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Abstract
According to a mainstream position in contemporary cognitive science and 
philosophy, the use of abstract compositional concepts is amongst the most 
characteristic indicators of meaningful deliberative thought in an organism or agent. 
In this article, we show how the ability to develop and utilise abstract conceptual 
structures can be achieved by a particular kind of learning agent. More specifically, 
we provide and motivate a concrete operational definition of what it means for 
these agents to be in possession of abstract concepts, before presenting an explicit 
example of a minimal architecture that supports this capability. We then proceed to 
demonstrate how the existence of abstract conceptual structures can be operationally 
useful in the process of employing previously acquired knowledge in the face of new 
experiences, thereby vindicating the natural conjecture that the cognitive functions 
of abstraction and generalisation are closely related.
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1 Introduction

1.1  Objectives

According to a mainstream position in contemporary cognitive science and 
philosophy, the use of abstract compositional concepts is amongst the most 
characteristic indicators of meaningful deliberative thought in an organism or 
agent (see, e.g., Bermúdez, 2003; Carruthers, 2009; Evans, 1982). Indeed, the 
verifiable possession of compositional concepts is widely forwarded as a criterion 
that needs to be satisfied before any substantive doxastic states can be legitimately 
attributed to non-human animals (see, e.g., Carruthers, 2009; Davidson, 1975; 
Dreyse, 2011). If one takes this kind of position seriously (as many do), it follows 
that any system genuinely deserving of the name ‘artificial intelligence’ will 
possess the ability to effectively traffic in abstract conceptual representations 
of salient features of its environment. (Indeed, numerous variations of this 
view have already been articulated and defended in the foundations of AI 
literature, e.g., Bengio et  al. 2013; Lake et  al. 2015). In this paper, we address 
this observation by constructing an explicit example of a simple learning agent 
that autonomously identifies abstract variables in the process of learning about 
its environment, before providing a concrete operational semantics that allows 
external observers to subsequently identify these variables through analysis of the 
agent’s internal deliberative structures. Moreover, we demonstrate how an agent’s 
ability to construct and employ these abstract conceptual structures correlates 
with its ability to employ previously acquired knowledge when dealing with 
novel experiences.

Beyond the motivation of constructing AI systems that satisfy the criterion of 
possessing abstract compositional conceptual structures, we take the significance 
of this work to be threefold. Firstly, by constructing learning agents that are 
capable of discovering abstract variables in a way that can be objectively 
identified in subsequent analysis, we take a meaningful step towards developing 
artificial agents whose reasoning processes are fully transparent, interpretable 
and communicable. We contrast this with conventional reinforcement learning 
algorithms, which are by design focused on developing a successful policy—in 
other words, on learning what to do—, and therefore do not typically develop 
explicitly represented conceptual structures that suggest a straightforward 
interpretation (see, e.g., Sutton and Barto 1998; Wiering and van Otterlo 2012). 
By contrast, the agent proposed in the present work structures the information 
that it gathers in a way that supports an operational interpretative semantics, 
which is an important first step towards combining the efficient learning abilities 
of reinforcement learning agents with explicit and communicable symbolic 
deliberations.

The second point of significance is our observation that agents that have 
identified abstract variables perform noticeably better at tasks that require them to 
generalise existing knowledge to deal with new experiences. This both provides 
a novel operational vindication for the pragmatic and epistemic value of abstract 
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conceptual representations, and solves an existing operational problem regarding 
the ability of reinforcement learning agents to successfully generalise.

Thirdly, while there already exists a significant literature on identifying latent 
variables and underlying conceptual structures in the deliberations of e.g. neural 
networks and deep reinforcement learning systems, this study represents the first 
attempt to tackle this problem for projective simulation (PS) agents. Given the 
comparatively simplistic and minimal architecture of PS agents, this is significant 
insofar as it promises to tell us something about the minimal cognitive machinery 
that is sufficient for conceptual abstraction in artificial agents.

The paper is structured as follows. In Sect. 2, we describe the kind of learning 
environment used to investigate the formation and identification of abstract 
variables. In Sect.  3, we introduce the particular type of reinforcement learning 
agent to be deployed in those tasks (namely ‘Projective Simulation’ agents) before 
presenting a novel modification to the architecture of those agents, which provides 
them with the necessary ‘cognitive space’ for variable identification. In Sect. 4 we 
formally specify what it means for such an agent to identify variables in the context 
of the learning tasks described in Sect. 2. In Sect. 5 we present the results of our 
simulations, which illustrate the efficacy of our variable identification protocol. In 
particular, Subsect.  5.3 analyses the observed correlation between the existence 
of identifiable variables in an agent’s deliberations and the ability of that agent to 
deal with novel experiences in an effective manner. Section 6 provides a conceptual 
discussion of our results, and Sect. 7 concludes.

2  The Learning Environment

2.1  Basic Structure

Our central aims are (i) to enable a learning agent to infer the existence of 
unobserved variables in a complex environment via dynamic interactions, and 
(ii) to subsequently develop an operational semantics that allow us to identify a 
representation of these variables in the agent’s internal deliberation structures. 
Towards this end, we consider an environment that consists initially of three 
components:

• A set S of possible setups, i.e., situations on which experiments can be 
performed. For example, in a context in which the agent is allowed to perform 
simple classical physical experiments on a range of different objects, each setup 
s ∈ S could represent one object. More generally, each setup s represents a 
different situation that the agent can test via a range of experiments, such that 
each situation can be distinguished by the results it yields in at least some of the 
available experiments.

• A set E of experiments, i.e., tests which can be performed on any of the available 
setups. For example, in the case in which the agent can perform classical physical 
experiments on objects, one possible experiment could be suspending a given 
object from a spring and recording by how much the spring is extended.
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• A set P of predictions such that each p ∈ P corresponds to a prediction of the 
outcome of exactly one experiment in E . For example, if one of the available 
experiments is to measure the spin of a particle along the y-axis, then P would 
contain one prediction corresponding to the ‘spin down along the y-xis’ outcome 
and one prediction corresponding to the ‘spin up along the y-axis’ outcome.

A few additional comments regarding the predictions are in order. Since, by assump-
tion, each prediction p ∈ P corresponds to exactly one experiment e ∈ E , one can 
think of p as including a specification of which experiment it pertains to. A pre-
diction p is then deemed ‘correct’ for a given setup s if, under the experiment e 
for which p is a possible prediction, the setup s indeed produces the corresponding 
outcome. Note that, in what follows, we make the simplifying assumption (to be 
relaxed in future work) that the outcomes of experiments are deterministic, i.e., that 
each setup/experiment pair predetermines a unique correct prediction. Moreover, we 
assume that P contains a complete set of the possible outcomes for every e ∈ E , in 
the sense that there can be no combination of a setup s ∈ S and an experiment e ∈ E 
performed on it such that the resulting outcome is not among the predictions P . 
(One can ensure that this holds true even in pathological cases, such as an attempt 
to measure the spin of a particle in the eventuality that no particle is present, by 
formally including one prediction to the effect of ‘not applicable’.) Finally, we note 
that, throughout the present work, we consider the spaces of experiments and pre-
dictions to be discrete. Scenarios with continuous parameters can be made compat-
ible with this framework by suitable binning. The possibilities for handling continu-
ous input and output spaces in the specific learning framework that we will use are 
explored in Jerbi et al. (2021) and Melnikov et al. (2018).

Once the environment has been fully specified via a choice of S, E and P , agents 
interact with it in the following way. Each round of interaction begins with the agent 
being presented with a single setup s ∈ S that is drawn from a fixed probability dis-
tribution over S , which we assume to be uniform.1 Upon being presented with s, 
the agent is asked to make a prediction p ∈ P (which, as detailed above, implicitly 
includes a choice of an experiment e). Finally, the agent receives a reward if and 
only if their prediction is correct for the setup. For example, the agent could be pre-
sented with a particular object s and asked to make a prediction for any one of the 
available experiments that could be performed on that setup, e.g., holding it next to 
a magnet. They would then be rewarded if and only if their prediction matched the 
outcome of that experiment, e.g., being attracted by the magnet.

The above learning environment is reminiscent of classic reinforcement learning 
tasks, in which success is equated with efficiently learning how to choose the correct 
option (prediction) for all possible inputs (setups), i.e., with efficiently learning how 
to maximise rewards. However, in our approach, this is only the first step of what 
constitutes successful learning. Rather than merely learning how to make correct 

1 Again, the uniformity of the distribution over setups is a simplifying assumption that will be relaxed 
in future work, where we will also allow the experiments and hidden variables to stand in functional and 
probabilistic relationships to one another. We restrict ourselves to the simplest case here in order to focus 
on the central theme of conceptual abstraction without unnecessary technical distractions.
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predictions, our central success criterion is that the agent develop transparent and 
easily interpretable conceptual representations of those aspects of their environment 
that play a role in determining the outcomes of experiments.

To make this success criterion precise, we will introduce one additional compo-
nent in our description of the environment. It is based on the observation that each 
setup could be uniquely identified by a specification of the values of a number of 
suitable abstract variables, e.g., the size, shape and composition of an object. Cru-
cially, we do not assume that the agent can perceive the values of these variables, 
or even that they are aware of the fact that a description of the observed setup can 
be compressed in such a way. Our goal is precisely to construct an agent that can 
infer the existence of such variables even if the setups are presented as mere atomic 
labels that carry no intrinsic meaning. Formally, we assume that, in addition to the 
three components S⇔E⇔P specified above, the environment also contains a ‘hid-
den’ fourth component, namely

• A set V of ‘hidden’ (or latent) variables, i.e., variables which are never explic-
itly presented to the agent, but which are sufficient to determine the outcomes 
of all experiments.2 Each setup s ∈ S can be equated with a vector specify-
ing exactly one value for each of the variables in V , and each experiment 
is assumed to test one and only one of the variables in V , although there may 
be multiple experiments testing the same variable. For instance, if there are 
two variables with two values each, then there will be four setups correspond-
ing to the four possible configurations of the values of the variables in V , i.e 
s1 = 00, s2 = 01, s3 = 10, s4 = 11 . There will also be at least two experiments, 
each corresponding to one variable, where the outcome of each experiment is 
determined by the value that the given setup entails for the corresponding vari-
able.

