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Abstract
The idea that “simplicity is a sign of truth”, and the related “Occam’s razor” princi-
ple, stating that, all other things being equal, simpler models should be preferred to 
more complex ones, have been long discussed in philosophy and science. We explore 
these ideas in the context of supervised machine learning, namely the branch of arti-
ficial intelligence that studies algorithms which balance simplicity and accuracy 
in order to effectively learn about the features of the underlying domain. Focusing 
on statistical learning theory, we show that situations exist for which a preference 
for simpler models (as modeled through the addition of a regularization term in the 
learning problem) provably slows down, instead of favoring, the supervised learn-
ing process. Our results shed new light on the relations between simplicity and truth 
approximation, which are briefly discussed in the context of both machine learning 
and the philosophy of science.
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1  Introduction

In many areas of science, a preference for simplicity is often defended as an 
important methodological principle. Simpler models and theories are not only 
more manageable from a cognitive and computational point of view, but are also 
perceived as more likely candidates for true or credible explanations in the rel-
evant domains. This latter idea—that “simplicity is a sign of truth” (simplex sig-
illum veri)—has a venerable history in both science and philosophy. It is often 
connected with another principle, usually known as Occam’s razor: that, all other 
things being equal, simpler theories, models, and explanations should be pre-
ferred over more complex ones. Clarifying these two intuitions, and their rela-
tionship, has however proven surprisingly difficult (Baker, 2016; Sober, 2015; 
Fitzpatrick, 2013).

Following Baker (2016), one can point to three main critical issues. First, an 
adequate definition of simplicity is needed, distinguishing, for instance, between 
“simple” as “elegant” (i.e., mathematically or syntactically simple), and “sim-
ple” as “parsimonious” (with reference to the number and complexity of enti-
ties and commitments assumed on the ontological or metaphysical level). Second, 
one needs to investigate how the defined notion of simplicity is effectively used 
by physicists, statisticians, economists, philosophers, and other scholars in their 
daily work. Third, one should provide a rational justification of the relevant sim-
plicity principles, showing that they are defensible on conceptual grounds and 
effective in their intended purpose. In short, understanding whether, and why, 
simplicity is actually evidence of the truth would require a treatment of many dif-
ferent issues on which the philosophical debate is not settled at all.

In this paper, we don’t aim at providing a full “theory of simplicity”. Instead, 
we take a more direct approach with a more modest aim, focusing on statistical 
learning theory, a formal framework in the field of machine learning which allows 
for a mathematically rigorous treatment of the principles of simplex sigillum veri 
and of Occam’s razor. The main aim of statistical learning theory is to investi-
gate properties of learning algorithms according to a statistical framework, deriv-
ing bounds on their performance (Bousquet et al., 2004). As we show, statistical 
learning theory provides interesting insights on the question whether simplicity 
is a road to the truth, and whether simpler models should be preferred to more 
complex ones in general. Perhaps not surprisingly, this question has not a simple 
answer in turn: it subtly depends on a couple of factors, among which the num-
ber of observations (training examples) used to find a relevant model in a given 
family of models—after a suitable training process (which allows, e.g., to prop-
erly determine values for the weights of an artificial neural network) – in the first 
place turns out to be particularly important in our analysis. Another important 
factor is a measure of complexity (known as the Vapnik–Chervonenkis dimen-
sion), which plays a crucial role in the analysis for evaluating the performance of 
families of “simple” and “complex” models.

We proceed as follows. In Sect.  2, we introduce the basic ideas of statistical 
learning theory and ask whether a preference for simpler models is always helpful 
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for approaching the truth in this framework. After answering this question in 
informal terms, in Sect. 3 we offer a detailed theoretical analysis of the problem 
and present the main results.1 In short, we show that, depending on the nature 
of the data-generating process (either “simple” or “complex”), one of the main 
tools used by statistical learning theory—namely, regularization—can either 
reduce or increase the minimal number of training examples necessary to guar-
antee that a model in the “correct” family of models—i.e., the one including the 
data-generating process as one of its elements—is selected with probability above 
any threshold smaller than 1, with respect to the case in which no regulariza-
tion is used. A discussion of the results obtained in the article appears in Sect. 4, 
whereas some concluding remarks are reported in Sect. 5; a technical appendix 
includes the proofs of the main results and discusses some further issues and pos-
sible extensions.

2 � Simplicity and Truth Approximation in Statistical Learning Theory

Supervised machine learning (SML henceforth) is the sub-field of artificial intel-
ligence studying algorithms that can automatically “learn from experience” using, as 
available information, labeled data sets. According to the seminal definition by Tom 
Mitchell, a “computer program is said to learn from experience E with respect to 
some class of tasks T  and performance measure P if its performance at tasks in T  , 
as measured by P , improves with experience E ” (Mitchell, 1997, p. 2). Experience E 
is usually constituted by a set of input/output data, colloquially a data set containing 
the observed realizations of an underlying, unobserved model of data generation. 
The class of tasks T  relates to the goal of the specific application of SML: e.g., to 
correctly classify or predict a labeled outcome. Finally, the performance measure P 
accounts for the ability of SML to accurately learn the underlying model and varies 
based on the task being tackled (i.e., predictive error minimization in regression, 
minimal misclassification rate, and so on).

More formally, given some sample set of data (the “training set”), an SML algo-
rithm learns a model—e.g., a function, or a determination of a vector of parameters 
over a given fixed structure – that should effectively apply also to new data sets, 
not used during the training (what is usually referred to as the ability of the learned 
model to generalize its predictions to new sets of data). In the case of regression 
tasks, the training set is a set of points associated with real-valued labels (perhaps 
representing some observations or measurements of some physical quantity: e.g., 
pressure and temperature of a gas); in this case, the SML algorithm “learns” a real-
valued function modeling the relationship between such points and their labels, and 
it is able (with high probability) to generalize this relationship to newly available 
data points outside the training set (the “testing set”). Another typical application 
of SML is classification, where an SML algorithm learns how to classify different 

1  Part of the theoretical analysis reported in Sect.  3 has been presented without proofs in 2020 at the 
Sixth International Conference on Machine Learning, Optimization, and Data Science (LOD 2020).



