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Abstract
Explainable artificial intelligence (XAI) aims to help people understand black box 
algorithms, particularly of their outputs. But what are these explanations and when 
is one explanation better than another? The manipulationist definition of explanation 
from the philosophy of science offers good answers to these questions, holding that 
an explanation consists of a generalization that shows what happens in counterfac-
tual cases. Furthermore, when it comes to explanatory depth this account holds that 
a generalization that has more abstract variables, is broader in scope and/or more 
accurate is better. By applying these definitions and contrasting them with alterna-
tive definitions in the XAI literature I hope to help clarify what a good explanation 
is for AI.

Keywords Explainable AI · Counterfactuals · Explainability · Manipulationism

1 Introduction

Artificial Intelligence (AI) based algorithms, especially using deep neural networks, 
are becoming ever more ubiquitous, introducing opaque decision systems into a 
wide range of applications. These algorithms can analyse large and complex data 
sets, setting state-of-the-art performance, but at the cost of interpretability. Deep 
neural networks in particular often have millions, or even billions, of parameters, 
making it near impossible to understand why a particular output was selected based 
on the (possibly also complex) input. Given the prevalence of such algorithms, how-
ever, it is important to be able to explain their outputs, also considering that the 
General Data Protection Regulation, accepted into EU law in May 2018, provides a 
right to explanation. The field of eXplainable AI (XAI) has taken up this challenge 
with a variety of tools (for reviews, see Adadi & Berrada, 2018; Das & Rad, 2020; 
Guidotti et al., 2018). Despite a plethora of approaches to solving the issue of how 
to explain the functioning of opaque decision systems (deep neural networks are one 
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example, but other machine-learning techniques such as random forests present the 
same issue), there is however no widely agreed upon definition of ‘explanation’, nor 
a way to compare the quality of different explanations.

Instead, one finds a range of definitions that often fail to provide specific guid-
ance. For example: “We define explainability as the ability for the human user to 
understand the agent’s logic” (Rosenfeld & Richardson, 2019,  p. 678). Similarly, 
Guidotti et  al. (2018,  p. 5) say that “Essentially, an explanation is an “interface” 
between humans and a decision maker that is at the same time both an accurate 
proxy of the decision maker and comprehensible to humans”. Somewhat more elab-
orately, Ciatto et  al. (2020,  p. 9) start with a definition of interpretation to define 
explanation: “we define the act of “interpreting” some object X as the activity per-
formed by an agent A—either human or software—assigning a subjective meaning 
to X. Such meaning is what we call interpretation. [...] We define “explaining” as the 
activity of producing a more interpretable object X′ out of a less interpretable one, 
namely X, performed by agent A”. These definitions, though certainly not wrong, do 
not yet tell us very much about what explanations are exactly. They do not state what 
an explanation should look like, nor what the essential features are of a statement 
that make it an explanation.

Opposed to these general definitions there are also more specific definitions. 
For example, Das and Rad (2020, p. 4) give the following definition: “An explana-
tion is additional meta information, generated by an external algorithm or by the 
machine learning model itself, to describe the feature importance or relevance of an 
input instance towards a particular output classification”. This definition focusses 
on specific approaches that are currently followed, but doesn’t tell us why feature 
importance or relevance would explain the output of the algorithm, nor does it con-
nect to a wider account of explanation. I aim to provide such an account here, by 
presenting the manipulationist definition of explanation from the scientific explana-
tion literature in the philosophical of science. That is based on generalizations that 
answer what-if-things-had-been-different questions and is the most popular account 
of causal/scientific explanations outside of the XAI context. I motivate that it works 
well for XAI too by contrasting it with a few more definitions of explanation from 
the machine learning literature. As part of the comparison I also demonstrate how 
this independently motivated account of explanation might apply to tools used in 
XAI, such as saliency methods and rule extraction. Then, in Sect. 3, I discuss the 
question of explanatory depth, drawing again on the philosophical discussion of the 
topic in the context of scientific explanation. The goal there is to present a set of 
considerations that capture whether one explanation is better (deeper) than another. 
Primarily it will be a more precise specification of the idea that “powerful explana-
tions should, just like any predictor, generalize as much as possible” (Guidotti et al., 
2018, p. 36) drawing on the philosophical literature on explanatory depth. The goal 
of this paper thus is to make progress on what (Guidotti et al., 2018, p. 36) finds one 
of the most pressing issues in XAI:

One of the most important open problems is that, until now, there is no agree-
ment on what an explanation is. Indeed, some works provide as explanation a 
set of rules, others a decision tree, others a prototype (especially in the context 
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of images). It is evident that the research activity in this field is not providing 
yet a sufficient level of importance in the study of a general and common for-
malism for defining an explanation, identifying which are the properties that 
an explanation should guarantee (Guidotti et al., 2018, p. 36).

2  Defining Explanation

2.1  The Manipulationist Definition

What is it that explains? A popular idea in the philosophical literature is that scien-
tific explanations are all causal, i.e. that one explains a (scientific) fact by appealing 
to its causes (Salmon, 1984; Woodward, 2003). This accounts for a number of fea-
tures of explanations, such as their asymmetry: one cannot both explain Y by appeal 
to X and X by appeal to Y. A standard example in philosophy to illustrate this point 
is of explaining the length of a flagpole and its shadow: 

(1) Flagpole f has length l1 because its shadow s has length l2 and the sun strikes the 
flagpole with angle �

(2) Shadow s has length l2 because the flagpole f has length l1 and the sun strikes it 
with angle �

Explanation (2), but not (1), strikes us as a good explanation of the phenomenon in 
the real world, even though one can derive s from l1 and � without any problems. 
Causal accounts explain this difference between (1) and (2) by pointing out that the 
sun striking the flagpole causes the shadow (and thus determine its length), whereas 
the shadow does not cause the flagpole to have a certain length. Hence, the real 
world phenomenon is best explained by (2), though (1) would be the better explana-
tion for an algorithm that calculates the length of a flagpole based on the shadow 
and angle. This idea, that causes are what explain, is also found in part of the XAI 
literature. Miller (2019,  p. 12) specifically offers a definition based on causation: 
“This paper adopts Lipton’s assertion that explanation is post-hoc interpretability. 
I use Biran and Cotton’s definition of interpretability of a model as: the degree to 
which an observer can understand the cause of a decision”. I agree with this defini-
tion to an extent, but I think that there is a more informative definition available by 
further specifying what is meant by ‘causation’.

