Within each such set, either exactly one ML-varia-
ble corresponds to a PW-variable, or n ML-variables corresponds to a PW-variable. 
Moreover, every ML-variable corresponds to some PW-variable, and no ML-varia-
ble corresponds to more than one PW-variable. As before, the set of PW-variables 
also includes a PW-variable representing the machine learning model’s output, with 
actual value of � and possible value of � . Possible values of the PW-variables are 
given by the possible values of the ML-variables and combinations thereof in the 
manner already described. Actual values of the PW-variables are set by the actual 
values of the ML-variables, again in the manner already described.

Using these sets, we apply IC to every PW-variable that corresponds to at least 
one ML-variable. We do this by intervening on each PW-variable in turn for a given 
PW-variable set, holding all others fixed, to see if the PW-variable that represents the 
output of the model M changes. We do this for each PW-variable until we either find 
a possible value at which the PW-variable representing the model output changes, 
or we exhaust all possible values for a PW-variable. If we find a possible value for a 
PW-variable that changes the PW-variable corresponding to the model’s output, we 
record the associated ML-variables and then move on to the next PW-variable. We 
do this until every PW-variable in every PW-variable set has been checked.

In the last stage, we use the intervention information to identify ML-variables 
that are causal. We start by considering the set of PW-variables in which exactly 
one ML-variable corresponds to a PW-variable. When interventions on a PW-var-
iable changes the PW-variable corresponding to the model’s output (while holding 
all other PW-variables fixed), we record the associated ML-variables as individual 
causes of the model’s output. We then consider the sets of PW-variables that group 
multiple ML-variables together. When interventions on PW-variables for these PW-
variable sets change the PW-variable corresponding to the model’s output (while 
holding all other PW-variables fixed), we record the associated ML-variables as 
parts of causes.8

In this way, we reveal the causal sensitivity of the model’s actual output to each 
of its input ML-variables individually, as well as in concert with one another. The 
output of this process is likely to be a large amount of information. We thus need to 
synthesise it in a form that can be delivered to a user. We can do this by grouping the 

8  As above, we should respect dependencies between ML-variables. This may mean excluding the case 
in which each PW-variable corresponds to just one ML-variable. I have included that case for complete-
ness, since it can be relevant.
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information as follows. First, we outline the ML-variables that are individual causes 
(if there are any). Then we outline the ML-variables that are partial causes, along 
with the complex causes of which they are parts. Finally, we offer a guarantee that 
no causes have been missed. Below is a very simple example of a synthesised list of 
this kind for a machine learning model M with six input variables: X1 , X2 , X3 , X4 , X5 
and X6 , and a specific output � (where a user wants to know why � and not � was 
the output):

 

1.	 X1 was a cause on its own.
2.	 X2 and X3 were each parts of a single cause.
3.	 X4 , X5 and X6 were each parts of a single cause.
4.	 There were no other causes.

Importantly, such a list can be provided in the form of a searchable database with 
a user interface. This would then provide a cognitively manageable system for users 
to work with.

By providing users with two pieces of information, we can better achieve the 
three goals for XAI outlined by Wachter et  al. (2018). The first list—the list of 
causes—provides a user with complete causal information. This list ensures that the 
necessary condition on providing explanatory understanding discussed in §2 is met, 
and so helps to satisfy the first goal. The first list also provides a basis for the second 
goal, namely to contest decisions, since it will provide a user with a full picture of 
what caused a model to deliver a certain output in their case. This, in turn, helps 
them to determine whether and how to contest a decision. By contrast, the second 
list helps to satisfy the third goal of XAI: that of helping users to work out what they 
should do differently to receive a better outcome. That’s because the counterfactuals 
produced will satisfy constraints like plausibility or actionability which are geared 
toward achieving good outcomes for users.

In essence, this two-stage approach is a divide-and-conquer method for address-
ing the three goals of XAI. One stage is aimed at causal understanding and contest-
ing decisions; the other is aimed at providing practical advice. Why use such an 
approach? Why not just stop at the first stage, and use the Pearl-Woodward frame-
work on its own? The answer is that this framework is not very useful for provid-
ing practical guidance. It excels at identifying those ML-variables that cause models 
to have specific outputs. However, it may be that for many such ML-variables it is 
only at extreme values that a model’s output is affected. So, for instance, it might 
turn out that in Sara’s loan case, there is a possible value for the debt variable that 
flips the model’s output. However, that possible value may be a debt level of 0. This 
would require of Sara that she pay off 200k of debt, which may not be viable for 



372	 S. Baron 

1 3

her. Similarly, note that in Table 1 there is a possible value for the age variable that 
flips the model’s output (namely age backwards by 6 years). However, changing that 
value is not possible for Sara.