16	 F. J. Bargagli Stoffi et al.

1 3

kinds of inputs (e.g., pictures of animals) in different categories (e.g., genera or spe-
cies). SML has been successfully applied to a number of problems, such as com-
puter vision, speech recognition, e-mail filtering, predictive analytics in economics 
and business, precision medicine, and others.

In the last few decades, there has been a wide sophistication in approaching sim-
plicity through the lens of statistical theory (Fitzpatrick, 2013). The connections 
between the SML approach and more traditional discussions of inductive reason-
ing and human concept learning in philosophy and cognitive science have often 
been noted and partly investigated.2 In this connection, statistical learning theory 
(Vapnik, 2000), to which we now turn, provides an elegant mathematical framework 
for reasoning about important philosophical and methodological issues, including 
inductive reasoning, simplicity, and falsificationism (Harman and Kulkarni, 2007, 
2011; Corfield et al., 2009; Steel, 2009; Seldin and Schölkopf, 2013).

2.1 � Simplicity in Statistical Learning Theory

A basic problem in SML is specifying how to assess different models from a given 
family W (or different such families) and select the one which performs best given 
the intended purpose.3 In statistical learning theory (SLT henceforth), this issue is 
formulated in terms of a suitable optimization problem. Leaving the technical details 
for later (see Sect. 3), the basic ideas are the following.

One starts from a set of E examples used to train the family of models, in order 
to find the “best” such model according to a suitable optimality criterion, based on 
the available empirical data and hence directly computable.4 To this purpose, one 
assumes that a loss function L is defined, measuring the “distance” (read the error) 
between the prediction of the model and the actual value of each point. Then, the 
empirical risk Remp,E(�) of each model � in W is defined as the arithmetic average 
of the losses (as measured by L) over all E training examples, when the model w is 
used.

2  For philosophical discussions of machine learning see for instance Thagard (1990); Korb (2004); Wil-
liamson (2004); Niiniluoto (2005); Williamson (2009); Schubbach (2019, forthcoming); Watson and 
Floridi (2020, forthcoming); on philosophical issues emerging from the machine learning literature see 
Corfield et al. (2009); Corfield (2010); Balduzzi (2013); Landgrebe and Smith (2019, forthcoming); Lauc 
(2020); López-Rubio (2020); finally, we refer the reader to Harman and Kulkarni (2007,, 2011) for intro-
ductions at the interface between the two fields.
3  The choice of the specific family (or families) of models is often guided by some prior knowledge 
(when available) about the learning problem at hand. For instance, if one wants to learn from super-
vised examples a function that represents a mass density, then one can choose a family of non-negative 
functions; if the function to be learned is known to be smooth (based, e.g., on physical considerations), 
then one can choose a family of smooth functions. When no (or little) prior knowledge is available, one 
can choose and compare various “general-purpose” families of models: i.e., coming from larger families 
of functions satisfying properties such as the so-called “universal approximation property” (Cybenko, 
1989), which refers to the capability of a family to approximate any continuous function defined over a 
compact set of an Euclidean space with an arbitrarily small error in the maximum norm.
4  Here we make the distinction (which is common in SLT) between the training examples, which are 
used to choose the parameters of the model and the family of models itself, and the test examples, which 
are used to assess the generalization capability of the resulting “trained” model.
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Note that Remp,E(�) can be always calculated for any model w and set of exam-
ples. On the contrary, the so-called expected risk of the model can not be in general 
calculated, even if it can be easily defined as follows. For any model � in W, its 
expected risk, denoted Rexp(�) , quantifies how well the model behaves on average 
when its predictions are compared to “new” sample data: i.e., new test examples 
not already employed in the training phase. Accordingly, Rexp(�) is defined as the 
expected loss of the model �—i.e., as the expected value of L for �—with respect to 
the probability distribution P of the test examples, which in several SML problems 
(like the ones considered here) is assumed to be the same as the one used to generate 
the training examples.

The final goal of SML is minimizing the expected risk of models, i.e., to find 
the model which performs best in its ability to generalize from training to test data. 
This problem would be immediately solved if the distribution P were known, since 
then the expected risk of any model � could be calculated directly. However, in 
most problems of interest (and most real-world applications of SML) such distribu-
tion is typically unknown, or can not be explicitly described. As a consequence, the 
expected risk is also unknown and must be replaced by a suitable estimate. To this 
purpose, two strategies can be used.

The first, and the simplest one, is using the empirical risk of the model as a proxy 
of its expected risk. The Empirical Risk Minimization (ERM henceforth) principle 
(Vapnik, 2000, Sect. 1.5) amounts to choosing the model w with the lowest value of 
Remp,E(�) . For a final validation, in order to estimate the expected risk of the specific 
selected model � , one could then compute its empirical risk for a new set of test 
examples, different from the training set. One problem with the above ERM strategy, 
which is crucial in most applications of statistics and SML in general, is “overfit-
ting”. In a nutshell, the selected model is “overfitted” to some (training) data when 
its performance (measured, e.g., by its empirical risk) on those data is very good, 
but the performance on new data samples is poor. This means that the model is too 
sensitive to the specific data set used for the training, and it is unable to generalize 
well to “unknown” data (for instance future data). Using the ERM principle alone 
(i.e., without any control on the complexity of the family W of models considered), 
the risk of overfitting can be high, since the best performing model chosen by the 
algorithm on the training sample may be too sensitive to specific features of this 
sample which are however not too relevant for the intended learning problem. In 
this case, given a simplistic view of training data points as a mixture of “signal” and 
“noise”, the algorithm is learning too little signal and too much of the noise in the 
training data and is, in turn, reproducing that noise on unknown data, hence leading 
to scarce predictive performance. Overfitting is also closely related to model com-
plexity as the larger is the level of complexity, the higher is the risk that the model 
will overfit the data (Hastie et  al., 2009). A typical example is provided by ERM 
applied to a family of polynomials in one variable having degree smaller than or 
equal to a given positive integer D, and the square loss function is used to express 
the expected and empirical risks. Indeed, if their total number of parameters (i.e., 
the maximum degree D plus 1, which refers to the constant term) is larger than or 
equal to E and there are no training examples having the same input vector, then any 
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model in that family which is learned via the ERM principle has minimum empirical 
risk, equal to 0 (since any such model is able to interpolate the training data, by an 
application of Lagrange interpolation theorem, see Barbeau, 2004). However, this 
holds independently of the generalization capability of the learned model, which is 
instead expressed by its expected risk.