The approach to this question that I take is similar that of Pearl and Mackenzie 
(2019) and Halpern and Pearl (2005a), as well as to his take on explanation Halpern 
and Pearl (2005b), though I will follow the account more commonly discussed in 
the philosophical literature, namely that of Woodward (2003). Watson and Floridi 
(forthcoming) also use this definition of explanation to give a formal framework of 
‘explanation’ in the XAI context. My paper differs from theirs by looking not just at 
local explanations and by allowing explanations to be broader in scope than a single 
model (see Sect. 3 as to why this is an important improvement). Furthermore, their 
formal framework fails to make explicit how the manipulationist definition interacts 
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with existing definitions and methods, and in what way it can act as a good goal for 
XAI methods to strive for. Therefore I think it is worthwhile to discuss the work of 
Woodward (2003) again as a good definition of ‘explanation’ in XAI, free from the 
strictures of a formal framework that casts XAI research in the form of an explana-
tion game. To start on his account: he provides, first of all, a non-reductive definition 
of a cause based on what are called ‘interventions’, which informally are ways to 
change the value of a variable x without changing the value of the other variables 
that cause the purported effect y.1 Using this notion, x causes y iff an intervention I 
on x changing the value from x1 to x2 produces a correlated change in the value of 
y from y1 to y2 . That makes it inherently a counterfactual account: x causes y if an 
intervention on the value of x would change the value of y. There is no need to actu-
ally change these values for there to be causation, as all that matters is that the value 
of y depends on the value of x. It is, consequently, this dependence relation between 
the values of the cause and the effect that we are interested in when we look for 
an explanation, or so manipulationist theories claim. That marks a slight departure 
from Miller’s definition, as it is not whether we understand the cause of a decision 
that matters (so this account holds), but whether we understand how the cause influ-
ences the effect that matters for an explanation. In other words, what we want to 
know about a black box algorithm is how the input determines the output.

These various strands are then combined into a definition of explanation, which 
basically maintains that an explanation is an answer to a range of what-if-things-
had-been-different questions. Woodward writes that E explains M in the following 
case:

Suppose that M is an explanandum consisting in the statement that some vari-
able Y takes the particular value y. Then an explanans E for M will consist of
(a) a generalization G relating changes in the value(s) of a variable X (where X 
may itself be a vector or n-tuple of variables Xi ) and changes in Y, and
(b) a statement (of initial or boundary conditions) that the variable X takes the 
particular value x.
A necessary and sufficient condition for E to be (minimally) explanatory with 
respect to M is that (i) E and M be true or approximately so; (ii) according 
to G, Y takes the value y under an intervention in which X takes the value x; 
(iii) there is some intervention that changes the value of X from x to x′ where 
x ≠ x′ , with G correctly describing the value y′ that Y would assume under this 
intervention, where y′ ≠ y (Woodward, 2003, p. 203).

1 More formally, I is an intervention-variable on X with respect to Y if and only if: I1. I causes X. I2. 
I acts as a switch for all the other variables that cause X. That is, certain values of I are such that when 
I attains those values, X ceases to depend on the values of other variables that cause X and instead 
depends only on the value taken by I. I3. Any directed path from I to Y goes through X. That is, I does 
not directly cause Y and is not a cause of any causes of Y that are distinct from X except, of course, for 
those causes of Y, if any, that are built into the I-X-Y connection itself; that is, except for (a) any causes 
of Y that are effects of X (i.e., variables that are causally between X and Y) and (b) any causes of Y that 
are between I and X and have no effect on Y independently of X. I4. I is (statistically) independent of any 
variable Z that causes Y and that is on a directed path that does not go through X (Woodward, 2003, p. 
98). An intervention I = i1 is an instantiation of this intervention-variable that makes X take value(s) X1.
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The minimal case is very minimal here, as Woodward doesn’t demand that the gen-
eralization G is error-free or covers more than one counterfactual case with a dif-
fering outcome. Those aspects of the definition are, however, a matter for the dis-
cussion on explanatory depth in Sect. 3. First I consider it helpful to contrast this 
definition with two more specific (formally specified) definitions from the XAI lit-
erature, and in doing so to apply the manipulationist account of (scientific) explana-
tion to XAI. To do so, I propose an initial application of the definition to a (black 
box) algorithm b to be refined later on in the paper. An explanation of output y1 of 
b, resulting from input X1 is: a generalization G where G(X1) = b(X1) ± � , with � a 
chosen minimum accuracy of G. Furthermore, there is at least one set of inputs X2 
where G(X2) = b(X2) ± � and b(X1) ≠ b(X2) . Importantly, the causes here refer not 
to the real-world phenomena that an algorithm might try to predict, but are purely 
about the relation between inputs of the algorithm and the outputs—thus they may 
reverse the ‘natural’ causal order provided they match what happens inside the 
algorithm. Explanations, on this picture, are thus rules that include counterfactual 
cases, and as such can answer what-if-things-had-been-different questions. That ties 
together different ideas already in the XAI literature, to which I turn now.

2.2  Counterfactuals Alone

A first useful contrast is with the definition of Wachter et  al. (2018), which also 
relies on counterfactuals. They define an explanation of the output of an algorithm 
as having the following format: “Score p was returned because variables V had val-
ues (v1, v2, ...) associated with them. If V instead had values (v�

1
, v�

2
, ...) , and all other 

variables had remained constant, score p′ would have been returned. Wachter et al. 
(2018, p. 848) That definition is in line with the literature on algorithmic recourse 
(Karimi et al., 2021), which formalizes it further: “Given a fixed predictive model, 
commonly assumed to be a binary classifier, h ∶ X → 0, 1 , with X = X1 ×⋯ × XD

,we can define the set of contrastive explanations for a (factual) input xF ∈ X as 
E ∶= {xCF ∈ P(X) | h(xCF) ≠ h(xF)} . Here, P(X) ⊂ X is a plausible subspace of X, 
according to the distribution of training data” (Karimi et  al., 2021, p. 3) One can 
then select the closest element of E (based on a chosen distance function; Karimi 
et al. (2021) discuss various options) in answer to a why-question by a user.

There is a crucial contrast between these two definitions and the manipulation-
ist definition that I think is a promising candidate for capturing what XAI is after, 
though they all appeal to counterfactuals. Whereas Woodwards definition is based 
on a generalization G, which describes the correlation between the values of the 
explanandum x and the explanans y (or h(x) on the terminology of Karimi et  al. 
(2021)), there is no such generalization included in the definitions of Wachter et al. 
(2018) and Karimi et al. (2021). So, is a definition with this generalization more fit-
ting than their simpler definitions employing only counterfactual cases?

Consider first a few examples from outside of XAI, to see how both definitions 
fare in a less technical context. When asked why the window broke after someone 
threw a baseball at it with velocity v1 , we might be provided with the following two 
answers: 
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(3) If the baseball had hit the window with the lower velocity v2 the window would 
not have broken.