The problem of unobserved variables is also relevant to the field of machine learning 
(specifically reinforcement learning), in the context of partially observable Markov 
decision processes (POMDPs, see, e.g., Poupart, 2012). In such processes, the input 
available to the agent does not contain sufficient information to completely char-
acterise the state of the environment, or to make deterministic assessments of the 
consequences of possible actions. By contrast, in the scenario considered here, the 
input (the setup s) does completely specify the state, in the sense that s determines 
with certainty the outcomes of all possible experiments that could be performed on 
it. What the agent is searching for, however, is auxiliary variables that help structure 
the relations between the various setups in S and the corresponding predictions.

2 We stress that that ‘hidden variable’ terminology is not intended to reflect the usage of the terminology 
in the quantum foundations community. By ‘hidden variable’, we mean simply an environmental variable 
that is not directly observable for the agent.
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2.2  Concrete Scenario Used in Training Agents

To illustrate these ideas, we now provide a concrete example of a learning environ-
ment containing hidden variables. This scenario will also be used as the default case 
in our subsequent analysis of the agents’ learning capabilities. It is illustrated visu-
ally in Fig. 1.

In our default scenario, each setup consists of an object that the agent can experi-
ment on, which is characterised by |V| = 3 hidden variables: mass, size and electric 
charge. (Since objects can in principle have different densities, mass and size need 
not be correlated.) Each of these properties predicts the outcomes of two different 
experiments: for example, electric charge predicts what force the object will expe-
rience when placed next to a given test charge, and also how much the object will 
deflect a compass needle when moving past it at a given speed and distance. Mass 
predicts what will happen if an object is hit, imparting a fixed amount of momentum, 
or if it is placed on a scale in a fixed gravitational field, and similarly an object’s size 
predicts its behaviour in two other experiments. Overall, this environment admits 
|E| = 6 experiments that the agent can perform. We assume that the possible val-
ues of each variable are coarse-grained into three distinct values; for example, the 
variable ‘electric charge’ can take the (coarse-grained) values ‘positive’, ‘negative’ 
and ‘neutral’ and the variable ‘size’ can take the values ‘big’, ‘small’ and ‘medium’. 
These values are reflected in corresponding outcomes for each experiment, so that 

Fig. 1  A task environment with hidden variables and rules to be discovered: the agent receives objects 
(top left, numerical labels 1 through 6) on which it can perform a range of experiments (top right), whose 
outcomes (bottom) it attempts to predict. What is hidden from the agent (grey box) is that each object 
can be described by a vector of values, namely its mass, charge and size, and each experiment can be 
predicted given the value of one of these variables: when suspending the object from a spring (‘scale 
experiment’) or hitting it to impart a given momentum (‘momentum experiment’), the outcome depends 
on the object’s mass; when passing it near a compass or placing it near a test charge, the results depend 
on the object’s charge, while the outcomes of grasping the object or submerging it in a bucket of water 
depend on its size
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the number of predictions corresponding to each experiment is also3 3. This gives 
rise to a total of |P| = 6 ⋅ 3 = 18 predictions that the agent can choose from, of 
which 6 will be correct for any given object. The expected success rate for random 
guesses in this environment is therefore 1/3. Since setups (objects) are identified 
with configurations of the values of the variables in V , it follows that |S| = 27 , i.e., 
there are 27 distinct objects on which the agent is able to experiment, and each of 
those objects instantiates one of the 27 possible configurations of the values of the 
‘charge’, ‘size’ and ‘mass’ variables.

The agent’s interaction with this environment proceeds as outlined above: the 
agent is presented with a randomly chosen object, which is labelled simply with 
an integer between 1 and 27; the agent then chooses an experiment, makes a cor-
responding prediction and finally receives a reward if that prediction was correct 
for the given object. This process is iterated long enough for the agent to eventu-
ally encounter all the available objects and learn about them. Specifically, the agents 
whose results are analysed in the following are given T = 5 ∗ 106 rounds of interac-
tion with the environment in order to learn, in the default case.

In the standard reinforcement learning paradigm, the criterion for success in the 
kind of learning task described here would be that the agent successfully learns 
how to make the correct predictions for all object/experiment pairs. This is a purely 
operational criterion that can be straightforwardly accomplished in a reinforcement 
learning setting by implementing a learning dynamics that increases an agent’s 
disposition to make particular predictions in proportion to the extent to which 
those predictions have been rewarded in the past (and implementing some form of 
greed avoidance). Indeed, as we will see later, this first goal can be accomplished 
relatively easily. However, we have also introduced a second criterion for success, 
which is the central aim of the present work: that the agent, beyond learning how to 
reliably predict the outcomes for all object/experiment pairs, also comes to identify 
that there are three hidden variables that determine which predictions will be correct 
for each object/experiment pair.

2.3  The Value of Understanding

With this formal description of the environment in hand, it is worth pausing 
to reiterate a few of the central motivations behind this second success criterion. 
Firstly, identifying the variables at play in the agent’s deliberation is a crucial first 
step towards rendering the agent’s deliberations genuinely transparent, interpretable 
and communicable. Secondly, there is a significant difference between an agent that 
merely memorises which predictions were rewarded for which object/experiment 
pairs and an agent that has identified that there exist significant unobserved 
variables—which we might identify as ‘mass’, ‘size’ and ‘charge’—and makes 
predictions on the basis of which value a given variable takes for a given object. (For 
example, the agent predicts that the second object will present a reading of ‘high’ in 

3 Here we assume that whenever an experiment e tests a hidden variable V, each possible outcome of e 
(prediction for e) corresponds to exactly one possible value of V. It is possible to relax this assumption, 
but it plays a useful simplifying role in what follows.
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the scale experiment because it already knows that (i) there exists a variable that 
predicts the outcome of the scale experiment (‘mass’) and (ii) that, based on the 
momentum experiment, the object has high mass.) It is natural to say that the second 
agent possesses a genuine understanding of its environment, in a sense which is 
absent for the first agent.4 A similar sentiment is expressed by Bengio et al. (2013), 
who write

An AI must fundamentally understand the world around us, and we argue 
that this can only be achieved if it can learn to identify and disentangle the 
underlying explanatory factors hidden in the observed milieu of low-level 
sensory data (Bengio et al. 2013, 1798).

Thirdly, many cognitive abilities are grounded in the ability to describe one’s 
environment in terms of abstract conceptual representations. Saliently, the ability 
to generalise previously acquired knowledge to deal with new experiences seems 
to be intimately connected to the ability to represent significant properties of 
one’s environment in terms of abstract variables. (This intuitive conjecture is 
empirically vindicated in Sect. 5.3.) More generally, there are numerous pragmatic 
and theoretical motivations for regarding the identification of abstract variables 
corresponding to the environment’s hidden variables as a success criterion for 
explorative learning agents. In Sect. 4, we will provide a concrete formalisation of 
this second success criterion for a particular kind of reinforcement learning agent. 
First, we turn to specifying the precise cognitive architecture of those agents.

3  The Learning Agent

We will work within the context of the projective simulation (PS) framework for 
artificial intelligence agents, which was first proposed by Briegel and De las Cuevas 
(2012). This framework aims to provide a concrete example of what it means to be 
a deliberating agent: entities that can act on their environment, thereby generally 
changing its state, and, more importantly, that make their own decisions in the 
sense that they are not pre-programmed to take particular actions under given 
circumstances, but instead are flexible and develop their own action and response 
patterns.

While one of the achievements of the PS framework is to provide a concrete, 
explicit model of agency, the agents’ ability to learn has been a point of consider-
able interest, having been tested against more utilitarian reinforcement learning 
algorithms on a number of benchmark problems (see, e.g., Briegel & De las Cue-
vas, 2012; Mautner et  al., 2015; Melnikov et  al., 2018). The broad conceptual-
mathematical basis also supports much more diverse applications, ranging from 
the autonomous development of complex skills in robotics (Hangl et  al., 2016, 
2020) through modelling of collective behaviour in animal swarms (López-Incera 
et  al., 2021; Ried et  al., 2019) to the modelling of the formation of stimulus 

4 This is closely related to the point that Block (1981) makes in his famous ‘Blockhead’ thought experi-
ment, which is intended to refute the Behaviourist conception of intelligence enshrined in the Turing test.
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equivalence classes in humans (Mofrad et al., 2020). The PS model has also been 
applied to the control of quantum systems (Nautrup et  al., 2019; Tiersch et  al., 
2015; Wallnöfer et al., 2020) and the design of new experiments (Melnikov et al., 
2018).

The interaction of the agent with its environment is formalised following the 
general framework of reinforcement learning (RL; see, e.g., Sutton & Barto 1998): 
the learner receives a percept that encodes some information about the state of 
its environment, based on which it chooses an action, and, if the action puts the 
environment in a state that satisfies some pre-defined success criterion, the learner 
is given a reward. A classic example of reinforcement learning is the grid world 
task, wherein the agent must navigate a maze: at each time-step, it perceives its 
current position, chooses to take a step in some direction, and, if this brings it to 
a goal that is located somewhere in the maze, receives a reward. This pattern of 
interactions fits in naturally with the structured learning environment outlined 
in Sect.  2, with percepts specifying the setup and actions being the choice of a 
prediction. Only a small modification is required regarding rewards: if an agent is 
supposed to discover patterns and hidden variables by making predictions about the 
world, it should not rely on rewards provided by the environment, but instead be 
endowed with an internal mechanism by which it essentially rewards itself if the 
prediction was correct. (The idea of a learning process that does not primarily aim 
to achieve an externally supplied reward, but instead encourages a learner to explore 
its environment simply for the sake of obtaining more information (although that 
may turn out to be useful for reaching more external rewards in the future), was 
incorporated from developmental psychology into reinforcement learning under 
the term intrinsically motivated learning (Barto, 2013; Oudeyer et al., 2007). More 
specifically, intrisically motivated learning in RL often refers to mechanisms that 
guide the learner towards situations that maximise the gain of new information, 
which one might describe as curiosity. For the purpose of the present work, however, 
it is sufficient to consider an agent that simply rewards itself whenever it makes a 
correct prediction.)

Let us now turn to the internal mechanism by which agents decide on an action 
given a percept, which is the defining feature for which projective simulation is 
named: PS agents simulate (or project) conceivable developments that, based on 
past experience, could arise from the present percept. Their simulation favours those 
sequences that have been rewarded in the past, so as to arrive at an action that is also 
likely to carry a reward. In order to ensure the autonomy and flexibility of the agent, 
the simulation is not based on some predefined representation of the environment, 
but instead on episodic ‘snippets’ —termed clips—from the agent’s own experience, 
which could represent percepts, actions or combinations thereof. The deliberation 
process consists of a random walk over clip space, starting at the clip that represents 
the percept currently being presented and terminating when an action clip is reached 
and the corresponding action realised. A generic example of such a clip network is 
illustrated in Fig. 2.