The second strategy, commonly used to address the overfitting issue and to provide 
better estimates of Rexp(�) than those given by plain ERM, goes under the name of 
“structural risk minimization” (SRM henceforth). The idea is that the system should 
minimize not just the empirical risk of the model � , but instead the sum of two 
terms, the first being Remp,E(�) itself, and the second a “regularization” term (which 
depends on one or more hyperparameters). Intuitively, “regularizing” a learning prob-
lem means making it easier, thus reducing its complexity and potentially mitigating 
the risk of overfitting. Note that there can be various reasons for introducing a regu-
larization term, for instance higher generalization ability (Hastie et al., 2009, Chap-
ter  7), easier implementation (López-Rubio, 2020), and even improved falsifiability 
in the sense of Popper (Corfield et al., 2009). More formally, the regularization term 
employed in SRM is a function of both the size E of the training set and of the so-
called Vapnik–Chervonenkis (VC) dimension h of the family of models (or, more pre-
cisely, of the associated loss functions, as detailed in Sect.  3). The reader unfamil-
iar with SLT is referred to Vapnik (2000, Chapter 3) for a precise definition of VC 
dimension for a family of real-valued functions. Loosely speaking, it is the maximum 
number h of points that can be classified in all possible 2h ways by using binary clas-
sifiers obtained by applying a threshold to the functions belonging to the family (each 
classifier corresponds to a specific choice for the function and the threshold). If this 
maximum does not exist, the VC dimension of the family is +∞ . Interestingly, the VC 
dimension can be interpreted as a measure of the complexity of each family of models 
(Vapnik, 2000, Chapter  3).5 In other words, using the VC dimension allows one to 
keep the absolute value of the difference between the expected and empirical risks 
“uniformly”—i.e., over the whole family of models – under control with high prob-
ability, as highlighted by the regularization term appearing in formulas (4) and (5) in 
Sect. 3 below.6 Since the regularization term depends on the family, SRM, as opposed 
to ERM, aims at minimizing a trade-off between the average loss on the training set 

5  It is worth mentioning that, in SLT, VC dimension is not the only measure of complexity of a family 
of models: another common such measure is the so-called Rademacher’s complexity (Shawe-Taylor and 
Cristianini, 2004) which, loosely speaking, can be interpreted as the capacity of the family to fit white 
noise (the smaller that capacity, the less complex the family).
6  It is worth commenting briefly on the reason why the VC theory is based on a measure of complexity 
associated with each family of models, instead of a measure of complexity associated with each single 
model (the reader is referred, e.g., to Mendelson (2003) for more technical details about the following 
issues). Indeed, it is well-known that “individual” measures of complexity—i.e, one for each function, 
without reference to the whole family to which it belongs—cannot be easily applied simultaneously to 
all the elements of a family of models (as this is needed if one wants to replace, e.g., the minimization 
of the expected risk over that family with the one of the empirical risk). This occurs, e.g., when one 
tries to apply the so-called Hoeffding’s bound ( which refers to one function) simultaneously to all the 
elements of a family of functions with infinite cardinality, by exploiting the so-called union bound tech-
nique. In this case, indeed, an infinite—hence, useless—uniform upper bound on the distance between 
the expected and empirical risk is typically obtained. In the case of families of functions with finite cardi-
nality, instead, such an extension typically provides too loose bounds.
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achieved by a model and the complexity of the family to which it belongs (or, which 
is the same, at maximizing a trade-off between accuracy and simplicity). In this way, 
several families of models can be easily compared, each one with its own regulariza-
tion term. It is worth noticing that SRM effectively reduces to ERM for what con-
cerns the choice of a model with the smallest average loss inside each family, since the 
regularization term is constant over each single family. However, distinct families have 
typically different regularization terms. Finally, it is the combination of the two terms 
(the average loss and the complexity of the family of models) that allows one to keep 
under control the generalization capability of the model finally selected by SRM.

As we shall see in the following, the SLT framework in general, and the principle 
of structural risk minimization in particular, allow us to discuss interesting issues sur-
rounding both the use of Occam’s razor and the idea of simplicity as evidence of truth.

2.2 � Simplicity and Truth Approximation in Statistical Learning Theory

In general, one can say that structural risk minimization, as opposed to plain empiri-
cal risk minimization, is a mathematical expression of a preference for simpler over 
more complex models and, in turn, of the principle underlying Occam’s razor (Duda 
et al., 2000; Domingos, 1999). In fact, if two models have the same empirical risk—
i.e., they perform equally well with respect to the training set—the one with the 
smaller regularization term (or equivalently, the one with the smaller VC dimension 
of the associated family)—i.e., the simpler one – will be chosen under SRM. Thus, 
“all other things being equal”, simpler models are preferred to more complex ones. 
In this connection, three points are worth noting here.

First, one should note that Occam’s razor is often interpreted, following its tra-
ditional formulations, as a principle of ontological parsimony, according to which 
“entities should not be multiplied beyond necessity” (Sober, 2015, Chapter 5). In the 
present, SRM-based framework, this idea can be recovered by noting that a simple 
(vs. complex) family of models may be interpreted as a family having a small (vs.   
large) number of parameters (although this is not always the case, as the framework 
investigated here is more general). In this sense, in several common cases, the VC 
dimension of a family can be construed as a measure of complexity in terms of the 
number of parameters involved in its models, where each parameter is associated 
with a specific input variable (and each of the latter variables may be interpreted 
as an “entity”): for instance, it is well-known that the VC dimension of a family 
of linear models is simply equal to the number of its parameters (Vapnik, 2000), 
hence, to the number of its input variables. It is worth remarking that the case of 
linear models is quite general, since several families of nonlinear models (e.g., fami-
lies of polynomial models) can be reduced to families of linear ones, by including 
additional input variables, derived nonlinearly from the original input variables. For 
instance, the polynomial model a + bx + cx2 can be also written as the linear model 
ax0 + bx1 + cx2 , where x0 ∶= 1 , x1 ∶= x , and x2 ∶= x2.