(4) Glass breaks when struck by objects travelling at velocities higher than v2 . The 
baseball struck at velocity v1 > v2 and therefore broke the glass window. Had it 
travelled at v2 the window would have remained intact.

In (4) the first sentence gives generalization G, the second shows that G(v1) = y (i.e. 
the window breaking) and the third sentence presents the counterfactual case. I think 
it’s clear that (4) provides a better explanation than (3), but the question is whether 
(3) is also a good explanation. Technically speaking (3) would be preferable, as find-
ing these counterfactuals is a well-defined problem that, though with its own dif-
ficulties, is easier than finding generalizations such as (4). However, I think that (3) 
only manages to explain something about the window breaking because it suggests 
a generalization that covers both cases: that there is a minimum velocity needed to 
break glass. In the absence of a clear generalization that we might infer from the 
counterfactual case it does not seem particularly explanatory to only specify a coun-
terfactual. Consider the following explanation: 

(5) If the Earth had mass m2 then the window would not have broken.

Without further information on the physical reason for this fact (increase the mass 
of the Earth enough and the ball will drop to the ground before reaching the window 
due to increased gravitational effects, a suitable generalization here being Newton’s 
laws) it provides very little illumination on why the window broke. Now, of course 
this isn’t a close counterfactual by any measure, but such cases can easily occur with 
algorithms (though Kenny and Keane (2021) discuss generating plausible counter-
factuals, and one could manually disallow using the Earth’s mass in counterfactu-
als). My point is rather that a generalization, a sketch of which I just gave in paren-
thesis, is the crucial additional factor for the explanation to make (some) sense. The 
same holds within XAI. Here too some contrasts will seem explanatory because 
they strongly suggest a generalization. For example, when applying for a loan the 
contrast ‘had your income been x2 > x1 then the loan would have been approved’ 
strongly suggests a rule that states the relation between income and the maximum 
amount you can borrow. We infer that rule from the context and thus complement 
the counterfactual to reach a proper explanation. There is no guarantee that we infer 
an appropriate rule, especially considering the non-linearity of modern machine-
learning techniques, and that is assuming that we get a helpful counterfactual.

One obvious case where one wouldn’t receive a helpful counterfactual is when 
presented with an adversarial example (Ren et  al., 2020). Wachter et  al. (2018, 
Sect. II.C) do mention this as a case to avoid (though strictly speaking their def-
inition counts it as an admissible explanation), saying that such cases are outside 
the “space of real images” and that such artificial inputs should be avoided. Simi-
larly, the definition from Ref. Karimi et al. (2021) requires that the counterfactual 
cases come from a plausible subspace of possible inputs, given the data. However, 
natural examples exist too: brightly coloured eyeglasses can trick facial recognition 
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software (Sharif et al., 2016), an ultra-violet spectrum picture of the sun has been 
interpreted as showing a jellyfish (Hendrycks et al., 2019), as well numerous other 
examples (Alcorn et al., 2019; Hendrycks et al., 2019). One may want to respond 
here that such cases will always be distant from the actual input, but even that need 
not be true. Hendrycks et al. (2019, Fig. 9) present a case where a dragonfly rest-
ing on a yellow shovel is classified as a ‘banana’, but the exact same picture with a 
red or blue shovel is classified correctly. In contrast, the manipulationist definition 
I have suggested would either avoid such examples because they are not part of a 
(relatively simple) generalization that also covers the original input or it would make 
these cases more interpretable via a broad generalization that covers the causes of 
such artefacts and when to expect them. I touch on this in Sect. 3 on explanatory 
depth, but for now I think it’s safe to say that the rules one would normally use to 
explain the output of an algorithm will avoid this problems with a ‘counterfactual 
only’ definition. The simple reason: a counterfactual is only helpful when it suggests 
a reasonable generalization.

Empirical evaluations of XAI methods seems to support this point. Lim et  al. 
(2009) and Lim and Dey (2013) found that giving decision rules that motivate the 
output of the algorithm (or, alternatively, motivate why some other output did not 
result) lead to users giving the most accurate predictions of system behaviour. van 
der Waa et al. (2021) specifically studied the contrasting two different XAI meth-
ods—rule-based and example-based—and also seems to support this point. When 
participants were only presented with two counterfactual cases to each decision 
(highlighting the most relevant variable) they performed no better on either factor 
identification or predicting system behaviour than in the situation where no explana-
tions were given. Only having two counterfactual cases, but no rules, appears to be 
of little help. When presented with a rule (and no counterfactual cases) however, 
participants scored significantly higher on factor identification, though they were not 
better at predicting system behaviour. Their hypothesis is that the rules they gave 
were too narrow, as they only applied to a single decision (as I discuss in Sect. 3, 
that also implies that they were shallower explanations on the manipulationist defini-
tion). To be precise, these rules were counterfactual and of the format “if the alcohol 
intake would have been 1 unit or less, the system would have advised a normal dose 
of insulin”. Furthermore, Chromik et  al. (2021) found that users generalize from 
a collection of (contrasting, so including counterfactuals) local (Shapley) explana-
tions, and typically do this incorrectly. That further supports that a pure case-by-case 
approach, where counterfactuals are presented but without overarching generaliza-
tions, doesn’t truly explain the functioning of an algorithm. Rules might be a better 
bet, then. That does raise the question: do the rules have to be counterfactual in the 
way the manipulationists specify? Are other types of rules really incapable of pro-
viding explanations? I turn to that question in the next subsection.

2.3  Rules Without Counterfactuals

To structure this discussion I look at the definition of explanation given in Fong and 
Vedaldi (2017). They hold that
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An explanation is a rule that predicts the response of a black box f to certain 
inputs. For example, we can explain a behavior of a robin classifier by the rule 
Q1(x;f ) = {x ∈ Xc ↔ f (x) = + 1} ,where Xc ⊂ X  is the subset of all the robin 
images. Since f is imperfect, any such rule applies only approximately. We can 
measure the faithfulness of the explanation as its expected prediction error: 
L1 = �[1 − �Q1(x;f )] , where �Q is the indicator function of event Q. Note that Q1 
implicitly requires a distribution p(x) over possible images X  . Note also that 
L1 is simply the expected prediction error of the classifier. Unless we did not 
know that f was trained as a robin classifier, Q1 is not very insightful, but it is 
interpretable since Xc is (Fong & Vedaldi, 2017, p. 3450).