In order to adapt its responses to an environment—that is, to learn—the agent 
must be able to modify how the random walk over clip space proceeds. To this end, 
each edge from clip i to clip j is given a (positive, real-valued) weight, termed the 
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hopping value or h-value for short and denoted hij . These weights govern the prob-
abilities with which the walk proceeds from clip i to clip j:

with all weights set initially to hij = 1 . PS agents learn primarily by modifying the 
weights of edges: if a deliberation process going from percept s to action a leads to 
a reward R, then all the edges traversed as part of this deliberation are strengthened, 
i.e., their h-values are increased. In general, this is balanced by forgetting, which 
decreases the weights of all edges by a factor 1 − � , driving them back to their initial 
weight of hij = 1 , so as to gradually eliminate unused connections. Combining these 
two mechanisms, the update rule for h-values reads

where R(t) denotes the reward received at turn t.
The network of connected clips inside a PS agent is termed episodic and compo-

sitional memory (ECM), based on two noteworthy properties: firstly, the sequence of 
clips that are excited during a random walk can be understood as a simulation of an 
ordered sequence of events, or an episode. Secondly, the set of clips over which the 
walk proceeds is not static, but can be augmented by creating new clips, either by 
composing existing ones or by adding entirely new clips that can be used to repre-
sent novel content. This second possibility, of additional clips that represent neither 
percepts nor actions, will enable our agents to form novel concepts. (While such 
clips can in principle be created dynamically, during the learning process, the pre-
sent work focuses on how existing clips can come to represent an agent’s knowledge 
of hidden variables, leaving the exploration of clip creation to future work.)

(1)P(j�i) = hij∑
k hik

,

(2)h
(t+1)

ij
− 1 = (1 − �)

(
h
(t)

ij
− 1

)
+

{
R(t) if used,

0 if unused,

Fig. 2  A PS agent’s memory of its interaction with the environment is summarised in the episodic and 
compositional memory (ECM): a network of clips (the network depicted here contains 10 clips), includ-
ing in particular percept clips (denoted si ) and action clips ( ai ). This network also includes additional 
‘intermediate clips’ (of which the clips labelled i and j are two examples) that lie in between the percept 
and action clips in the network. Deliberation is realised as a random walk over clip space, starting at a 
percept and terminating at an action, with the probabilities of hopping from clip i to clip j governed by 
the weights hij of the relevant edges. If a reward is received, the edges traversed to reach that decision are 
strengthened
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3.1  Enabling Learning Agents to Handle More Complex Environments: 
Connections to Existing Work

In the simplest agents, the ECM has just two layers, representing percepts and 
actions, with connections proceeding simply from percepts to actions, and their 
strengths encoding which is the preferred response to each input. Such a structure 
is shown in Fig. 3a. However, more complex tasks can generally be solved better 
with more sophisticated structures. By way of illustration, this section summarises 
a simple learning task that was previously posed to PS, and that resembles the 
abstraction task of the present work, before discussing previously proposed 
modifications that enable PS to handle this challenge.

The task of interest is the infinite colour game, introduced by Melnikov et  al. 
(2017). In this environment, the agent is shown a two-component percept, featur-
ing an arrow that points in a certain direction (left or right) and is painted in one of 
(countably) infinitely many colours. The agent then has the choice of moving left 
or right (ostensibly to defend one of two doors against an attacker) and is rewarded 
if it chose the correct action. The ‘hidden structure’ in this environment is that the 
correct choice is telegraphed solely by the direction of the arrow, whereas the colour 
information is irrelevant to the task. The challenge for the agent is to learn to disre-
gard colour, which would allow it to achieve perfect success in its responses even if 
it has never encountered a particular percept (that is, that combination of direction 
and colour) before.

To solve this problem, Melnikov et al. (2017) introduced an architecture where 
the agent dynamically generates wildcard clips: additional clips that are added to 
the ECM between the layers of percept and action clips, representing either only a 
direction without specifying a colour or only a colour without specifying a direction 
(or, most generally, neither a colour nor a direction, i.e., a completely uninformative 
clip). The structure is illustrated in Fig. 3b. Notably, the wildcard clips are connected 
to the two-component percept clips according to a fixed rule, namely connecting 
only to those percepts that contain the direction (resp. colour) in question. In order 
for such an agent to be successful in a given environment, the environment must 
have two key properties: the percept space must be formed by products of several 

Fig. 3  Various possible ECM structures connecting percept clips (top layer), action clips (bottom layer) 
and (for b and c) intermediate clips. The two-layer network in a is the simplest possible architecture, and 
contains no intermediate clips. The network in b contains intermediate ‘wildcard clips’, which repre-
sent information about a subset of components of the percept (described below). c depicts the three-layer 
architecture proposed here, with a layer of intermediate clips that have no a-priori initial meaning, but 
will come to represent values of hidden variables
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components (or categories), which the agent must be able to perceive as independent 
pieces of information, and the reward rule must be such that disregarding a subset of 
these components is a useful strategy for determining the correct actions. By capital-
ising on these properties, wildcard PS performed significantly better than chance on 
the infinite colour game, which is not possible for standard (tabular) reinforcement 
learning (including basic PS), since the agent is presented with an entirely new per-
cept at each time step. Here we want to abandon the assumption that the structure of 
the relevant variables is known a priori and aim instead to construct an agent that is 
able to infer the structure of the variables from its interactions with the environment.

Considering the above properties of the PS framework, we note that, while the 
architecture of PS agents supports reinforcement learning (RL), it differs from 
conventional, more widely used algorithms for RL or for machine learning in general 
in several important ways. Contrasting with RL algorithms such as SARSA or 
Q-Learning (Sutton & Barto, 1998), which essentially tabulate the expected rewards 
for each percept-action pair, the additional internal structure of PS agents supports a 
more complex understanding of the environment. (In the case of environments that 
do not require such complexity, such as the classic benchmark tasks ‘grid world’ and 
‘mountain car’, PS also achieves results that are at least comparable to conventional, 
tabular RL algorithms (Melnikov et al., 2018).

Another important and influential framework for machine learning employs 
artificial neural networks (NNs). These networks also possess several layers or 
more convoluted structures and may, on first view, look quite similar to the ECM 
in Fig. 3c. However, the two structures function along very different lines. For one, 
training NNs (by backpropagation) requires the learner to know what the outcome 
should have been (i.e., a supervised learning setting), whereas PS can learn by 
trial and error, i.e., being informed only whether it made the correct choice. With 
respect to the internal functioning, a single deliberative process in an NN excites 
many neurons, often at the same time, with information being encoded in the 
pattern of excitations, whereas individual neurons typically carry no clear meaning. 
By contrast, in an ECM, exactly one clip is excited at a time, and any single clip 
can carry all the information involved in the deliberative process at that time (for 
example, the entire percept or a complete specification of the action that the agent is 
deciding to take). This difference in functioning and semantics becomes especially 
relevant when one is concerned with interpretability: due to the delocalised way in 
which a NN represents information, it takes considerable effort to trace or explain 
how it reached the conclusion it did (Alvarez-Melis & Jaakkola, 2018; Biran & 
Cotton, 2017; Molnar, 2022; Samek et  al., 2017; Sellam et  al., 2019). PS, on the 
other hand, clearly reveals what path the deliberation took, passing through 
particular intermediate clips that can—as we will see in the following—be endowed 
with an objective interpretation in terms of hidden variables.

3.2  Specific Architecture of Our Agents

As we stressed in the previous section, the ambition of the present work is not sim-
ply that the agents learn to make correct predictions, but rather that they develop 
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some internal representation of the hidden variables that underlie such predictions. 
At first blush, there is no obvious way to encode such representations in the sim-
plest two-layer structure that is characteristic of the ECMs of basic PS agents. So, 
in order to support such representations, we propose an agent whose ECM consists 
of three layers: an initial layer of percept clips (with one clip to represent each pos-
sible setup; in the default scenario, 27), a final layer of action clips (representing the 
predictions for the various experiments, by default 18), and, between them, a layer 
of intermediate clips (denoted I).

We assume that these three layers are connected in a particular way, as illustrated 
in Fig.  3c. (Note that the following specifies only which connections exist in the 
ECM. The weights of the connections, on the other hand, which effectively guide 
the agent’s choices and which will serve as a basis for identifying hidden variables, 
develop during the learning process.) In our agents, each clip in one layer is 
connected to all the clips in the layer(s) immediately before and after, but not to 
any clips in the same layer or in more distant ones. Moreover, all connections are 
directed from percepts towards actions, so that the ECM is acyclic. Thus, every 
path from a percept clip to an action clip passes through exactly one intermediate 
clip on the way, and for every percept-action pair there is one path through each 
intermediate clip. Note that, while the ECM depicted in Fig.  2 does contain 
intermediate clips, it does not have the same kind of layer structure as our agents, 
since some of these intermediate clips are connected to one another and hence that 
random walks through this ECM can include cycles.

Regarding the number of intermediate clips, we require only that it be no greater 
than the number of possible setups (percepts) the agent may encounter, and other-
wise leave the number of clips in I  unconstrained. This requirement is related to the 
natural interpretation of the intermediate clips. Intuitively, the idea is that each inter-
mediate clip denotes a possible label for a given situation (percept/setup). When the 
agent encounters a setup s ∈ S , they first have to choose a ‘label’ for that experience. 
This is formalised as the random walk through the agent’s ECM transitioning from s 
to some i ∈ I  . Based on the label i, the agent then chooses an action—formally, by 
transitioning from the intermediate clip i to an action clip a.5 Note that such labels 
may well be shared by various setups, but each meaningful label must be attached to 
at least one setup. For this reason, there is no point having more labels than there are 
setups to assign them to; hence the requirement that |S| ≥ |I| . In the present work, 
we consider agents whose number of intermediate clips is equal to the number of 
hidden variables times the number of values that each variable can take. Preliminary 
tests suggest that having fewer intermediate clips than that is a significant obstacle to 
abstraction, whereas a larger number of clips leads to a slight reduction in learning 
efficiency, but does not pose any fundamental problems. We intend to explore this in 
more detail in future work.