Second, the ceteris paribus clause of the SRM version of Occam’s razor is hardly 
met in practice, since it is virtually impossible that two particular models selected 
for the comparison (e.g., the two models which minimize the empirical risk on 
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two different families of models) have exactly the same empirical risk. Thus, SRM 
embodies a more liberal Occam’s razor, where the regularization term quantifies to 
which extent the simpler model has still to be preferred over the complex model, even 
when “not all” other things are equal—i.e., when their empirical risks are (either 
much or even slightly) different. This situation is commonly encountered in practice. 
In this sense, SRM provides a precise and flexible reconstruction of Occam’s razor, 
allowing to balance in a suitable way the simplicity and the predictive accuracy of a 
model against each other. Thanks to its solid statistical foundation represented by the 
VC theory, and in particular, by the so-called VC bound (Vapnik, 2000), SRM pro-
vides a principled way for the researcher to weigh predictive accuracy and simplicity 
(see Sect. 3 for technical details), at the cost of leaving to the researcher’s choice only 
the values to be assigned to a (small) number of tunable (hyper)parameters. Although 
the choice of the values for these parameters is clearly subject to pragmatic consider-
ations, the parameters themselves (e.g., the confidence parameter � ) have, in any case, 
a quite precise meaning, which is not left to the discretion of the researcher.

Third, and more interesting for our purposes, one may ask whether SRM favors 
simplicity and truth approximation at the same time, in the sense of selecting mod-
els which are both simpler and closer to the “true nature” of the generating pro-
cess (assuming there is one) underlying the data distribution. If this were the case in 
general, the simplex sigillum veri intuition would be vindicated. As we show, how-
ever, the situation is both more interesting and intricate than this. Before proceeding, 
however, we first need to clarify how SLT in its various forms (i.e., under the ERM 
or SRM principles) addresses the problem of truth approximation; in other words, 
what is meant by “the true model” in typical applications and what approximating 
it amounts to in SLT. In this paper, the “true model” will be defined in a proba-
bilistic sense, i.e., as the model that minimizes the expected risk within the union 
of the families of models considered (assuming existence and uniqueness of such 
minimizer, which are both mild conditions according to the results of the analysis 
reported in the technical Appendix 1). In other words, the true model is construed 
as the best model that could be obtained in principle (i.e., if the data-generating 
probability distribution were known) from all the given families of models, using 
the available input variables. In this connection, two points are worth mentioning. 
First, the minimum expected risk does not need to be equal to zero in general. A 
zero expected risk may be obtained by including in the set of input variables all the 
variables on which the output variable actually depends. In practice, not all these 
inputs are always available. So, they are usually treated as noise in the statistics 
and machine learning literature—i.e., linear regression via ordinary least squares. 
This justifies defining the true model as the best model that can be obtained from 
the union of the families of models considered, based only on the available input 
variables, and treating any other unmeasured variable as noise.7 Second, in case of 

7  In a sense, one can think as if the data-generation process produces a “signal”, to which “noise” is 
overlapped, either linearly or nonlinearly. Such noise can be thought as associated to variables that have 
not been included in the model of the data-generation process, so they are not available to the learning 
machine. These variables could be either possibly relevant variables that have not been measured indi-
vidually, or “disturbances”. At this point, two alternative approaches are possible. First, one can simply 
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multiple models minimizing the expected risk, the true model would be undeter-
mined. However, the minimum expected risk would be still unique and the analysis 
still focused on finding the minimum expected risk (exactly or approximately).

Accordingly, truth approximation in SLT is construed here as getting as close as 
possible to the true model, i.e., to get as close as possible to the minimum expected 
risk in generalizing from training to test data. Since, as said above, the expected 
risk cannot be typically computed exactly given a finite amount of data, the truth 
approximation problem translates into one of minimizing a probabilistic upper 
bound on the expected risk (a bound which is family-dependent in the case of SRM, 
as we shall see). This means that, even if it will be typically extremely hard to find 
exactly the true model, one can still come “close to the truth” in probabilistic terms. 
More precisely, as we show below, SLT allows one both: 1) to find a model with an 
expected risk not so distant from the one of the true model; 2) to precisely quantify 
such distance from the truth, which is something that really differentiates SLT from 
other approaches used in statistics. How closely one can approach the truth via SLT 
depends on the sample size and on suitable measures of complexity of the family (or 
families) of models considered (we come back to this issue in Sect. 4).

With the above understanding of what the true model and truth approximation 
amount to in SLT, we can now turn to our central question—“is simplicity a road to 
the truth?”.

2.3 � Simple Models in Complex Worlds

To rigorously investigate the above issue, we frame it, in simplified terms, as fol-
lows. First, we assume that the relevant distribution of data may be generated by two 
different kinds of process, “simple” and “complex”. To fix ideas, one may think of 
a linear vs. a non-linear function generating points on a diagram: the former would 
count as a simple process, the latter as a complex one. Second, we consider two 
families of models, the “simple” and the “complex” ones. Again, one may think in 
terms of linear and non-linear functions, now representing the models to be fitted to 
the distributions generated by the relevant processes.8

8  The distinction made by SLT is however subtler than this, since “simple” and “complex” models could 
both be linear models, but with different dimensions of the basis of the vector space; moreover, one fam-
ily of non-linear models could be less complex than a second family of linear models with large dimen-
sion of such basis. In all these cases, the measure of complexity of each family of models is provided, 
e.g., by its associated VC dimension.

define the true model as the signal only. Second, one could define the true model as the union of the 
signal and the noise, thus providing a complete description of the whole process, which includes every 
relevant (either omitted or non-omitted) variable. In this interpretation, the signal would represent “one 
part of the truth”, and the noise the “other part of the truth”, which cannot be modeled in detail by the 
machine since it has no individual access to the variables associated to it. In this paper, we follow the 
first approach, which strikes us as more natural, because in any practical application, this is the most 
interesting/useful part of the true model according to the second alternative definition; however, the sec-
ond, alternative approach raises some interesting philosophical issues, whose exploration we leave for 
future research.