Is this a helpful definition of an explanation? The issue, I think, is that the rules that 
adhere to this definition tell you (ideally) what a black box does, but do not tell you 
why it gives you those outputs in the specified cases. To stick to the robin example, 
the explanation proposed here is a set of all robin images. (or more precisely, a set 
of all images positively classified by the algorithm, but those should mostly be robin 
images) That tells us something about the classifier, namely that it gives score 1 to 
precisely those images, but it does not tell us what reasons the classifier has for that 
classification. Imagine responding to a child that asks ‘why is that a robin?’ after 
seeing one. The suggested answer here is a long list of robin sightings. Instead, we 
would probably respond (or can find on Google) ‘because it has a distinctive red 
breast’, where the ‘distinctive’ part tells you that birds lacking one are given a dif-
ferent name. The interpretability here doesn’t come from the domain, but from the 
classificatory rule the determines the domain. The definition by Fong and Vedaldi 
(2017) doesn’t give us such a classificatory rule at all. If that’s not already obvious, 
compare it again to the baseball example from earlier. Their suggestion is to explain 
why the window broke with something like the following: 

(6) Q1(x;f ) = {x ∈ Xbreaks ↔ f (x) = + 1} , i.e. we give a long list of cases in which 
the window breaks.

We might distill from this that the window breaks for {v ∶ v > v2} , which is already 
more informative though still far shallower than more general physical laws. Such 
a move would, however, seem to interpret the domain over and above what their 
definition tells us by specifying a rule that fixes Xbreaks independently from the func-
tion f that we try to explain. (6) specifies, at best, which variables are relevant, but it 
doesn’t tell us how they influence the output. In other words, we don’t get an answer 
as to why they lead to the outputs they do. The general statement, that explanations 
predict the response of a black box, is then one I agree with (that is what generaliza-
tion G does in the manipulationist definition), but their formal specification of the 
rule differs, tellingly, by not including any counterfactual cases. As a result, there is 
no independent conceptualization of the domain other than the output of the black 
box classifier, and so the rules do not yield explanations.

To start applying the manipulationist definition more directly to XAI, I’d like to 
point out that Fong and Vedaldi (2017) introduce their definition in the context of 
an improved saliency method that shows which parts of an image are relevant to the 



571

1 3

Defining Explanation and Explanatory Depth in XAI  

classification of it by a black box classifier. What does the above criticism then mean 
for saliency methods, which visualize the gradient of the classifier in the local neigh-
bourhood of a particular image? First, they differ from the letter of the above defini-
tion, as they do not specify a domain where the classifier outputs e.g. ‘robin’, but 
focus rather on which changes to the image most directly change the output of the 
image. As a result, saliency maps are actually a closer fit with the ‘counterfactual-
only’ definitions from the previous section.2 Still, they do share an issue in common 
with the definition of Fong and Vedaldi (2017). Saliency maps show you which pix-
els/variables are relevant, but they do not tell you why they are relevant (empirical 
evaluations support this claim, e.g. Alqaraawi et al. (2020) found that users struggle 
to generalize from saliency maps). Similarly, their definition of ‘explanation’ yields 
an answer that shows you the positively classified inputs, but doesn’t tell you why 
those inputs lead to f (x) = + 1.

I want to be clear here that my claim that saliency methods do not yield explana-
tions is certainly not meant as a claim that they are not useful. Saliency methods can 
show us whether a black box attends to the right variables in making its decision. 
That information alone is valuable: if irrelevant parts of the image (e.g. the sky) 
show up as highly relevant with saliency methods for making a classification (e.g. 
whether a tank is visible) then we know that the decision is not made for the right 
reasons. No ‘proper’ explanation is needed in that case to determine that something 
is wrong. Furthermore, as with the ‘counterfactual-only’ approach, saliency meth-
ods might suggest generalizations to us. If they show that the classifier pays constant 
attention to fingers when trying to classify a certain fish (e.g. a ‘tench’), it may point 
us to the realization that it is a fish prized by fishermen and therefore the data shows 
it almost exclusively when held by a person (as opposed to other fish not shown in 
this way; Brendel (2019)). Saliency methods can thus be very valuable in diagnos-
ing problems, even if they do not by themselves explain why the highlighted parts 
of the image lead to the observed output. To be clear on the effect of adopting the 
manipulationist definition, I briefly discuss in the next subsection what the proposed 
definition of explanation means for the status of other tools in XAI, using the tax-
onomy of these methods given by Guidotti et al. (2018).

2.4  Existing XAI Tools and the Manipulationist Definition of Explanation

As I just argued, saliency methods do not provide full (local) explanations of a black 
box algorithm. So, what is the status of other XAI methods according to the manipu-
lationist definition of explanation? According to Guidotti et  al. (2018) these tools 
can be classified into ones for (i) model explanation, (ii) outcome explanation, (iii) 
model inspection and (iv) transparent box design. It’ll be clear fairly quickly how the 

2 Fong and Vedaldi (2017) consider saliency methods as local explanations (predicting the response of 
the clasifier in the immediate neighbourhood of a point x0 ), whereas the earlier cited definition is for 
global explanations. Still, saliency methods do not visualize the other outputs in this immediate neigh-
bourhood, but only show which changes to x0 would alter the classifier outcome the most and so do not 
seem to fit their local definition either.
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definition applies, so I won’t discuss the different categories in detail, instead aiming 
to clarify the effect of adopting a manipulationist definition to whether or not certain 
tools produce explanations.

Two main methods are discussed under the model explanation heading, namely 
explanations via single-tree approximation, where the behaviour of the black box 
is modelled by a single decision tree and explanation via rule-extraction where the 
behaviour of the black box is modelled by a set of rules. Both cases can readily 
count as proper explanations under the manipulationist definition, provided the rules 
(in the decision tree or the set of rules) cover counterfactual cases. This is almost 
automatically the case for a decision tree, where the alternative children of a node 
provide counterfactual cases provided the leaf classifications differ from the actual 
case. With rule extraction counterfactuals might only be supported by considering 
several rules from the rule set. For example, Craven and Shavlik (1994) describe an 
algorithm learning M-of-N rules where M features of a list of N features have to be 
present for a certain classification to be given. This says nothing about what happens 
when insufficiently many features are present, but one can expect that in practice 
other M-of-N rules will apply, giving the full set of rules the right features to qualify 
as an explanation. However, not all methods discussed as model explanations will 
count as manipulationist explanations. Guidotti et al. (2018, p. 25) also mention, for 
example, feature importance ranking measures (Sonnenburg et  al., 2008; Vidovic 
et al., 2016). As with the discussion of saliency methods earlier, such tools may not 
yield full explanations on the proposed definition, but can nevertheless be valuable.