5 For example, when looking at a traffic light an agent perceives a particular shade of green (determined 
by light and viewing conditions etc). They then disregard the particularities of that shade and simply 
label the experience as ‘green’, and then go on to choose an action (e.g., driving) on the basis of that 
label.
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An additional feature of our proposed agents is a ‘boredom’ mechanism for greed 
avoidance, which addresses the following problem: once an agent has made the con-
nection from a particular setup s to one prediction p, which pertains to a particular 
experiment e, the most effective way for the agent to continue reaping rewards is to 
simply repeat prediction p every time it encounters setup s. However, we want the 
agent to explore what would be the correct predictions for other experiments e′ as 
well. (The dilemma of balancing between these two goals is well-known in machine 
learning, where it is usually termed the ‘exploration vs exploitation’ tradeoff.) To 
favour exploration, the agent is endowed with ‘boredom’: if, for a give setup s and 
a particular experiment e, the agent has come to favour one of the predictions that 
pertain to e over the others with high probability, then experiment e is deemed bor-
ing with this setup. Formally, for a given s, any prediction that pertains to an experi-
ment that is deemed ‘boring’ is rejected, with the deliberation process simply being 
reset until it produces a prediction about a non-boring experiment. (Once all experi-
ments have reached ‘boring’ status, this mechanism ceases to apply.) We note that 
this rejection and resetting is an internal process applied by the agent itself. As far 
as the environment is concerned, the agent eventually produces a single prediction, 
which is guaranteed to pertain to an experiment that is not boring.

In order to highlight the capabilities that this architecture affords, we will 
compare the three-layer agents described so far against simpler two-layer agents, 
which lack an intermediate layer (see Fig. 3a). We will show that three-layer agents 
develop patterns of connection weights that can be interpreted as representing the 
environment’s hidden variables and perform significantly better than chance on 
generalisation tests, whereas their two-layer counterparts are incapable of either of 
these feats.

3.3  Comparison to Related Work

In this subsection, we briefly compare the approach developed here to some relevant 
work from the extant literature. Before addressing how our work fits into the context 
of existing work on neural networks (NNs) more broadly, we begin by discussing 
one particular recent paper that tackles a question closely related to our own: 
Iten et al. (2020) trained NNs in such a way that they managed to ‘extract simple 
physical concepts from experimental data’. An obvious difference between Iten et al. 
(2020) and the present work is the implementation that supports the learning process 
(artificial neural networks in one case, projective simulation in the other). However, 
a more interesting point for the present discussion are the conceptual differences 
regarding what is learned in each case, rather than how. One fundamental difference 
is that we consider agents that explore their environment by interacting with it and, 
accordingly, adopt the paradigm of reinforcement learning. By contrast, continuing 
with the example of damped oscillators, Iten et al. consider an algorithm that is fed 
pre-recorded data—one might imagine being given a notebook with observations 
made in a laboratory, but no opportunity to go to the lab and experiment oneself. 
While learning from pre-recorded data is a powerful paradigm that has achieved 
great success for certain classes of problems, it requires the implicit assumption 
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that there was already some entity that gathered the data, and, more fundamentally, 
that identified relevant variables whose values should be recorded for subsequent 
analysis. The recent paper by Chen et al. (2022) shows that it is feasible for a broad 
range of systems to infer, first, a system’s intrinsic dimensionality and, second, a 
predictively useful set of state variables, from video recordings of the system’s 
behaviour. This avoids the step of having to assume a known basis of relevant 
variables by taking the video recordings as a kind of lingua franca for the study of 
dynamical systems. The results reported in this study are impressive and point the 
way to fruitful applications in may areas. Still, the choice of video as lingua franca 
also embodies a—subtle—dependence on pre-selected variables, and the data-heavy 
approach depends on the availability of previously gathered recordings rather than 
on an agent’s direct interaction with a given environment.

It is this pre-requisite for data-based learning that our agents address: they start 
from a setting where it is not known how a stream of complex sensory input should 
be decomposed into independent, meaningful variables. This problem is not as 
far-fetched as one might think: in the early development of various theories, for 
example quantum mechanics and electromagnetism, it was a point of considerable 
debate which variables or concepts might be useful in talking about the subject, 
and progress was only made by experimentation—that is, by interacting with the 
systems under study. In our formal framework, this absence of pre-existing variables 
is reflected in the fact that we consider percepts as being labelled by unique, atomic 
indices rather than vectors consisting of well-defined components. Our agents take 
the first basic step of classifying these percepts by ascribing to them operationally 
meaningful labels, which, crucially, have a particular structure, with groups of labels 
forming a mutually exclusive and jointly exhaustive classification of percepts. We 
argue that this property of a set of labels is the defining feature that allows one to 
interpret them as representing values of some unobserved variable. In this sense, our 
agents can discover the existence of hidden environmental variables.

The question of how one might infer the values of such variables from the 
available perceptual data is a second, distinct step in learning about the environment. 
Our agents, facing an environment that is less challenging in this regard, can 
essentially memorise the value of each variable for each percept. Iten et  al. offer 
a more sophisticated approach to this part of the problem, implicitly modelling 
the relation between the new-found variables by learning to compress families 
of curves relating their values. However, we note that such compression can only 
be successful if one ensures that all curves are drawn from the same family (for 
example, recording the position over time for damped oscillators). In order to ensure 
that each data-set instantiates the relation between the same pair (or set) of variables 
and that other relevant circumstances are kept constant throughout, one must once 
again first identify the relevant variables for the system under study. It is the ability 
to perform this first, more fundamental step, of autonomously discovering that 
unstructured, atomic percepts admit a decomposition into meaningful variables, that 
is missing in the aforementioned examples using neural networks.

Going beyond the work of Iten et  al. in particular, the challenge of enabling 
interactive agents to discover patterns and latent variables has also been tackled in a 
broader body of work centered around the possibility of enhancing RL agents with 
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neural networks. In Deep RL (Mnih et  al., 2015), deep NNs are used as function 
approximators to compress the action-value-function (or its equivalent) learned 
by an RL agent. This approach then allows one to discover latent variables in an 
RL-type setting by using any of the existing methods from unsupervised learning.

For example, the cascade correlation neural network learning architecture (Fahl-
man & Lebiere, 1990) offers a way to build a NN whose architecture is adapted 
to the particular problem being learned, with individual neurons (bits in the circuit 
implementation) being trained in such a way that they come to capture remaining 
free parameters in the data distribution. Despite its extremely simple and transparent 
implementation, this approach performed significantly better than its contemporaries 
on the two-spiral problem (due to Wieland; as cited in Fahlman & Lebiere, 1990), 
which, due to its highly non-linear nature, highlights precisely the challenge of 
introducing useful hidden units.

More recent efforts towards discovering meaningful structures in NNs focus 
on learning disentangled representations: under the assumption that the model 
generating the data (the environment) contains a set of latent variables that are 
statistically independent of each other, the goal is to formulate learning rules such 
that these so-called factors of variation come to be represented by independent 
parameters in memory as well (Bengio et al., 2013). This is not only conceptually 
appealing, but also, at a more practical level, can sometimes lead to improvements 
in performance (van Steenkiste et  al., 2019). However, this approach is not 
above criticism: Locatello et  al. (2018) show that ‘the unsupervised learning of 
disentangled representations is fundamentally impossible without inductive biases 
on both the models and the data’ and further present experimental data suggesting 
that disentanglement does not, in fact, decrease the sample complexity of learning 
for downstream tasks.

A prominent approach for achieving the goal of disentangled representa-
tions in an unsupervised setting are specific Variational Auto-Encoders (Higgins 
et al., 2017a) ( �-VAEs), which combine the conventional goal of autoencoders—to 
compress inputs to a latent representation that allows accurate reconstruction—with 
additional constraints on the capacity of the latent representation and a cost func-
tion promoting independence between the latent degrees of freedom. In an unsu-
pervised setting, this leads to ’state-of-the-art disentanglement performance com-
pared to various baselines on a variety of complex datasets’ (Higgins et al., 2017a). 
The benefits of disentangled representations can then be reaped in a RL setting by 
combining �-VAEs with a conventional RL architecture, as detailed, e.g., in Higgins 
et al. (2017b).

Comparing the present work to the above approaches, we note firstly that the 
problem statements are somewhat different: while deep RL in general supports 
any task that can be cast in the percept-action-reward framework, the present work 
assumes a rather more rigid structure of experiments and predictions, with each 
experiment revealing the value of one latent variable. However, we note that this 
particular subclass of RL tasks was designed specifically as a toy problem for the 
purpose of studying how well an agent can identify latent variables, and as such 
may allow one to formulate a clearer account of an agent’s performance than if 
one used more general tasks. For example, the number of latent variables and the 
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number of values each variable can take, which are arguably important degrees of 
freedom in specifying a latent variable discovery problem, are explicit, independent 
parameters in our task environment. In a similar vein, our task environment allows 
one to capture the possibility that, in an environment with several latent degrees of 
freedom, a particular partition may be more natural than others, based on the fact 
that different degrees of freedom are revealed in different experiments. For example, 
while the trajectories of two free particles can technically be parameterised by any 
linear combination of their initial positions and momenta, it is a valuable additional 
insight that the most helpful way of partitioning this information is by separating 
into independent parameters for each particle. If the learning task provides no clues 
about the correct partition—and one cannot generally assume that they do, by 
default—, then it is not surprising that agents would struggle with identifying the 
most appropriate partition (see e.g. Iten et al., 2020).

Turning to the architecture used to solve the task, we note that our architecture is 
more minimalistic in the sense that it requires a smaller network of one-shot nodes 
and that it functions according to rules that require only very basic computational 
primitives, which could even be realized by leveraging simple physical processes in 
an embodied implementation (see, e.g. Flamini et al., 2020). This is appealing, for 
one, because it raises the possibility of reducing the computational cost, which tends 
to be a dominant limiting factor in current work with machine learning in general. 
Moreover, formulating an architecture that requires only basic computational 
primitives is appropriate if one’s goal is to explore (and exploit) possible parallels 
between machine learning and biological neural processes. Most importantly, 
however, exploring a second, alternative way of solving the same problem—of 
discovering latent variables in a RL setting—can provide valuable clues as to which 
elements of the architecture are actually necessary in order to make disentanglement 
work. We feel that this is a particularly valuable contribution that the present work 
can offer.