Footnote 7 (continued)
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Finally, we compare two possible situations, where, intuitively, simple and com-
plex models are fitted to both simple and complex “worlds”. The two scenarios are 
as follows: 

A.	 In the “simple world” scenario, the real-valued labels of the sets of training exam-
ples are generated by a simple data generating process,9 to which a small amount 
of noise is added, to avoid the possibility that the “correct” family of models 
(that from which the label-generating model comes) is trivially, and immediately, 
identified by the algorithm. Then, two different families of models are fitted to the 
training data, using principles from SLT. The first one includes simple models, 
whereas the other one includes complex models. Finally, the best of such models 
(again, according to SLT) is selected automatically.

B.	 In the “complex world” scenario, the same happens but the labels of the sets of 
training and test examples are generated by a complex process in the first place.

Ideally, the learning algorithm should select a model corresponding to the “true 
nature” of the data generating process in both worlds: i.e., a simple model in case A, 
and a complex one in case B. However, we know that, if the selection is guided by 
SRM, the algorithm will favor simpler models over more complex ones, due to the 
introduction of the regularization term, depending in turn on the VC dimensions of 
the respective families.

We can now state our main question as follows: does regularization always favor 
learning; or: is a preference for simpler over complex models, as embodied in SRM, 
functional for approximating the truth about the world? Interestingly, the answer 
depends on both the kind of scenario we deal with (A vs. B) and, crucially, on the 
number E of training examples used to assess the models. To anticipate the results 
from the theoretical analysis in the next Sect. 3, we obtain the following: 

1.	 If the number of training examples is sufficiently large, in both cases A and B a 
model in the “correct” family (i.e., the one from which the data set is generated) 
is selected with probability above any threshold smaller than 1, independently of 
whether regularization is used or not (i.e., both under ERM and SRM).

2.	 In case A (simple world scenario), regularization improves learning even if the 
number of training examples is relatively small; in other words, regularization 

9  Although test examples are not used in the present analysis, what is stated above holds in principle also 
for the set of such examples, in the common case in which they are assumed to be generated by the same 
distribution as the training examples. This depends on the fact that, in machine learning, test examples 
are used to produce an empirical estimate of the expected risk of the learned model, which is less prone 
to overfitting than the one obtained from the training set, since the test examples have not been used to 
select that specific model.
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reduces the minimal number of training examples necessary to guarantee that a 
model in the correct (i.e., simple) family is selected with probability above any 
threshold smaller than 1, with respect to the case in which no regularization is 
used (i.e., when only empirical risk is minimized).

3.	 In case B (complex world scenario), regularization hampers learning if the num-
ber of training examples is relatively small: in this case, models in the simple (i.e., 
incorrect) family tend to be selected even if the world is complex.

The above results are in line with our intuitions concerning the role of simplicity 
in approaching a “truth” that can be simple or complex in the sense defined. More 
interesting questions arise if we move from a qualitative to a quantitative analysis. 
In particular, we may ask: Assuming that the truth is not simple, how many more 
training examples are needed to identify, with a given probabilistic confidence, a 
model in the correct family (if not the “true” model itself, which is clearly a more 
difficult learning task), when one moves from ERM to SRM? Conversely, we also 
ask: Assuming that the truth is instead simple, how many more training examples 
are needed to identify, with a given probabilistic confidence, a model in the cor-
rect family, when one uses ERM instead of SRM? To the best of our knowledge, 
the above questions have not been addressed before. Here, we answer both of them, 
showing how one can precisely quantify the loss in performance (translating here 
into a larger upper bound on the expected risk) one incurs when SRM is applied 
under the assumption that the truth is not simple.

In sum, we conclude that the principle of Occam’s razor, at least as expressed 
by the introduction of regularization in SRM, can both favor and hamper learning 
and hence convergence towards the truth. On the one hand, if “the world” is sim-
ple, the SRM “regularization razor” helps in reducing the amount of information (as 
expressed by the number of training examples) needed to guarantee that a model is 
chosen (with probability larger than the given threshold), that correctly represents 
the underlying generating process. On the other hand, if “the world” is complex, a 
large amount of information is needed to guarantee the above convergence; other-
wise, if the size of the set of observations (training examples) is “small”, the razor 
can favor the selection of simple, but incorrect, models. In this sense, simplicity is 
not necessarily “a road to the truth”, even if one could still prefer simpler models for 
many reasons, like easier implementation, higher computational scalability and so 
on.

In addition, the theoretical analysis in the following Sect. 3 has a couple of inter-
esting implications for the analysis of simplicity and truth approximation within 
SML and statistics in general. First, we show how one can rigorously talk about “the 
true model” and “approximation to the truth” in such contexts, where these notions 
can be usefully defined. Second, we quantify, under suitable assumptions, the mini-
mal number of training examples needed to achieve a given confidence on the prob-
ability of finding the correct family of models by using ERM and SRM, and the 
behavior of this truth approximation strategy in the two cases in which the truth is, 
respectively, “simple” or “complex”. Third, we show how SRM is more appropriate 
than other statistical methods used to prevent overfitting—such as the Akaike Infor-
mation Criterion (see Burnham and Anderson, 2002)—at least as far as one central 
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issue is concerned: i.e., quantifying the minimal sample size required to meet certain 
requirements on the performance of the learned model. In Sect. 4, we shall further 
discuss these and related issues.

3 � Theoretical Analysis

The analysis is based on the well-known Vapnik–Chervonenkis (VC) two-sided 
upper bound (also called VC bound) on the difference between expected risk and 
empirical risk (the latter based on a training set of size E), see Vapnik (2000, 
Sect. 3.7). Two families of models, S (“simple”) and C (“complex”) are considered, 
each parametrized by a vector ( �S for S, �C for C, which vary respectively in two 
sets WS and WC ), with possibly different dimension for each family. The expected 
and empirical risks of the various models are denoted, respectively, by Rexp

S
(�S) and 

R
emp,E

S
(�S) for the models in S, and by Rexp

C
(�C) and Remp,E

C
(�C) for the models in C. 