This result, that some of the current tools will not be classified as yielding expla-
nations, is also seen for outcome explanation tools, of which saliency methods are 
an important part. Such inspection tools can certainly give us further insight into the 
functioning of a black box algorithm, and help us ensure that they attend to only rel-
evant variables, but they do not on their own explain why a black box reached a spe-
cific output. On the other hand, there are also rule-based tools available for outcome 
explanation, such as LORE (Guidotti et  al 2018a), which provides per outcome a 
decision rule and a set of counterfactual rules that suggests how local changes in 
input will alter the outcome. LORE does, however, separate the two, so that the coun-
terfactual is not a specific instance of the generalization. For example, the output of 
LORE can be: rule = {age < 26, job = clerk, income = 800, car = no} → deny with 
separate counterfactuals: {income > 900} → grant and {job = employer} → grant . 
What happens in the gap between income = 800 and income > 900 ? We don’t know, 
because the rule only covers cases with the same output, and does not cover coun-
terfactual instances. As a result, LORE gets close to the definition, but ultimately 
doesn’t fit completely because there is no one rule G that covers both the actual case 
and a counterfactual instance. Perhaps such a generalization can be reconstructed 
from the output, but a more explicit specification of one would be more helpful.

The same picture emerges for model inspection tools. Some, such as that pre-
sented in Thiagarajan et al. (2016) may seem to get close to yielding explanations 
as they use a decision tree. The visualization chosen, however, only shows which 
classes are considered in the different nodes and whether the input in question is 
classified as such or not (e.g. yes/no on ‘is it grass?’). There are no counterfactual 
cases shown, nor are any generalizations given. One doesn’t learn why the model 
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decided that the image doesn’t show grass, nor does one learn why e.g. the question 
‘is it sky?’ is considered shortly after. Though it can give us helpful information 
on the black box, it does not clearly explain why it produces the outputs it does. 
Other model inspection tools are activation maximization, partial dependence plots 
and sensitivity analysis for which much the same applies as to saliency methods. It 
is perfectly possible that one of these visualizations strongly suggests an appropriate 
generalization, in which case they may lead to explanations (if the suggested gener-
alization is sufficiently accurate), but there is no guarantee that this will happen.

Though it may be disappointing that not all current XAI methods yield expla-
nations according to the manipulationist definition, I think that this is correct. The 
tools that fail to make the cut are no less helpful for inspecting models and check-
ing their behaviour, but when we look for explanations we have a fairly stringent 
criterion in mind. They have to answer the question ‘why this output?’ Pointing to 
feature importance is a first step to an answer, but not sufficient—hence that such 
methods fail to make the cut. That being said, there is a last refinement to be made 
to the discussion on the definition of ‘explanation’. Namely, they are not answers to 
just ‘why this output?’ but instead are answers to contrastive why-questions. That 
contrastive aspect of explanation is discussed in the final subsection of the part on 
defining ‘explanation’.

2.5  Contrastive Explanations

As Miller (2019) discusses and formalizes using structural causal models in Miller 
(2021), plus as is widely argued in the philosophical literature on explanation (Dret-
ske, 1972; Lipton, 2004; Northcott, 2013; Van Fraassen, 1980; Woodward, 2003) 
explanations are best seen as answers to contrastive why-questions. Specifically, 
explanations are contrastive in both the cause and effect slot (following here the 
claim that one explains by giving a cause):

XA rather than XC explains yA rather than yC.

For example, ‘the baseball hitting the window at v1 rather than v2 explains why the 
window broke rather than remained intact’. Here XA , the actual cause, is ‘the base-
ball hit the window at v1 , XC , the contrastive cause is ‘the baseball hit the window 
at v2 ’ and the actual and contrastive outcomes are that the window broke/remained 
intact. All this information can be found in the earlier examples, but I think it helps 
to make it explicit. There are a few points to make here. First, the fact that this is 
(arguably) the format all explanations follow, designers of XAI tools can use it to 
format their answers. Users should be presented with an alternative output (where, 
as Lipton (2004) argues, ‘P rather than not-P’ is not a valid contrast) and an input 
that would lead to it. Perhaps users should be given a range of choices, with different 
alternative outputs, but the point remains that a contrast should be present. If it isn’t, 
as with saliency methods that do not show alternative input or output, one fails to 
provide a full explanation of the functioning of an algorithm.

This contrastive element thus gives a concrete format to follow in the design of 
explanation tools. It is also already incorporated into the definition by Woodward 
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(2003), though this was perhaps not obvious when I first presented it. He requires 
that an explanation is given via generalization G where first G(XA) = yA ± � , i.e. the 
actual case is covered. And then a contrast is selected, such that G(XC) = yC ± � . So, 
if one follows this definition then the explanation will automatically contain a con-
trast. I still mention the widely agreed upon format of an explanation to underscore 
that the G(XC) case is not merely there to ensure that the generalization is an appro-
priate one (and thus only G needs to be shown, together with G(XA) = yA ), but that 
the counterfactual case is an important aspect of the explanation itself.3

Furthermore, this contrastive format is often not supported by existing XAI meth-
ods. Tools such as LIME (Ribeiro et al., 2016) and SHAP (Lundberg et al., 2017) do 
not allow for the specification of a contrast class. As Watson and Floridi (forthcom-
ing) point out, they often defer to the mean output of the algorithm as the implicit 
contrast, whereas there may well be other relevant contrasts. So, though the contras-
tive nature has been noted in the literature already and has received formal treatment 
in Miller (2021), it bears repeating. That being said, I hope to have made progress 
on defining ‘explanation’ in the XAI context. Crucially, though, I haven’t said any-
thing yet about what makes for a good explanation. That is the topic of the second 
half of this paper.

3  Explanatory Depth

Granted that the manipulationist definition is a good one to use in XAI, how can we 
tell which generalizations we should offer to a user? The idea that a wider generali-
zation is better is fairly standard, as I also quoted from Guidotti et al. (2018) in the 
introduction, but merely offering most general G available does not seem to cut it. 
Consider the following case: a black box b is explained by G(X), where G(X) = b(X) 
(i.e. take as generalization the function that the black box approximates). Then it 
seems that G is the widest generalization available and so should be the most pow-
erful explanation we can give of b. However, the manipulationist definition doesn’t 
require G to have an easily interpretable format such as that of a single decision-tree 
(and even then, decision trees accurately covering every input of b might be so large 
as to be hard to follow). It might as well be a point-wise defined function, link-
ing every possible input to the exact output given by b. Is this G, which only links 
inputs to outputs, the basis for a good explanation? It seems not. There is a good rea-
son that XAI focusses on decision trees and the extraction of relatively short rules, 
namely that those are generally more helpful than a G that merely replicates the 
black box.4 So what does this very wide generalization lack that makes it a less than 
ideal generalization? I will follow two ideas in this section. First, the abstractness 

4 see also (Woodward, 2003, Sect.  5.10) for this type of objection, in his case the ideal gas law that 
allows you to calculate different cases but whose underlying mechanics were long misunderstood

3 Furthermore, the contrast likely determines what variables are relevant in the answer, i.e. the contrast 
determines one’s choice of the set X. As such, the contrast also impacts the discussion in Sect. 3.1, as it 
influences which variables need to be considered at what level of abstraction.
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of the variables used in G (i.e. in any explanation) matters. Second, generality isn’t 
confined to the number of inputs of b, but should also be considered as the number 
of black boxes to which G can be applied.