One of the most influential attempts to automate the generation of novel scientific 
concepts, theories and laws is due to Langley et al. (1987), who developed a series of 
algorithms known as the ‘BACON Systems’ (after Francis Bacon). Langley et al. set 
themselves the ambitious project of developing a general normative theory of scientific 
discovery that formally delineates the rational mechanisms by which scientists generate 
novel hypotheses in the face of experimental evidence. In order to achieve this goal, 
they identified a number of simple heuristics that play a salient role in the generation of 
prominent discoveries from the history of science. They subsequently combined these 
heuristics to develop a series of general function finding algorithms (the BACON sys-
tems) that automatically identify functional relationships between the given features in 
the relevant body of data. Some of these heuristics specify when new complex vari-
ables should be considered, based on the relationship between the features that have 
already been considered. For example, one heuristic stipulates that, when the value of 
one feature increases as the value of another feature decreases, the product of those two 
features should be considered. Another stipulates that when the value of one feature 
increases monotonically with the value of another feature, the quotient of those two fea-
tures should be considered. Langley et al. apply the BACON systems to reproductions 
of the data that was available to various physicists prior to their formulation of famous 
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laws and hypotheses, and show that BACON is able to reproduce the relevant discover-
ies. By way of illustration, when BACON is presented with a table of data representing 
the distance to the sun (D) and period (P) of the planets in our solar system, it uses 
three simple heuristics (including the two listed above) to eventually derive Kepler’s 
third law, which states that D

3

P2
= k (where k is a constant).

At first glance, one might think that BACON is achieving something similar to 
the system described in this article. Specifically, BACON is nominally able to auton-
omously identify variables, such as D3 and P2 , that are crucial for systematising the 
existing data, but were not explicitly presented to the system (the initial data table 
contained only two features: D and P). Thus, it may seem that BACON preempts our 
stated goal of automating the process of identifying relevant scientific variables. But 
there are a number of major conceptual and technical distinctions between the PS 
system implemented here and the BACON algorithms.

Firstly, even in the more sophisticated later versions of the BACON algorithms, 
the variables that the system is capable of identifying are always functions of the 
features that were presented in the initial data. So the BACON systems always rely 
on an initial compression of the environment into relevant features, and subsequently 
generate new variables/hypotheses/laws, on the basis of that representation. 
In contrast, the PS system described here does not rely on or have access to any 
comparable a-priori representation of its environment in terms of features. The 
variables that it identifies are therefore genuinely new in a sense that is not true of 
those identified by the BACON systems. They are not simply functions of variables 
that have already been externally given to the system. Rather, they represent the 
system’s best attempts to compress what it has learned about its environment in a 
communicable and transparent way. Secondly, the PS system presented here also 
works in a fundamentally different way to the BACON system, insofar as BACON 
is concerned with systematising an explicitly presented body of observational data, 
while the PS system never addresses a clearly defined body of observational data, 
but rather simply undergoes iterated interactions with its environment, and must 
identify variables that allow it to summarise what it has learned through those 
interactions. Thirdly, the heuristics employed by the BACON system are explicitly 
designed for discovering functional relationships between the features that comprise 
the data. The PS system described here does not rely on the supposition that the 
relevant latent variables stand in functional relationships to one another. In future 
work, we show how this system is capable of identifying functional and probabilistic 
relations between the variables that it identifies.

Overall then, it is clear that although the PS variable identification system 
described here overlaps with existing machine learning paradigms in terms of both 
its methods and its objectives, it also aims to solve problems that are not yet fully 
addressed by any of those paradigms. We turn now to further discussing the extent 
to which the PS system itself can truly be said to have solved those problems.
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4  Variable Identification

In the standard environment described in Sect. 2.2, the agent is presented with an 
integer index specifying one of 27 possible setups, before subsequently choosing 
one of 18 available predictions (each of which pertains to one of 6 available experi-
ments). The random walk leading to that decision consists of two steps: firstly, from 
the appropriate percept clip to one intermediate clip (which serves to ‘label’ the 
given setup), and then onwards to an action clip representing a prediction. If the 
prediction is correct, then both of the connections traversed in the random walk will 
be strengthened in proportion to the agent’s reward.6 Once this process has been 
iterated often enough, the agent should have learned both (i) to label each of the 
percepts s with intermediate clips in I  , in the sense that the connections from s to 
one or several particular i are much stronger than to the others, and (ii) to choose 
correct outcome predictions for various experiments on the basis of those labels, in 
the sense that the connections from i to some actions are much stronger than they 
are to others.

Both of these sets of connections—from percepts to intermediate clips 
(representing assignments of labels to setups) and from intermediate clips to 
actions (encoding which labels are relevant to which experiments)—reflect patterns 
that the agent has learned in order to make sense of its environment. The present 
section provides a conceptual discussion of how certain properties and structures 
in the pattern of weights of these connections can be used to identify the abstract 
conceptual representations at play in the agent’s deliberations.

4.1  Variable Identification Based on Connections from Percepts to Intermediate 
Clips

Before describing how we can identify the agent’s abstract representations of the 
environment’s hidden variables based on the weights of the connections in its ECM, 
it will be useful to specify more precisely what is meant by a ‘variable’ in this 
context. Formally, a variable can be characterised as an abstract property such that 
every setup instantiates one and only one value of that property. This definition is 
trivially satisfied by the hidden variables ‘mass’, ‘size’ and ‘charge’ in our running 
example. Importantly, this definition also implies that, for every variable, the set of 
values is jointly exhaustive and mutually exclusive with respect to setups, i.e., every 
setup maps to at least one value of a given variable, and no setup maps to more than 
one value of a given variable.

We can now detail what role such variables play in an agent’s deliberation on a 
learning task. Recall first that each intermediate clip can be interpreted as a label 
that the agent attaches to one or more percepts (specifically those that are strongly 
connected to the clip in question) and uses as a basis for predictions. The agent 
might develop labels that are only attached to a single percept, and are therefore best 

6 This is somewhat reminiscent of Hebbian learning, but note that in our model only transitions that led 
to a reward are strengthened.
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interpreted as meaning simply ‘This is setup s’. However, it is more efficient for the 
agent to label setups directly with the values of individual variables, since those are 
more naturally suited to making predictions about the outcomes of different experi-
ments. To illustrate: the variable ‘size’ plays a role in the agent’s deliberations if 
and only if, in deciding which prediction to make for a given setup, they label the 
setup with a particular value for the ‘size’ variable (e.g., ‘big’, ‘small’, ‘medium’) 
and then choose the prediction on the basis of that label. This explication suggests 
that, when trying to identify the variables represented in the agent’s deliberative 
structures, we should expect each value of a variable to be represented by a label for 
setups, i.e., by an intermediate clip in I  . Accordingly, a whole variable should be 
represented by a subset of intermediate clips, denoted Ĩ , whose elements represent 
the various values of the given variable. Moreover, the sets representing different 
variables should be ‘mutually exclusive’ and ‘jointly exhaustive’ in the sense that 
for any setup s, the agent is disposed to label s by exactly one of the labels in the 
set. Roughly, this means that each percept connects ‘strongly’ to exactly one of the 
labels in the set, and ‘weakly’ to all the other labels in the set. If two setups s1 and 

Fig. 4  (Top) Structure of connections in the ideal ECM. For clarity, only connections from two percepts 
are shown, and all weak connections are suppressed. (bottom) Matrix representations of the ideal con-
nections (left) and, for comparison, the corresponding connections formed by a real agent (right), show-
ing separately connections from percepts to intermediate clips (top row) and from intermediate clips to 
experiment-predictions (bottom row). In order to showcase the characteristic structure of those connec-
tions, the intermediate clips are ordered according to the values they represent, as V0 = 0 , V0 = 1 , V0 = 2 , 
V1 = 0 , V1 = 1 , V1 = 2 , V2 = 0 , V2 = 1 , V2 = 2 . In the case of h-matrices learned by a real agent, the 
intermediate clips generally represent a random permutation of these values. However, they can be sorted 
in the same way by inferring the correct ordering based on an analysis of the connections, as detailed in 
Sect. 5
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s2 both link strongly to different labels in the set representing a variable, that means 
that the setups have different values for that variable. If they link to the same label, 
they are perceived as sharing the same value for the variable. The top half of Fig. 4 
illustrates the kind of pattern in the ECM that allows us to identify representations 
of variables via the semantics described above.

In sum, then, the idea is this: in order to identify the abstract variables that are 
represented in the agent’s deliberative structures, we should attempt to identify the 
subsets of intermediate clips in the agent’s ECM that are mutually exclusive and 
jointly exhaustive with respect to setups. The functional role that these subsets play 
in the deliberations of a PS agent renders them susceptible to legitimate interpreta-
tion as internal representations of abstract variables.

Having specified a criterion for identifying the variables at play in our agents’ 
deliberations, we can now describe what it would look like for the agents to sat-
isfy the central success criterion we put forward for the learning task described in 
Sect. 2.1: namely, that the agents form internal representations of the environment’s 
hidden variables, i.e., ‘mass’, ‘size’ and ‘charge’. Following the procedure described 
above, we would identify these representations with subsets of labels (intermediate 
clips in I  ) that are jointly exhaustive and mutually exclusive with respect to setups. 
Specifically, we would expect each of the three variables to be represented by a sep-
arate (pairwise disjoint7) set of three intermediate clips (since each coarse-grained 
hidden variable has only three values) such that each of the 27 available setups is 
strongly connected to exactly one clip in each set. (One can verify that, for any clip 
in any set, there should therefore be 9 setups that map strongly to that clip, since for 
each value of charge/mass/size, there are 9 objects which have that value.) In the 
event that the agent forms a structure of this form in their ECM, we will be able to 
legitimately identify representations of the environment’s three hidden variables in 
their internal deliberative structures.

At this stage, it is worth pausing to reiterate a few important clarifications. Firstly, 
we stress that, in general (and in the specific example considered here), we assume 
that, for each hidden variable, there are several experiments whose outcomes are 
determined by the value that that variable takes for the given setup. If there were 
only one such experiment for a particular hidden variable, then the conceptual 
distinction between the hidden variable and the experiment that reveals it would be 
lost, and the intermediate clips would no longer represent abstractions, but would 
simply act as copies of the outcomes associated with the values of the hidden 
variables. The interpretation of intermediate clips as internal representations of the 
values of hidden variables is only principled and legitimate when the environment 
structure is rich enough to support abstraction, which in this case means that hidden 
variables are tested by multiple experiments.

Secondly, we stress that, while the outcome of an experiment M (‘What happens when 
I hold the test object next to this lump of metal?’, where the metal happens to be mag-
netised) can be predicted by knowing the value of a hidden variable � (which an outside 

7 We expect these sets of intermediate clips to be pairwise disjoint because knowing, for a given setup, 
that a variable V0 takes a value v0 or that a variable V1 takes a value v1 are two independent pieces of 
information, or labels, that can be assigned to the setup.