All these risks are computed using, respectively, bounded loss functions LS(⋅,�S) 
and LC(⋅,�C) , which have the same interval [A, B] (where A,B ∈ ℝ , with A < B ) as 
codomain. Such functions are parametrized, respectively, by the vectors �S and �C . 
In more details, for a given �S ∈ WS , the expected risk of the loss function LS(⋅,�S) 
is its expectation when its first argument (say, � = (�, y) ∈ Z = X × Y  ) is modeled as 
a random vector with probability distribution P:

In the above, � ∈ X represents an input vector, whereas y ∈ Y  is a scalar output, 
which one would like to model approximately as a function of � (using a suitably-
selected model from one of two families). In the SLT framework, the probability dis-
tribution P of � is typically modeled as unknown. In such situation, the expected risk 
cannot be computed. However, it can be approximated by its empirical risk (which, 
instead, can be evaluated). Given a finite number E of so-called training examples 
�e ∈ Z (for e = 1,… ,E ), the empirical risk of LS(⋅,�S) is the arithmetic average of 
the losses LS(�e,�S) incurred over such training examples, i.e., one has

Similar definitions hold for the case of �C ∈ WC . In this work, the same (unknown) 
probability distribution P for � is assumed for the expected risks of all the models. 
To enforce the boundedness of the loss functions LS(⋅,�S) and LC(⋅,�C) for cases 
of practical interest (e.g., the square loss, see later), the only assumption made on 
the probability distribution P is that it has a given compact support (which excludes 
from the analysis, e.g., the Gaussian probability distribution, but does not exclude a 
“truncated” Gaussian probability distribution). Moreover, for a fair comparison, the 
two loss functions LS(⋅,�S) and LC(⋅,�C) are assumed to have the same functional 
form (e.g., they are both square losses).

(1)R
exp

S
(�S) ∶= ∫Z

LS(�,�S) dP(�) .

(2)R
emp,E

S
(�S) ∶=

1

E

E∑

e=1

LS(�e,�S) .
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Once a model in one of the two families has been selected (according to a suita-
ble criterion, as discussed later), its expected risk can be approximated by its empiri-
cal risk computed on a different set of test examples. For fairness purposes, this test 
set has to be different from the training set (and in principle, its number of elements 
could be even larger than the number E used to evaluate the empirical risk on the 
training set, in order to have a better approximation of the expected risk).

In the following, we consider the case in which the loss functions LS(�,�S) 
and LC(�,�C) represent regression. Focusing, e.g., on the case of the models 
in S, this means that each such model (hence, each choice for �S ) is also associ-
ated with an input-output relationship fS(�,�S) from X to Y, and the loss func-
tion LS(�,�S) has actually the form LS(y, fS(�,�S)) . Examples are provided 
by the quadratic loss LS(y, fS(�,�S)) =

(
y − fS(�,�S)

)2 and the absolute loss 
LS(y, fS(�,�S)) =

||y − fS(�,�S)
|| . To avoid burdening the notation, from now on the 

function fS(�,�S) is assumed to be embedded into the expression LS(�,�S) . A simi-
lar remark holds for the case of the models in C.

Let both the training and test output data be generated according to a particu-
lar model in S or in C,10 with the output perturbed by 0-mean independent additive 
noise �,11 having small variance �2 . For instance, in case the particular model is in 
the family S and is characterized by a specific value �S for the parameter vector, this 
means that 

(a)	 � is generated according to the associated marginal distribution of P;
(b)	 y = f (�,�S) + � , where f (�,�S) is, again, the input-output relationship modeled 

by �S.

Let also

supposing, without significant loss of generality, that such minima exist and are 
uniquely achieved (see the technical Appendix 1 for a discussion about this issue). 
Of course, � is in general unknown, but in the following analysis we suppose that 
its modulus |�| (but not its sign) is provided to the learning machine, e.g., by an 
oracle. The availability of an oracle is often assumed in the literature on theoreti-
cal machine learning (see, e.g., Shalev-Shwartz and Ben-David, 2014; Shi and Iyen-
garand, 2020 for some examples), in order to prove bounds on the performance of 

(3)� ∶= min
�C∈WC

R
exp

C
(�C) − min

�S∈WS

R
exp

S
(�S) ,

10  This assumption is made to simplify the analysis, since it allows to focus the comparison between 
only two families of models, characterized by two different VC dimensions. However, the analysis of this 
section is expected to extend easily to the more realistic case in which the data-generating model belongs 
to one among a larger number of families with different VC dimensions, and, among other assumptions, 
one does not know a-priori the specific family to which it belongs.
11  Without this additive noise, one would have always a 0 minimum empirical risk in the correct family 
of models, which would make its detection trivial, in case the minimum empirical risk on the other fam-
ily were larger than 0. One can also observe that this assumption translates into partial information about 
the probability distribution P of � , however, without completely specifying it.
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learning machines. Even though such an assumption may be unrealistic in some 
cases, the bounds obtained are often useful to understand the theoretical limitations/
capabilities of learning. The reader is referred to the end of this section for a discus-
sion about which parts of the following analysis do not depend on the availability of 
an oracle to the learning machine, and how that assumption can be relaxed.

Moreover, we assume that the two families of models are non-nested. This means 
essentially that S is not strictly contained in C, since the opposite case, where C 
is strictly contained in S, cannot hold given that S and C refer, respectively, to the 
“simple” and “complex” family of models. Finally, we assume that � ≠ 0 holds; this 
is a technical assumption needed in order to guarantee that the inequalities (14), (15) 
and (16) reported later in this section hold. Note that, if � = 0 , the minimizers of 
the expected risk over the two families achieve the same expected risk and, due to 
the non-nestedness assumption, such minimizers are guaranteed to be different. If 
instead � ≠ 0 , as we assume here, one can have either that the best model in S is bet-
ter than the best model in C (if 𝛥 > 0 ), or that the best model in C is better than the 
best model in S (if 𝛥 < 0).12

The following theorem follows directly from the classical VC bound from the 
VC theory (Vapnik, 2000, Sect. 3.7), applied separately to the two families of func-
tions. For a proof of the VC bound, the reader is referred to Vapnik (1998). The 
theorem is formulated here in terms of the Vapnik–Chervonenkis (VC) dimensions 
of the two sets of loss functions {LS(⋅,�S),�S ∈ WS} and {LC(⋅,�C),�C ∈ WC} . It 
is worth noting that, for most regression problems of practical interest, these are 
approximately equal to the VC dimensions of the respective families of functions 
{fS(⋅,�S),�S ∈ WS} and {fC(⋅,�C),�C ∈ WC},13 see Cherkassky and Mulier (2007, 
Sect. 4.2.1).14