3.1  How Abstract Should Variables be?

Which variables we use in our explanations matters. Compare, to start, the follow-
ing two examples from Woodward (2010) about a pigeon trained to peck at anything 
that is red: 

(7) The pigeon pecked (rather than only looked) because it was presented with a 
scarlet stimulus (rather than some other stimulus).

(8) The pigeon pecked (rather than only looked) because it was presented with a red 
stimulus (rather than some other stimulus).

Even though both explanations can be used to explain why the pigeon pecked at a 
scarlet stimulus, we would prefer (8) over (7). The reason seems to be that ‘red’ is 
more general/abstract than ‘scarlet’ (specifically, every scarlet stimulus is a red stim-
ulus, but not every red stimulus is scarlet). There are two ways to spell this out in 
more detail. First, we might hold that both (7) and (8) use a variable colour, where 
(7) has the more specific value ‘scarlet’ and (8) the more abstract/general value ‘red’. 
Second, one can binarize the situation by saying that (7) uses the variable scarlet, 
which has value 1 if the stimulus is scarlet and value 0 if the stimulus has a different 
colour. (8) then uses the more abstract variable red, which has value 1 if the stimulus 
is red, and 0 if the stimulus has another colour. In both cases we see the difference in 
abstractness: colour = scarlet implies colour = red, and scarlet = 1 implies red = 1. 
I’ll opt for the binarized version to avoid confusions between different occurrences 
of ‘colour’ and to conform to the standard setup in structural causal models as in 
Halpern and Pearl (2005a) and Miller (2021). In that case, we’d say that the explana-
tion with rule G(red) = red (the pigeon pecks at red stimuli) is better than the expla-
nation G(scarlet) = scarlet (the pigeon pecks at scarlet stimuli).

This already helps with the black box example above, where b is explained by G 
point-wise defined on the full set of input variables X. These input variables often 
have a very low degree of abstraction (e.g. colour values for individual pixels, a 
single word-string, a sound signal) and that will be one reason for the fact that an 
explanation which simply presents the function approximated by a black box seems 
relatively unhelpful. One way to push for more generality in the explanation is to 
demand more abstract variables (Jansson & Saatsi, 2019). Furthermore, the low 
level of abstraction is often accompanied by a very large number of input varia-
bles to keep track of. Abstraction will, by subsuming variables such as the different 
shades of red under a single heading, reduce that number and thus make it more 
cognitively feasible to follow the explanation. The answer seems simply: we should 
aim for the most abstract variables available. Manipulationists tend do so in terms of 
the actual value of variables (Blanchard 2020):
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An explanation with explanans variable(s) x1 is more abstract than an explana-
tion with explanans variable(s) x2 when the actual value of x1 is implied by the 
actual value of x2 , but not vice versa.

(8) gives a more abstract explanation than (7) in this case because scarlet = 1 
implies red = 1, but not vice versa. Similarly, if one wants to explain why an image 
containing a yellow shovel was classified as ‘banana’ by appeal to the yellow col-
our of the shovel, the explanation appealing to x1 = yellow shovel (taking value 1 if 
there is a yellow shovel) is more abstract than x2 = {pixel1, pixel2,…} , because the 
actual value of yellow shovel is implied by the colour values of pixels 1 through n. 
If, in turn, we appeal not to the colour of the shovel, but to yellow being the domi-
nant colour in the picture (i.e. there being mostly yellow in the image), we see that 
this gives an even more abstract explanation: dominant yellow = 1 is implied here 
by yellow shovel = 1, given that the shovel takes up most of the image. The recent 
idea to use concept-based explanations (Ghorbani et  al., 2019; Yeh et  al., 2020) 
has essentially this same move towards abstractness as they aim for explanations 
in terms of whether, e.g., the algorithm contains the activation pattern for ‘wheel’ 
when it predicts ‘car’ instead of looking at individual pixels (as for saliency maps). 
That abstraction, if one manages to interpret the automatically generated concepts 
correctly, seems to help. And, indeed, (9) seems to be a better explanation of the 
classifier’s behaviour than (10): 

 (9) The classifier says this image contains a banana (rather than a shovel, say) 
because it mostly contains yellow (rather than some other colour).

 (10) The classifier says this image contains a banana (rather than a shovel) because 
this set of pixels is yellow (rather than some other colour).

The reason that the more abstract explanation is better, so e.g. Woodward (2010) 
argues, is that it covers more counterfactual situations correctly. Appealing to red 
rather than scarlet is better because it more accurately covers cases where the stimu-
lus is a shade of red other than scarlet. (9) is better than (10), presumably, because 
it seems unlikely that the classifier only considers something a banana when pre-
cisely those pixels are yellow. Rather, it is plausible that it also classifies images 
where a different set of pixels is yellow, provided that yellow is the dominant colour 
in the image. That gives some basis to the idea that not just any general explana-
tion is a good one, but that it is abstractness in the explanandum that matters for a 
good explanation. However, as Franklin-Hall (2016) has argued, it isn’t always the 
case that one should pick the most abstract antecedent possible. For explanation (11) 
seems less explanatory than (8) even thought the variable is more abstract: 

 (11) The pigeon pecked because it was presented with something stimulating. Where 
something is stimulating if it is a red stimulus, or food, or a tickle on the chin, 
or an electrical signal fed into the cerebellum.