206 B. Eva et al.

1 3

observer with knowledge on the subject might render as ‘Is it magnetic?’), the two are 
conceptually very different objects. Crucially, the experiment M is part of the agent’s rep-
ertoire of actions, whereas � is a hidden variable, i.e., a property of the environment that 
is in principle inaccessible to the agent, and whose existence and role the agent can only 
infer from patterns in the way setups connect to (correct) predictions.

4.2  Variable Identification Based on Connections from Labels 
to Experiment‑Predictions

We turn now to presenting a second, alternative method of identifying the variables 
at play in the deliberations of our PS agents. We will see in Sect.  5 that the two 
methods produce largely identical results.

If, as above, one wants to group the intermediate clips/labels into subsets such 
that each set represents the different values of a single variable, one could also sim-
ply pick one experiment and map backwards to the labels that predict its various 
outcomes. The resulting set of labels is then naturally interpreted as representing the 
variable tested by the given experiment. Ideally, there should be exactly one such 
label for each prediction, since we have assumed that each of the predictions associ-
ated with a given experiment correspond to one specific value of the variable tested 
by that experiment. Moreover, if there exist experiments e1 , e2 whose outcomes are 
predicted by the same variable, then one expects the sets of labels obtained in this 
manner to coincide. This allows one to verify that e1 and e2 are predicted by the same 
variable and, moreover, to identify which prediction of e1 corresponds to the same 
value of the hidden variable as a particular prediction8 for e2 . On the other hand, 
if two experiments e1 and e3 are predicted by different variables, then one should 
expect that any label that is strongly connected to a prediction of e1 is not strongly 
connected to any prediction pertaining to e3 . The expected pattern of connections is 
illustrated in the bottom half of Fig. 4.

In sum, the idea is that one can identify the different values of a single variable by 
identifying those labels that lead to all the different predictions of a single experiment. 
If there are two experiments whose various predictions are reached from the same set 
of labels, then these should be interpreted as being predicted by the same variable, 
whereas disjoint sets of labels herald experiments that reveal different variables.

Again, we can illustrate this second prospective semantics for identifying representa-
tions of hidden variables in the agent’s ECM by considering the example presented in 
Sect. 2.2. As before, the aim is that the agent form internal representations of the coarse-
grained variables we interpret as ‘mass’, ‘size’ and ‘charge’. The new procedure for iden-
tifying these representations works as follows. For each experiment, we check whether 

8 In general, it may be that e1 and e2 reveal different coarse-grainings of a single variable, so that some 
pair of values of that variable lead to the same prediction in e1 but different predictions in e2 , while 
another pair of values is distinguished only by e1 but not by e2 . In this case, one cannot identify labels and 
predictions for both experiments one-to-one. However, and more importantly, it still holds that a single 
set of labels connect strongly to all the predictions of e1 and e2 , therefore still supporting the inference 
that these labels collectively represent a single variable that predicts the outcomes of both experiments. 
We have deliberately excluded such differently coarse-grained experiments in the scenario considered 
here in order to focus on the fundamental questions.
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there is a set of intermediate clips such that every clip in the set connects strongly to a 
different possible prediction for that experiment. For example, in the experiment in which 
the given object is placed on a scale, we check whether there exists a set Ĩ ⊆ I such that 
each i ∈ Ĩ connects strongly to one of the three possible predictions for the experiment 
(‘high reading’, ‘low reading’, ‘medium reading’). If such a Ĩ exists, then we can inter-
pret Ĩ as the agent’s internal representation of a variable that predicts the outcome of 
that experiment. Moreover, we expect it to be that (i) each of the clips in Ĩ also connect 
strongly to exactly one prediction of the other mass experiment, and (ii) none of the clips 
in Ĩ connect strongly to any of the predictions associated with any of the size or charge 
experiments. This fact allows the agent to deduce that there exists a single variable that 
predicts the outcomes of both the ‘scale’ and the ‘momentum’ experiment, but not the 
others. We, human scientists, might subsequently identify this variable as ‘mass’, but the 
essential inference that there exists such a variable can be made by the agent itself.

Finally, let us preempt a potential criticism that one might raise against this sec-
ond procedure for identifying representations of variables in the agents’ ECM. Spe-
cifically, one might argue that by assuming that the agent knows that the number of 
values of each variable should correspond to the number of outcomes of some avail-
able experiment, we are essentially giving them a-priori knowledge about the hidden 
structure of their environment, and thereby trivialising the discovery task. However, 
we hold that, firstly, the agent can make the non-trivial inference that there exists an 
unobserved variable whose value predicts the outcomes of one or more experiments. 
Moreover, the agent learns to distinguish between several coarse-grained intervals 
of values that this variable can take that map to different predictions in the experi-
ments. The semantics we are proposing makes no ontological claims about the val-
ues that the unobserved variable itself takes, but simply points out that there exist 
patterns in the environment that can be explained in terms of hidden variables. This 
is the essential insight that the agent distills, and it does not depend on any a-priori 
assumptions about the number of values this variable might take.

Fig. 5  Comparison of the reward rate as a function of time achieved by a simple two-layer agents, which 
are incapable of abstraction, and b three-layer agents, which are capable of abstraction. Note the different 
time-scales required to achieve rewards around 90%: two-layer agents were trained for only 104 rounds 
of interaction, while three-layer agents were given T = 5 ∗ 106 . (Shaded areas denote standard deviation 
over an ensemble of 20 agents)
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5  Results

The first result of our simulations is that our three-layer agents learn to success-
fully predict the outcomes of setup-experiment pairs with success probabilities of 
at least 90% . One can compare how quickly the three-layer agent proposed here 
learns compared to a basic two-layer agent that simply tabulates the correct pre-
diction for each percept-experiment pair. As shown in Fig.  5, two-layer agents 
learn much more quickly.

It should not come as a surprise that, in standard reinforcement learning tasks, three-
layer agents are much slower when it comes to learning how to maximise rewards, since 
the extra clip-layer significantly complicates their deliberations and interferes with their 
memorisation of previous rewards. However, given that we are interested in engineering 
agents which are capable not just of maximising rewards, but also of forming interpret-
able conceptual representations of their environment, we do not take this to constitute a 
major problem. It is utopian to expect that one could satisfy the second of these success 
criteria without sacrificing something in the way of learning speed. But while they incur 
operational disadvantages regarding learning speed, we will see that three-layer agents 
accrue some major operational advantages pertaining to their ability to solve generalisa-
tion problems (see Sect. 5.3).

While establishing that agents learn how to make correct predictions and maximise 
rewards is important, the main point we want to make in this section is that agents with 
the three-layer ECM structure outlined above do indeed develop identifiable abstract 
representations of the environment’s hidden variables, i.e., they satisfy the central 
success criterion of the present work. To justify this claim, Sect. 5.1 details an analysis 
of the connections that the agent establishes between percepts and intermediate clips and 
how those represent abstractions and allow us to identify which subsets of intermediate 
clips represent variables, as outlined in Sect.  4.1. Analogously, Sect.  5.2 provides an 
analysis based on the connections from intermediate clips to actions (predictions), 
following  Sect.  4.2. Finally, Sect.  5.3 turns to the problem of generalisation and 
demonstrates that, while two-layer agents are constitutionally incapable of solving the 
task (or of forming meaningful abstractions), our three-layer agents achieve a significantly 
better performance.

5.1  Verifying Abstraction and Identifying Variables Based on Connections 
Between Percepts and Intermediate Clips

One way of analysing what the agent has learned is based on the conceptual con-
siderations laid out in Sect.  4.1. We formalise the requirements of exhaustivity 
and exclusivity as follows:9 given a subset of intermediate clips Ĩ ⊆ I that might 
represent (the set of values of) a hidden variable, we define functions exh(Ĩ) and 

9 Note that the term ‘exhaustivity’ (and, analogously, ‘exclusivity’) can carry different meanings in 
the discussion of sets. One might say, given a set S and set S’ of subsets of S, that S’ is exhaustive if 
every element of S is also in some element of S’. However, we use the term with a different meaning, to 
describe a property of a single subset of intermediate clips with regard to their connections to percept 
clips, as detailed in the main text.
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excl(Ĩ) that assign to Ĩ one real-valued indicator each, quantifying how well it sat-
isfies exhaustivity and exclusivity, respectively. Intuitively, high values of exh(Ĩ) 
and excl(Ĩ) indicate that the elements of Ĩ plausibly represent the values of a sin-
gle variable identified by the agent.

Exhaustivity demands that each percept s be strongly connected to (at least) one 
clip in Ĩ . The condition is therefore violated, for a given s, if the probability of reach-
ing any clip in Ĩ—technically, we take maxi∈Ĩ P(i|s)—is much smaller than the prob-
ability of going to a clip outside the subset, which we quantify10 by maxi∈I�Ĩ P(i|s) . 
As a measure of exhaustivity, we take a (weighted, logarithmic) average of the ratio 
of these probabilities over all percepts,

where ws is a vector of weights11. In an ideal agent and for subsets Ĩ that actually 
represent a hidden variable, this measure is zero. Larger values can occur if the 
agent is more likely to go to clips inside Ĩ than to any clips outside it, but, more 
importantly, values < 0 herald a violation of exhaustivity.

Exclusivity demands that each percept s map strongly to no more than one inter-
mediate clip in Ĩ . The condition is therefore violated, for a given s, if the second-
largest probability of reaching a clip in Ĩ is comparable to the largest one. As a 
measure of exclusivity, we take the (weighted, logarithmic) average of the ratio of 
these probabilities over all percepts,

with the same weights ws as above. In an ideal agent and for subsets Ĩ that actually 
represent a hidden variable, this measure tends to plus infinity, whereas values close 
to 0 herald a violation of exclusivity. (The measure is non-negative by design.)

Any subset Ĩ that is close to representing (the values of) a hidden variable must 
have large values of both exhaustivity and exclusivity. To check which Ĩ satisfy this 
condition, we plot the two measures for all subsets of the set of intermediate clips in 
Fig. 6. Based on this analysis, one can identify a few ‘good’ subsets; for example, in 
the particular agent analysed here, intermediate clips [3,4,8] are likely to represent 
one variable, while [2,6,7] are likely to represent another variable.