Theorem 3.1  Let hS and hC be the VC dimensions, respectively, of the two sets of 
loss functions {LS(⋅,�S),�S ∈ WS} and {LC(⋅,�C),�C ∈ WC} , with hS < hC (being, 
indeed, the models in S simpler than those in C), and let the size of the training set be 
E > hC > hS . Finally, let the confidence parameter � ∈ (0, 1) be given. Then, the two 
following bounds hold with corresponding probabilities pS ≥ 1 −

�

2
 and pC ≥ 1 −

�

2
 

with respect to the generation of a training set whose examples are drawn indepen-
dently from the same probability distribution (i.e., they are independent and identi-
cally distributed):

12  Since, as better detailed later, the goal of the successive analysis is to investigate the probability that a 
model belonging to the family associated with the smallest of the two respective minimum expected risks 
is selected by applying, respectively, the ERM/SRM principle, the non-nestedness assumption is essen-
tial for that analysis. Indeed, without such an assumption, one could simply restrict the attention to mod-
els belonging to the “complex” family C. Moreover, the case 𝛥 > 0 considered in the successive analysis 
can occur only if the two families are non nested.
13  Examples of computations of VC dimensions of families of (either loss or non-loss) functions are pro-
vided in Vapnik (2000).
14  For this reason, in some parts of the article the term “VC dimension of a family of functions” is used 
for simplicity as a shortcut for “VC dimension of the family of loss functions associated (via function 
composition with a given loss) to another family of functions.”
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where �(h,E, �) ∶= (B − A)

√
h ln

2eE

h
−ln

�

8

E
 is the regularization term, and h can be 

either hS or hC.

By Theorem 3.1, it follows that, with probability pS ≥ 1 − �S , the infimum of 
the empirical risk Remp,E

S
(�S) over �S ∈ WS differs at most by �(hC,E, �) from the 

infimum of the expected risk Rexp

S
(�S) over �S ∈ WS . Similarly, with probability 

pC ≥ 1 − �C , the infimum of the empirical risk Remp,E

C
(�C) over �C ∈ WC differs at 

most by �(hC,E, �) from the infimum of the expected risk Rexp

C
(�C) over �C ∈ WC . 

Finally, it follows from Theorem 3.1 that, under its assumptions, both bounds (4) 
and (5) hold simultaneously with probability p ≥ 1 − � . Indeed, by applying the 
so-called union bound technique (Mendelson, 2003), the probability that none of 
them holds is smaller than �

2
+

�

2
= �.

The following corollary to Theorem 3.1 is obtained by reversing the roles of 
the confidence parameter and of the regularization term (this is another standard 
way of expressing SLT bounds in the literature).

Corollary 3.1  Let hS and hC be the VC dimensions, respectively, of the two sets of 
loss functions {LS(⋅,�S),�S ∈ WS} and {LC(⋅,�C),�C ∈ WC} , with hS < hC , and 
let the size of the training set be E > hC > hS . Finally, let the regularization term 
𝜀 > 0 be given. Then, the two following bounds hold with corresponding probabili-
ties pS ≥ 1 −

�(hS ,E,�)

2
 and pC ≥ 1 −

�(hC ,E,�)

2
 with respect to the i.i.d. generation of the 

training set:

where �(h,E, �) ∶= min
(
8 exp

(
−

E

(B−A)2
�2 + h ln

2eE

h

)
, 1
)
 is the confidence 

parameter.

Corollary 3.1 implies that, for each family, the infimum of the empirical risk 
over the family converges in probability to the infimum of the expected risk over 
the same family. Indeed, for each 𝜀 > 0 , both �(hC,E, �) and �(hS,E, �) tend to 0 
as the sample size E tends to +∞ . This is essentially due to the functional form of 
the regularization term in Theorem 3.1.

(4)sup
�S∈WS

|Rexp

S
(�S) − R

emp,E

S
(�S)| ≤ �(hS,E, �) ,

(5)sup
�C∈WC

|Rexp

C
(�C) − R

emp,E

C
(�C)| ≤ �(hC,E, �) ,

(6)sup
�S∈WS

|Rexp

S
(�S) − R

emp,E

S
(�S)| ≤ � ,

(7)sup
�C∈WC

|Rexp

C
(�C) − R

emp,E

C
(�C)| ≤ � .
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According to the Empirical Risk Minimization (ERM) principle (Vapnik, 2000, 
Sect. 1.5), one selects, for each family, the model that minimizes the empirical risk 
on that family, i.e., the one associated, respectively, with the parameter choice

and

Again, without significant loss of generality, we assume that these minimizers exist 
and are unique (see the technical Appendix 1 for a discussion about this issue; rela-
tionships among minimizers of the empirical risks and minimizers of the expected 
risks are discussed in the technical Appendix 2). Finally, of these two parameters �̂S 
and �̂C , the one achieving the smallest between the empirical risks

and

is chosen. If the Structural Risk Minimization (SRM) principle (Vapnik, 2000, 
Sect. 4.1) is chosen, instead, then, of the two parameters, the one associated with the 
smallest between the regularized empirical risks

and

is chosen. For simplicity, the case of ties is not considered in the follow-
ing analysis. It is worth examining how SRM relates to Occam’s razor. In the 
case of identical empirical risks for the simple and complex models (i.e., when 
R
emp,E

S
(�̂S) = R

emp,E

C
(�̂C) ), according to SRM, the simplest one is preferred, because 

its regularization term �(hS,E, �) is smaller than the one �(hC,E, �) for the more 
complex model.

This corresponds to the classical Occam’s razor version according to which other 
things being equal, simpler models are better than more complex ones. However, 
having two models with exactly the same empirical risk is quite unlikely to occur in 
practice. When the two empirical risks are different, the regularization term quanti-
fies to which extent the simpler model has still to be preferred over the complex 
model, i.e., the maximum difference in the empirical risks for which this preference 
can be expressed. Thus, SRM embodies an interesting, more sophisticated recon-
struction of intuition underlying the classical version of Occam’s razor.