We see that the variable something stimulating is more abstract: if red = 1 , then 
something stimulating = 1, but not vice versa. So ( Franklin-Hall (2016) argues) 
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if we are to hold that more abstract variables are always better, then (11) should 
be a better explanation of the pecking than (8). Furthermore, it is a more complete 
generalization: it covers all cases where the pigeon pecks (no irrelevant variables/
values are included), so on the generality measure it, too, seems to count as a better 
explanation (to compare: saying that a scene classification algorithm outputs ‘liv-
ing room’ because there are midsized objects is to use an abstract variable, that is 
relevant and correct, but it’s not a very helpful explanation). How do we avoid this 
consequence? I follow Blanchard (2020) in holding that an explanation that is, aside 
from more abstract, also more specific is a better one (slightly altered to explicitly 
include the case where x1 changes value, also see Woodward (2018) for a response):

An explanation with explanans variable(s) x1 is more specific than an explana-
tion with explanans variable(s) x2 when x2 is a function of x1 and other vari-
ables x3,… xn such that for x1 = x1,A neither x1 nor G(x2) = G(f (x1, x3,… xn)) 
change value if the variables x3,… xn are varied.

Basically, the idea is that an explanation is more specific when it doesn’t con-
tain variables that are irrelevant to the considered contrast. In (11), the variable 
something stimulating is an example and would count as x2 here. For, its val-
ues are implied by x1 = red, x3 = food, etc (the function here being a Boolean: 
x2 = red ∨ food ∨ tickle ∨ cerebellum ). To see how the definition gives us the result 
that red is more specific, consider the case when x1 = red = 1. As long as the value 
for red is kept fixed, the bird will peck regardless what one does to the values for 
the other variables. So, x2 = something stimulating = 1 in that case, and similarly 
G(something stimulating) = 1. Furthermore, also providing food does not remove 
the red stimulus that is presented and so doesn’t change the value of x1 (red remains 
1, and so G(something stimulating) still equals 1 even if we change x3 = food). In 
this case x2 = something stimulating is not specific enough to yield good expla-
nations. Just as x1 = midsize object is not very specific, even though it is abstract. 
Instead, a variable such as table would be better (and more abstract than sub-types 
of table).5

This contrasts with the case of red and scarlet, where one might see red as a dis-
junction of all the different shades of red. These different shades aren’t independent 
of each other, so if I set x3 = bordeaux = 1, the value of x1 = scarlet would have to 
change to 0 (though the bird will still peck as bordeaux is a shade of red). The value 
of x1 changes, and so scarlet is not more specific than red on this definition. That’s 
good news, because the more abstract explanation with red instead of scarlet is pre-
ferred. So specificity doesn’t push us all the way back to the least abstract variables, 
but hopefully settles the matter in an optimal middle ground.

Specificity, then, removes variables from the explanation that aren’t relevant to 
the current case. Though the other variables in (11) will be relevant in other cases 
(e.g. when only food is presented, so when red = 0), it does not give us a good/

5 Note that we can say the same in terms of values of variables: if we go for the variable object with dif-
ferent values, there is again a challenge of saying whether object = midsized , object = table or object = 
dining room table is a better choice. The same would apply: choose a value that is abstract, but specific.
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relevant explanation for the pecking behaviour when only a red stimulus is pre-
sented. So, although something stimulating is a more abstract variable, it does not 
lead to better explanations. From the examples discussed here it then seems that a 
more specific explanation is better than a less specific, more abstract explanation, 
but that if there is no difference in specificity then we prefer the more abstract expla-
nation. This also nicely fits the idea in Halpern and Pearl (2005a) that explanations 
should provide minimally sufficient causes (i.e. necessary and sufficient). While that 
doesn’t quite capture the reason to prefer red over scarlet (we could claim for both 
that it is necessary and sufficient to present a red/scarlet stimulus for the pecking 
to occur), it is certainly in the same spirit. There are good reasons, then, to aim for 
explanations using variables at this level of abstraction. Ideally that claim would get 
empirical testing, but I think that this account gives a good approximation of the 
types of variables we prefer to see in our explanations. Abstract, but still specific 
enough to only mention relevant parts of the actual phenomenon.

3.2  Notions of Generality

Abstractness is one factor to consider, but its relevance, as briefly mentioned in the 
previous section, seems to come from the fact that more abstract explanations are 
more general in a specific sense: they correctly apply to more counterfactual cases. 
Specificity limits that somewhat (explanation (11) correctly applies to even more 
counterfactual cases than explanation (8) but is worse for it), but clearly generality 
is important. Hitchcock and Woodward (2003) have, perhaps unsurprisingly, built 
their account of explanatory depth around generality, and that is the basis I will use 
here too. According to them a generalization G is better if it answers more what-if-
things-had-been-different questions. The more invariant a generalization is, i.e. the 
more can change (to the variables in G and background conditions) without drop-
ping below the minimal accuracy, the better the explanation based on it. As Blan-
chard et  al. (2018) argue this falls into two categories. On the one hand, one can 
consider invariance in terms of the breadth of the generalization, which means the 
range of cases to which it is taken to apply. For example, the second explanation 
of why Mary went bungee-jumping has more breadth and is naturally taken to be 
better: 

 (12) Mary has gene g, which causes people to go bungee-jumping.
 (13) Mary has gene g, which causes people to engage in risk-taking behaviour.

The generalization underlying (13) will apply to a wider range of cases, and so 
yields the better explanation. In contrast, there is also the possibility of an explana-
tion being better because it more accurately applies to the cases under consideration. 
Blanchard et al. (2018) give the following examples: 

 (14) High levels of cholesterol cause heart disease.
 (15) High levels of low-density cholesterol cause heart disease.
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In this context, only low-density cholesterol in fact causes heart disease. That 
means that (14) is wrong in cases where one has high levels of high-density cho-
lesterol (which is assumed to not cause heart disease). Though both will be right 
in the case of a patient who has low-density cholesterol and got heart disease as a 
result, still (15) seems the better explanation. The reason is that the generalization 
in (15) is more accurate than that in (14), as it also gives the right result for high-
density cholesterol (namely, that it doesn’t cause heart disease). We can translate 
these two considerations into more formal guidelines for the XAI context.

I’ll start with breadth, as this requires a small adjustment to how I have applied 
the account so far. I wrote primarily about G applying to a single algorithm, 
explaining why black box b gave output y. One should, however, consider that 
a generalization may apply to more than one black box algorithm. So, one of the 
variables in set X for G(X) will stand for the black box to which G is applied. This 
is a somewhat different generalization than that of (model agnostic) XAI tools 
which can be used to produce explanations for a wide range of algorithms. The 
explanations they produce, such as a decision tree, a set of rules, a saliency map 
or partial dependence plot, generally do not tell you anything about the behaviour 
of other algorithms. The fact that black box b is described by a specific decision 
tree does not mean that that decision tree can also be used to explain black box b′ , 
even though one may use the same tool to construct a second decision tree for b′.