In addition to identifying particular subsets of intermediate clips, this analysis 
also reveals, for example, how many hidden intermediate clips are necessary to 
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P(i�s)
secmax

i∈Ĩ
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10 The case of the full set, Ĩ = I , has to be avoided, as this probability would then be zero.
11 For the data presented here, the weights w

s
 for a given intermediate clip i are determined as follows: 

the percepts s are sorted according to the values P(i|s) and indexed with integers ind
s
= 0, 1, 2, ...S − 1 

such that smaller P(i|s) carry larger indices. Then w
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s
∕(S − 1))3 . This assigns higher weights (up to 1/N) to those percepts that have 

small transition probabilities, effectively highlighting possible violations of the exhaustivity condition.
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represent a hidden variable exhaustively (given by the cardinality of the ‘good’ sub-
sets). For an ensemble of 20 agents in the standard setting described in Sect. 2.2, we 
obtain a value of 3.03 ± 0.19 , clearly revealing that the environment, in fact, con-
tains hidden variables that take three distinct values each. A similar analysis can 
be performed based on the second layer of connections, as will be discussed in the 
following section. Figure 8 summarizes the results of this analysis and demonstrates 
how they allow one to read off essential parameters of the environment (in particular 
the number of values that the hidden variables can take) by tracking how the results 
change across different environments.

5.2  Verifying Abstraction and Identifying Variables Based on Connections 
Between Intermediate and Action Clips

The procedure for analysing the connections from intermediate to action clips is 
summarised in Fig. 7. One begins by quantifying how strongly each intermediate 
clip predicts the outcomes of each experiment, which allows one to group 
experiments whose outcomes are predicted by the same subsets of intermediate 
clips together. Each such group is considered to stem from one hidden variable. 
Working backwards, one can then identify which intermediate clips represent 
values of each variable. This analysis reveals how many hidden variables are 
necessary to predict the outcomes of all experiments in question, and moreover 
how many—and, in fact, which—experiments are predicted by each of those 
variables. As for the intermediate clips, one can identify which intermediate clips 
represent the various values of each of those variables.

For example, for the individual agent analysed here, the analysis identifies 
experiments 0 and 1 as being predicted by one variable, whose values are best 

Fig. 6  Measures of exclusivity and exhaustivity for all subsets of intermediate clips, for the agent speci-
fied in Sect. 3.2, with different symbols indicating the cardinality of the subset. Note how large subsets 
achieve comparatively high exhaustivity, but at the cost of violating exclusivity, whereas subsets of small 
cardinality have low exhaustivity but high exclusivity. Some of the subsets that achieve the highest values 
for both measures simultaneously are specified explicitly
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represented by intermediate clips [2,6,7]; similarly experiments 2 and 3 are pre-
dicted by a hidden variable whose values are represented by intermediate clips 
[0,1,5], and experiments 4 and 5 are predicted by intermediate clips [3,4,8]. Let 
us compare this conclusion with the analysis based on the connections from per-
cepts to intermediate clips, shown in Fig.  6: notably, while set [0,1,5] was not 
highlighted in Fig.  6, the two subsets that are identified most clearly in Fig.  6, 
[2,6,7] and [3,4,8], are the same ones found in the present analysis.

Regarding parameters of the environment, for an ensemble of 20 agents in the 
standard setting described in Sect. 2.2, we obtain the following measures:

• Number of hidden variables (distinct classes of correlated experiments): 
3.00 ± 0.32

• Number of experiments predicted by each variable (number of experiments 
with which each experiment correlates strongly): 2.05 ± 0.30

• Number of values each variable can take (cardinality of the sets of intermedi-
ate variables identified): 2.73 ± 0.29

• Number of distinct intermediate clips identified as best representatives of val-
ues of hidden variables: 7.65 ± 0.57 (this should be num_features*num_val-
ues)

Figure 8 shows how these measures change across environments with different num-
bers of hidden variables, of values and of experiments per variable.

Fig. 7  Identifying variables based on the connections from intermediate to action clips. a Transition 
probabilities from intermediate clips to predictions for each experiment e. These allow one to compute 
with how much certainty (quantified by the neg-entropy) each intermediate clip predicts the outcome of 
each experiment. b In a table of how well each intermediate clip predicts the outcomes of each experi-
ment, comparing two columns (the ‘predictability profiles’) of two experiments allows one to judge how 
likely they are to involve the same variable. c The table of ‘predictability correlations’ between experi-
ments has a striking block-diagonal structure, clearly showing that experiments 0 and 1 are predicted by 
one variable, 2 and 3 by another and 4 and 5 by a third. (Note that the suggestive ordering of pairs of cor-
related experiments in panel c is due to the way the environment was coded in our simulations. However, 
the high contrast of the correlation matrix allows one to identify related experiments in generic environ-
ments that do not have this ordering just as well. Note also that the correlation matrix is symmetric under 
transposition by construction, since the measure of correlation is independent of the order of the experi-
ments being compared). Working backwards, one can identify in panel b that, for example, experiments 
4 and 5 are predicted most prominently by intermediate clips [3,4,8], and one can further verify in panel 
a that those intermediate clips represent different values of the underlying variable, since they lead to 
mutually exclusive and jointly exhaustive predictions for the experiments in question
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5.3  Generalisation

To illustrate that the agent can, in fact, reap operational benefits from this 

Fig. 8  Identifying properties of the environment based on an analysis of the connections between per-
cepts, intermediate clips and actions established by the agent (h-matrix): a One can read off the number 
of hidden variables |V| by determining the number of disjoint blocks in the correlation matrix depicted 
in Fig. 7c, or, indirectly, from the number of intermediate clips identified as representing values of vari-
ables (which should be |V| ∗ |O| ) or from the number of non-trivial correlations between experiments 
(which should be |V| ∗ |E|(|E| − 1)∕2 ). b One can read off the number of values each hidden variable 
can take from the cardinality of the sets of intermediate clips identified as representing single varia-
bles (based on either the connections to percepts (1) or the connections to actions (2)), or, indirectly, 
from the number of intermediate clips identified as representing values of variables (which should be 
|V| ∗ |O| ). c One can read off the number of experiments whose outcomes are predicted by each hidden 
variable by determining directly how many experiments are strongly correlated in the matrix depicted in 
Fig. 7c, or, indirectly, from the number of non-trivial correlations between experiments (which should 
be |V| ∗ |E|(|E| − 1)∕2 ). Note that agents in different environments were trained for different durations 
T (measured in interaction rounds), with the training times for each environment chosen such that the 
agents’ h-matrices settled into a clear pattern, as shown by the fact that the various measures used for 
analysing the abstractions formed by the agent no longer changed noticeably. Specifically, agents in the 
default scenario ( (|V|, |Ẽ|, |O|) = (3, 2, 3) ) were trained for T = 5 ∗ 106 time-steps, whereas environ-
ments with different values used (a) ( |V| = 2 , T = 5 ∗ 105 ), ( |V| = 4 , T = 5 ∗ 107 ), ( |V| = 5 , T = 108 ), 
(b) ( |Ẽ| = 1 , T = 5 ∗ 105 ), ( |Ẽ| = 3 , T = 5 ∗ 106 ), ( |Ẽ| = 4 , T = 5 ∗ 106 ), and (c) ( |O| = 2 , T = 5 ∗ 105 ), 
( |O| = 4 , T = 107 ). Error bars represent one standard deviation over an ensemble of 20 agents

Fig. 9  Performance on generalisation task over the course of training: a two-layer agents never go 
beyond chance level (1/number of possible outcomes, i.e., 1/3), whereas b three-layer agents achieve sig-
nificantly higher success probability; in fact on par with their success rate at the percept-experiment pairs 
for which they did receive feedback. (Shaded areas denote one standard deviation over an ensemble of 20 
agents)
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construction, consider a problem where an agent only trains with a subset of objects 
and experiments, leaving out one object-experiment pair, but is then tested on the 
pair that it has never encountered. (In order to allow repeated testing at different 
stages of the learning process, these agents never receive feedback on the ‘test’ 
task.) Figure  9 illustrates how two-layer agents can only guess at random in that 
case, whereas an ensemble of our three-layer agents achieve significantly higher 
reward rates (on the validation test), of (69 ± 25)% . This provides a concrete empiri-
cal vindication of the conjecture that the cognitive faculties of abstraction and gener-
alisation are intimately related.

6  Discussion

6.1  On the Legitimacy of the Prospective ‘Concepts’

In Sects. 4 and 5, we presented an operational semantics for identifying the con-
ceptual representations at play in the deliberations of PS agents, before empirically 
illustrating how these representations are formed and identified in concrete learning 
tasks. At this stage, one might be inclined to dispute the extent to which the identi-
fied representations are truly indicative of underlying conceptual thought. While we 
acknowledge that the defining characteristics of true conceptual thought are a topic 
of substantial ongoing philosophical debate and greatly exceed the ambit of the pre-
sent work, it is worth highlighting that the semantics for concept identification pre-
sented here is consistent with (and supported by) some of the most influential philo-
sophical theories of concept attribution.

Specifically, there is an influential view according to which the defining hallmark 
of conceptual thought is compositionality. On this view, an agent can only be said 
to truly possess a concept if they are able to use it in a completely general way that 
is not restricted to any particular cognitive context. For example, an agent could not 
truly be said to posses the concept ‘red’ if the only thought in which they are able to 
use the concept is ‘big red car’. In order to qualify as truly possessing the concept, 
the agent should be able to separate it from that one thought and use it to construct 
new thoughts like ‘small red van’ or ‘sparkly red necklace’. This idea was formally 
codified in Evans (1982) so called ‘generality constraint’, which posits that in order 
to qualify as engaging in genuine conceptual thought, an agent must be capable of 
entertaining all syntactically permissible combinations of the concepts they purport-
edly posses. So if the agent purportedly possesses the concepts ‘red’, ‘blue’, ‘heavy’, 
‘van’, ‘house’ and ‘guitar’, they should be able to form the thoughts ‘red van’, ‘red 
house’, ‘red guitar’, ‘blue van’, ‘blue house’, ‘blue guitar’, ‘heavy van’, ‘heavy house’ 
and ‘heavy guitar’ (but not, e.g., ‘red blue’ or ‘house guitar’, which are not syntacti-
cally permissible). Variations of this generality constraint have been used to evaluate 
the prospective possession of genuine concepts by various animals. For example, 
Carruthers (2009) argues that the Australian digger wasp, which uses its body to 
measure the length of the sand towers it constructs, does not employ the concept of 



214 B. Eva et al.

1 3

‘length’ in a sufficiently compositional manner to warrant ascribing possession of 
the concept to it.