The reason, then, why we need to use the two approaches in concert is that they 
have different strengths. The standard counterfactual approach to XAI is not guar-
anteed to deliver full causal information, but it is built to be action-guiding. Being 
action-guiding or actionable has been shown to be important in user’s judgements 
of how satisfying an explanation is, which suggests that this kind of information is 
important to provide (Kirfel & Liefgreen (2021)). The Pearl-Woodward framework 
is not guaranteed to be action-guiding, but it is built to identify full causal informa-
tion. Together, the two approaches constitute a more complete approach to XAI than 
either approach on its own. Thus, what the two-stage strategy essentially recognises 
is that the second and third goals for XAI come apart to a certain extent. Identify-
ing the proximal, plausible and feasible changes that one can make to receive a bet-
ter outcome sometimes requires setting aside certain causal factors, since changing 
those may not be causal options. In this way, satisfying the third goal can sometimes 
sit in tension with satisfying the second goal, which makes it awkward for a single 
approach to meet both goals.

In practice, what this means is that we will need to run two sets of computations. 
We will need to compute causes using IC, and we will need to compute counter-
factuals that give users practical advice about what to do differently in the future. 
Evidently, there has been a great deal of work on finding efficient strategies for com-
puting counterfactuals that support practical aims. Less attention has been paid to 
identifying strategies for efficiently computing full causal information. Clearly, such 
strategies are needed. For we must compute a large number of possible permutations 
of input data to find possible values for ML-variables that flip a model’s output. 
Whether this is even computationally viable would need to be shown. The proposed 
two-stage strategy thus opens up a new line of research, whereby computational 
methods for finding causes in the case of machine learning models are developed 
and tested for efficiency.

Before wrapping up, it is worth noting two things. First, as Rawal & Lakkaraju 
(2020) emphasise, the standard counterfactual approach focuses on providing local 
explanations: explanations of specific outcomes. It is, however, important to also 
provide a global analysis of a machine learning model to understand its behaviour 
across a range of instances. This is important for understanding model behaviour 
before a system has been deployed. Understanding causal factors is also important 
to understanding this global behaviour, since it can be helpful to know whether, say, 
race is a causal factor in any instance within a loan model, not just for a particular 
case. The Pearl-Woodward framework can be generalised to provide complete causal 
certification across all instances. This can be achieved by allowing the PW-variable 
that corresponds to the output to take a range of values. The Pearl-Woodward frame-
work can thus provide a comprehensive check on whether variables like race are 
causal, prior to the implementation of a machine learning model.

Second, I have framed the approach as one that combines the standard counter-
factual approach with the Pearl-Woodward framework. However, there are reasons to 
doubt the capacity of the standard counterfactual approach to deliver an appropriate 
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list of counterfactuals. This, again, is largely to do with the proximity constraint. 
Recent psychological work has shown that people don’t necessarily find ‘smallest 
change’ counterfactuals of the kind delivered by the proximity constraint to be the 
most useful. Instead, users tend to focus on prototypical counterfactual cases (Dela-
ney et al. (2022)). More generally, as Keane et al. (2021) argue, there is a dearth of 
experimental work testing particular modelling choices within the standard counter-
factual approach (though this is changing rapidly, see e.g., Celar & Byrne (2023); 
Ford & Keane (2022); Förster et al. (2020a, 2020b); Kirfel & Liefgreen (2021); van 
der Waa et al. (2021); Warren et al. (2022)).

Taken together, the apparent failure of the standard counterfactual approach to 
pass full causal certification, coupled with the potential disconnect with user prefer-
ences about explanation, may lead one to reject the standard counterfactual approach 
altogether. This is one potential moral to be drawn from the discussion here. Note, 
however, that there remains a need to provide explanations to users that are action-
guiding, and so, even if the relevant moral is drawn, there is still a need to replace 
the standard counterfactual approach with something else (perhaps something that 
emphasises prototypes, rather than minimal edits (Kim et al. (2016); Li et al. (2018); 
Van Looveren & Klaise (2021)). Whatever this replacement approach might be, 
however, the Pearl-Woodward framework remains useful in the ways discussed here. 
On the one hand, it can be used to test whether any alternative to the standard coun-
terfactual approach passes causal certification. On the other hand, it can be used as a 
supplement to any approach that fails to achieve either basic or complete causal cer-
tification. What the Pearl-Woodward framework provides, then, is a way to ensure 
that users are being provided with the right information to support genuine explana-
tory understanding, which is important for realising the goals of XAI.

6 � Conclusion

It is time to take stock. In this paper, I have situated the standard counterfactual 
approach within the Pearl-Woodward framework for specifying causes. The main 
findings of the paper can be summarised as follows:

•	 The Pearl-Woodward framework can be used for basic and complete causal certi-
fication of existing approaches to XAI.

•	 The standard counterfactual approach to XAI passes the test for basic causal 
certification, and so a guarantee that the approach supports genuine explanatory 
understanding can be delivered to users.

•	 The standard counterfactual approach fails the test for complete causal certifica-
tion.

•	 By using the Pearl-Woodward framework in concert with the standard counter-
factual approach to XAI, the three goals for XAI can be met.

•	 Future research should explore the efficient computation of Woodward causes for 
machine learning models.
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