Instead, I mean that the same explanation can apply to more than one algo-
rithm (something which distinguishes my account from the formal framework 
of Watson and Floridi (forthcoming)). This does happen when one looks at the 
informal explanations given. For example, the case where a classifier recognizes 
the fish species ‘tench’ based on the presence of fingers. If we ask ‘why does the 
network classify based on fingers rather than aspects of the fish?’ then a decent 
explanation is ‘there is a strong correlation between the irrelevant feature (fin-
gers) and the classification goal (tench) in the data, and as a result the easiest 
way to improve accuracy was to classify based on the irrelevant feature.’ This is 
an explanation that is very broad: it captures the case of tench and can be used 
to explain not just why we see certain saliency maps, but also why any fish held 
in ones hands is classified as a tench (i.e. direct output of the algorithm). Fur-
thermore, it applies to a very wide range of black box algorithms. One can use 
the same generalization to explain why an HR system for engineering jobs auto-
rejects applications by women. Of course, an even deeper explanation would tell 
you exactly how such a correlation affects the output of the black box, but my 
point is that even this highly simplistic explanation strikes us as a better one than 
an explanation that makes no mention of the general effect of such correlations 
in the training data on machine-learning methods. Not because the other models 
influence the output of the model that is to be explained, but because by giving a 
more general explanation we can show more thoroughly what causes the output 
of the model to be explained. How would that output change if we had a slightly 
different training set? To answer that question we’d, strictly speaking, have to 
include the different model (because a different input-output function) that results 
from changing the training set. And yet it’s relevant for understanding the out-
comes, and even more so for being able to change them. It tells us, for example, 
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that we should include pictures of tench that don’t include fingers if we want a 
more robust classifier.

Such informal explanations have the kind of breadth that a decision tree built to 
mirror a single black box algorithm does not. They rely on generalization (about 
spurious correlations in the data, or to give another example, the existence of adver-
sarial examples in neural networks) across algorithms. In that sense I mean to 
include the black box algorithm as a variable in the set X, as a generalization G that 
applies to more black boxes will be a better generalization than one that applies to 
a single black box. This, incidentally, is also a reason why G(X) = b(X) is far from 
a perfect explanation of a black box algorithm aside from the abstractness of vari-
ables. In such a case G lacks the breadth that one of these informal explanations can 
have (which hopefully we can formalize at some point, when we better understand 
how neural networks behave). For though it may cover more of the output of b, it 
does not cover other black box algorithms. A generalization G′ that also applies to 
other black box algorithms will therefore quickly do better on the breadth measure 
and thus count as a better explanation of the functioning of (part of) b.

Secondly, then there is the question of accuracy. I will spend less time on this, as 
it is a familiar idea that more accurate generalizations are a better basis for explana-
tions, and it can simply be measured as prediction error made by G in the XAI case. 
The only change compared to e.g. Fong and Vedaldi (2017) is that strictly speaking 
more than one black box should be considered. That being said, one could use for 
example the mean square error with B the range of black boxes to consider and X  
the set of possible inputs (though there will be quite a few practical issues in doing 
so across algorithms):

The more accurate G is, and the more counterfactual cases it covers, the better an 
explanation based on G will be. As a reviewer pointed out, however, simply cover-
ing more algorithms might not always be a good thing: ideally the algorithms would 
be relevant for the model to be explained (e.g. variations of the same algorithms but 
with different training sets, or algorithms of the same type such as convolutional neu-
ral networks). Defining that relevance is a challenge I leave to further work. In the 
mean time, the earlier section showed that abstraction is one way to get to generality, 
though it has also been argued that abstraction is an explanatory virtue in its own 
right independent of whether it allows us to answer more what-if-things-had-been-
different questions (Weslake, 2010). The discussion so far has also left out argu-
ments for some other explanatory virtues (Hitchcock & Woodward, 2003; Ylikoski 
& Kuorikoski, 2010) such as cognitive salience and the idea that a more precise 
contrast (e.g. ‘red rather than blue’ v.s. ‘red rather than any other colour’) leads to 
better explanations. Such aspects may well be important, but are hard to define with-
out strong empirical backing. The idea, on the other hand, that the number of coun-
terfactual situations matters and that from this the relevance of abstraction, breadth 
and accuracy follows, is more clearly motivated by the manipulationist definition of 
explanation which holds that explanations answer what-if-things-had-been-different 
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questions. Though it is likely to be a tough challenge to design tools that yield excel-
lent explanations on this framework, I do hope that this definition and the considera-
tions around explanatory depth can help XAI by setting clearer goals than have so 
far been available.

4  Conclusions

What does it mean to explain the outcome of an algorithm? I have presented the 
manipulationist definition of explanation, and how it applies in the XAI context. 
The answer, briefly put, is that it means answering what-if-things-had-been-different 
questions and that one does so by giving a generalization G that covers the actual 
case and at least one counterfactual case. This ties together existing definitions that 
focussed on either only counterfactuals (e.g. algorithmic recourse) or only on rules 
without care for counterfactuals (Fong & Vedaldi, 2017). Furthermore, it leads to 
a natural definition of when one explanation is better than another: if more what-
if-things-had-been-different questions are answered, the explanation is better. This 
can be done by employing more abstract variables, using generalizations with more 
breadth (possible spanning more than one algorithm) and using more accurate gen-
eralizations. Still, it will likely be hard to do so in practice with the tools currently in 
place. So what can one practically do with the account presented here? A few of the 
more practical upshots of the definitions discussed here are:

• Present explanations in the contrastive format: XA rather than XC explains why yA 
rather than yC is the output of the algorithm.

• Include a generalization in the explanation, rather than just one or two counter-
factual cases (or, vice versa, a rule without a contrast case).

• When offering explanations, consider the abstractness of the variables in the 
explanandum X.

• Not only the accuracy of an explanation matters, but its breadth too; a single 
broader generalization might yield a better explanation than a large set of narrow 
generalizations. A smaller decision tree might be more explanatory than a larger, 
and somewhat more accurate, one.

These are only theoretical guidelines, of course, and empirical evaluation (e.g. in 
terms of how well users can predict the output of an algorithm, and subsequently 
if they manage to only act on the output if it is correct) such as in van der Waa 
et al. (2021) will be valuable. By designing explanations by hand the current defini-
tions can be verified, where at minimum they should improve the ability to predict 
algorithm output. In addition, that empirical work will likely spur the need for the 
explicit inclusion of pragmatic aspects of explanation, and of modelling the interac-
tion between the questioner and answerer. I haven’t included those elements here, to 
keep the focus on the underlying logic of explanation that (I’ve argued) remains the 
same despite the eventual inclusion of elements such as background knowledge and 
the dynamic setting in which XAI tools will operate. In short, there is plenty of work 
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left to do, but hopefully this theoretical framework makes it clearer what that work 
is.
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