At this stage, it is pertinent to ask whether our ascription of concepts representing 
hidden variables to PS agents is consistent with Evans’ generality constraint or the 
requirement of compositionality more generally. Happily, it seems that the answer 
to this question is at least partially positive. To see this, recall that on our semantics, 
one of the central criteria for a set of labels to represent a variable is that they be 
jointly exhaustive with respect to setups. This means that for every object that the 
agent is capable of representing, they are strongly disposed to label that object with 
one of the values of the relevant variable. This in turn implies that each value of the 
identified variable will connect strongly to multiple objects. If we identify concepts 
with values of variables,12 then this means that the concepts formed by the agent 
are always applicable to multiple objects and therefore exhibit at least a moderate 
degree of compositionality. Although this is not enough to guarantee full accordance 
with Evans’ generality constraint, which demands complete and unrestricted 
compositionality, it is similar to the kind of partial compositionality that authors like 
Carruthers (2009) argue is sufficient for genuine conceptual thought.13

6.2  From Abstraction to Generalisation

The majority of our discussion so far has focused on abstraction, i.e., the capacity 
to form abstract conceptual representations of salient features of one’s environment. 
A closely related (but importantly distinct) phenomenon is generalisation, meaning 
the capacity to utilise the knowledge that one has acquired through previous 
experiences to deal efficiently with new experiences that differ from everything 
one has previously encountered. It is natural to conjecture that an agent’s ability to 
solve generalisation problems is closely related to their ability to solve abstraction 
problems. One of the major payoffs of the present analysis is that we are able to 
provide a concrete empirical vindication of this conjecture, by showing that agents 
that form identifiable variable representations (in the sense described above) are 
better able to solve generalisation tasks than agents that lack the cognitive capacity 
to form these representations (see Sect. 5.3).

We also noted that this power comes at a cost, with simple two-layer agents 
reaching high rates of correct predictions much more quickly than the more 
sophisticated three-layer agents (see Fig. 5). In an environment where memorisation 
of percept-action pairs is a viable strategy, it may therefore be most efficient 
to employ a two-layer agent, which does not waste time looking for hidden 
variables. However, as one proceeds to larger, more complex environments, where 

12 So that the concept ‘red’ corresponds to one possible value of the colour variable, for example.
13 One worry that one might have about the approach described here concerns the problem of empiricial 
underdetermination—i.e., the fact that an agent’s conceptual and theoretical representations of the envi-
ronment are often underdetermined by the empirical evidence, meaning that there are multiple different 
conceptual/theoretical frameworks that are consistent with observation. In simple toy examples like the 
one considered here, this problem is less pronounced, but it will be ubiquitous in more complex environ-
ments. We stress that we do not take our approach to contribute to any kind of a resolution of the prob-
lem of empirical underdetermination.
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the agent will more frequently encounter percepts it has not seen before, the 
ability to generalise (in particular by forming abstractions) becomes increasingly 
advantageous.

The task of facilitating meaningful generalisation in PS agents has been the 
focus of previous work, most notably by Melnikov et al. (2017). The generalisation 
capabilities exhibited by the agents considered in Sect. 5.3 go significantly beyond 
anything in this existing literature. Most importantly, our agents are able to 
successfully abstract and generalise in a way that does not rely on equipping them 
with a-priori knowledge regarding the structure of the environment. In contrast, the 
generalisation mechanisms described by Melnikov et al. rely on learning rules which 
implicitly encode a priori knowledge regarding the way in which the percept space 
can be coded by values of the environment’s hidden variables. In our framework, 
the agent discovers this hidden variable structure for themselves, and the very act of 
doing so facilitates their ability to generalise. No extra learning rule is required.

It is also instructive here to consider the relationship between abstraction and 
generalisation in the context of neural network architectures, which are of course 
remarkably successful in a wide array of practical generalisation problems that 
involve generalising the patterns encountered in the training set to deal with novel 
data in the test set. Typically, the networks are able to achieve this generalisation 
capability without developing any easily identifiable representations of abstract con-
cepts. This suggests that, while abstraction can be a helpful basis for generalisation, 
as we have argued in the present work, it is not a necessary pre-requisite. On the 
other hand, the ability of artificial neural networks to generalise from their training 
examples to test instances has recently been cast into doubt, with the appearance of 
striking results of adversarial approaches: notably, Moosavi-Dezfooli et  al. (2015) 
proposed an algorithm that systematically fools deep neural networks into misclas-
sifying images by manipulating just a few pixels. Such results cast serious doubt on 
the reliability of broad and deep neural networks and highlight the importance of 
transparency in building more robust ML solutions.

6.3  Transparency, Explanation and Abstraction

As well as allowing PS agents to accrue significant new operational capacities in 
generalisation tasks, the ability to form abstract conceptual representations also 
promises a number of other advantages. One of the most salient advantages relates 
to the problem of rendering the deliberations and decisions of PS agents fully 
communicable, explicable and transparent, a problem that becomes urgent whenever 
artificial intelligence is put to practical use in human society.

To see this, note first that the present work takes the first steps towards 
constructing an explicit symbolic interface through which PS agents can naturally 
articulate and communicate explanations of their reasoning processes and decisions. 
For example, once the semantics has been employed to identify the variables 
corresponding to ‘mass’, ‘size’ and ‘charge’ in the agent’s deliberations, it would 
be straightforward to implement an automatic explanation generator that provided 
explicit linguistic explanations of all the agent’s actions, e.g., ‘I predicted that 
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the scale reading would be high because object 2 is heavy’. Although the exact 
definition of agent transparency is still a matter of significant controversy in the 
current literature (see, e.g., Chen et al., 2014; Lyons & Havig, 2014), it seems clear 
that the ability to automatically construct explicit explanations of an agent’s actions 
and deliberations constitutes a major step towards ‘transparency’ on all plausible 
interpretations of the term. For example, Chen et  al. define agent transparency as 
‘the quality of an interface (e.g., visual, linguistic) pertaining to its abilities to afford 
... comprehension about an intelligent agent’s intent, performance, future plans, 
and reasoning process’. It is obvious that the present work makes significant strides 
towards bringing PS agents in line with this criterion.

6.4  Prerequisites for Abstraction

Finally, one might wonder exactly what aspects of the PS agents described here are 
really responsible for their abstraction abilities. We have not yet provided any defini-
tive argument showing that any particular aspect of the agents’ architecture is abso-
lutely necessary for abstraction. However, it is clear that the present approach relied 
crucially on the introduction of the third intermediate clip layer. If there is any way 
to allow for similar abstraction capabilities in two layer agents, it will be radically 
different from the approach discussed here, which relies crucially on the additional 
structure from the third clip layer. So while we have not proved the necessity of a 
third clip layer for abstraction, we have at least identified an open problem regarding 
the possibility of abstraction in two layer agents. Furthermore, the fact that three lay-
ers of clips seems to be sufficient for some minimal degree of abstraction is itself an 
important realisation. There is undeniably much more work to do to untangle exactly 
what kinds of cognitive machinery are required for successful abstraction.

7  Future Work and Conclusion

Finally, we conclude by highlighting promising avenues to be explored in future 
work.

The first avenue relates to one of the most distinctive and crucial cognitive capac-
ities of human reasoners, namely the ability to identify and exploit correlations 
between variables in their environment. Here we have addressed one fundamental 
pre-requisite towards endowing PS agents with this ability by enabling them to iden-
tify variables that describe significant features of their environment. The next step 
is to construct a representation and learning rule that allows the agent to identify 
correlations between the different variables encoded in the ECM. We conjecture that 
doing so will allow us to further enhance the agents’ generalisation abilities. To see 
why, imagine that the agent is confronted with a setup s such that (i) they are already 
strongly disposed to label s with a value v of some variable V that is tested by an 
experiment e, and (ii) they are not strongly disposed to label s with any particular 
value of any variable V∗ that predicts an experiment e∗ . In this case, the agent will 
already be good at predicting the outcome of experiment e when confronted with s, 
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but they will not be able to reliably predict the outcome of e∗ , perhaps because they 
haven’t yet had significant experience with the e∗/s pair. However, it may be that they 
have already noted a strong correlation between the variable V and some variable V∗ 
which they know is predictive of e∗. In this case, it seems that they should be able 
to use their knowledge regarding the value of V that corresponds to s to guess a cor-
responding value for V∗ , which would then allow them to make an educated guess 
regarding the outcome of e∗ . In future work, we aim to develop a method for identi-
fying correlations between an agent’s conceptual representations, and subsequently 
augment the PS learning dynamics in a way that utilises the observed correlations to 
allow for enhanced generalisation abilities.14

A second avenue for further work concerns the number of intermediate clips 
available to the agent. Throughout the present work, we have assumed this number 
to be fixed at a particular value. This is a significant assumption, which places a-pri-
ori restrictions on the kinds of abstractions that the agents are able to make. In future 
work, we intend to implement dynamics that allow the agent to autonomously alter 
its own architecture in a way that supports whatever kinds of abstraction are most 
useful for the learning task in which it is engaged. These dynamics would allow the 
agent to change the size of its label space over time as it gains information about the 
granularity and complexity of the hidden variables that characterise its environment. 
For example, one natural dynamic would be to ‘merge’ any two labels that look like 
duplicates of one another (in the sense that they define very similar probability dis-
tributions over action space). Another natural dynamic would be to ‘split in two’ 
any single label that is deemed to be too general and imprecise (in the sense that it 
defines an excessively flat probability distribution over action space). By implement-
ing dynamics like these, we aim to make the concept formation scheme described 
here more autonomous, domain general and robust.

More generally, the present work takes the first steps towards allowing PS agents 
to autonomously develop symbolic interfaces through which they can articulate, 
refine and communicate their distinctive sub-symbolic reasoning dynamics. This 
opens up a host of new research avenues pertaining to the further development, 
integration and application of such interfaces.

Acknowledgements This work was supported by (i) the Austrian Science Fund (FWF) through the SFB 
F71 BeyondC, (ii) the Ministerium für Wissenschaft, Forschung, und Kunst Baden-Württemberg (AZ: 
33-7533.-30- 10/41/1), (iii) the Alexander von Humboldt Foundation, (iv) the Zukunftskolleg of the Uni-
versity of Konstanz, (v) VolkswagenStiftung (Az:97721), and (vi) the European Research Council (ERC) 
under Project. No. 101055129.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 

14 This is closely related to the more general problem of identifying PS agents’ subjective probabil-
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