Using (4) and (5), one obtains the following results.

(8)�̂S ∶= argmin
�S∈WS

R
emp,E

S
(�S)

(9)�̂C ∶= argmin
�C∈WC

R
emp,E

C
(�C) .

(10)R
emp,E

S
(�̂S)

(11)R
emp,E

C
(�̂C)

(12)R
emp,E

S
(�̂S) + 𝜀(hS,E, 𝛿)

(13)R
emp,E

C
(�̂C) + 𝜀(hC,E, 𝛿)
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Theorem  3.2  Let the assumptions of Theorem  3.1 hold. If the ERM principle is 
applied, then a model in the “correct” family – i.e., one coming from the same family 
from which the training/test output data are generated, even though it may not coin-
cide with the best such model in terms of the expected risk – is selected with prob-
ability p ≥ 1 − � with respect to the i.i.d. generation of the training set if15 

Theorem  3.3  Let the assumptions of Theorem  3.1 hold. If the SRM principle is 
applied, then one can distinguish two cases: 

1.	 Let 𝛥 > 0 . In this case, a model in the correct family (S) is selected with prob-
ability p ≥ 1 − � with respect to the i.i.d. generation of the training set if

2.	 Let 𝛥 < 0 . In this case, if the SRM principle is applied, then a model in the correct 
family (C) is selected with probability p ≥ 1 − � with respect to the i.i.d. genera-
tion of the training set if

The proofs of Theorems 3.2 and 3.3 simply require the derivation of the condi-
tions (14), (15), and (16) above, which is reported in the technical Appendix 1.3. It is 
worth noting that, since the condition � ≠ 0 has been assumed, all the bounds (14), 
(15), and (16) are guaranteed to hold if E is large enough. Since, for E > hC > hS , 
one has

one can also conclude the following regarding our two main scenarios. 

A.	 In the “simple world” scenario, the regularization term �(h,E, �) (for h = hS, hC ) 
is beneficial for learning. Indeed, the minimal size of the training set for which 
condition (15) holds is smaller than or equal to the minimal size of the training 
set for which condition (14) holds. It is worth recalling here that condition (15) 
is associated to the selection by the SRM principle of a model in the correct 
“simple” family, whereas condition (14) is associated to the selection by the ERM 
principle of a model in same correct family.

B.	 In the “complex world” scenario, no regularization has a better performance 
guarantee, in the sense that the minimal size of the training set for which condi-

(14)𝜀(hS,E, 𝛿) + 𝜀(hC,E, 𝛿) < |𝛥| .

(15)𝜀(hS,E, 𝛿) + 𝜀(hC,E, 𝛿) + 𝜀(hS,E, 𝛿) − 𝜀(hC,E, 𝛿) = 2𝜀(hS,E, 𝛿) < |𝛥| .

(16)𝜀(hS,E, 𝛿) + 𝜀(hC,E, 𝛿) + 𝜀(hC,E, 𝛿) − 𝜀(hS,E, 𝛿) = 2𝜀(hC,E, 𝛿) < |𝛥| .

(17)2𝜀(hS,E, 𝛿) < 𝜀(hS,E, 𝛿) + 𝜀(hC,E, 𝛿) < 2𝜀(hC,E, 𝛿) ,

15  Here and for (15) and (16), the weak inequality p ≥ 1 − � can be replaced by the strict inequality 
p > 1 − 𝛿 . The former inequality has been preferred to keep the notation uniform in the paper. Instead, 
the strict inequality in conditions (14), (15), and (16) is needed to avoid ties, thus guaranteeing the selec-
tion of the correct family of models (see the technical Appendix 1.3 for a derivation of such conditions).
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tion (16) - which is associated to the selection by the SRM principle of a model 
in the correct “complex” family - holds is larger than or equal to the minimal size 
of the training set for which condition (14) holds.

We conclude this section by discussing the assumption made previously about the 
knowledge of |�| by the learning machine, e.g., via an oracle. This assumption has 
been included in the analysis because it allows the machine to decide autonomously 
“when to stop collecting training examples” (i.e., the machine can choose autono-
mously the minimal sample size under which the probability of finding the correct 
family is above a given threshold). In practice, |�| can be hardly known exactly, and 
this limits the applicability of the results of the previous analysis. Nevertheless, the 
assumption itself can be relaxed, without changing significantly the results obtained: 
e.g., one can replace |�| in (14), (15), (16) with a lower bound on it (also in this case, 
the learning machine would be able to decide autonomously when to stop collecting 
examples in order to achieve a similar desired probabilistic guarantee on the selec-
tion of the correct family, expressed in terms of that bound). The availability of such 
a lower bound to the learning machine is surely a milder assumption than the exact 
knowledge of |�| (although one may wonder in this case, too, under which circum-
stances this assumption is satisfied in a specific practical application). Nevertheless, 
it is worth mentioning that, even in the case in which neither |�| nor a lower bound 
on it were known to the learning machine, the left-hand sides of the inequalities 
(14), (15), (16) are known to it.16 Hence, for every possible “guess” of |�| ≠ 0 by the 
learning machine, the latter is able to compute the minimal sample size under which 
each of these inequalities hold, and to compare the resulting minimal sample sizes 
for the various cases. Interestingly, the conclusions of the analysis of the two main 
scenarios, which have been reported above, do not depend on the specific value of 
the guess of |�| : e.g., in the “simple world” scenario, the minimal size of the training 
set for which condition (15) holds is smaller than or equal to the minimal size of the 
training set for which condition (14) holds, independently on the specific value of 
the guess of |�|.

4 � Discussion

Occam’s razor expresses the idea that, in the study of natural and social phenomena, 
simpler theories, models, and explanations should be preferred over more complex 
ones, other things being equal. The intuition behind this principle is sometimes justi-
fied in terms of truth approximation: simpler theories are more likely true than more 
complex competitors. An analysis of these ideas raises notoriously intricate issues, 
which have been traditionally discussed in the philosophical literature (Baker, 2016; 
Sober, 2015; Swinburne, 1997). A more liberal version of Occam’s razor is also 

16  This holds when the VC dimensions of the two families are known/easy to compute. Otherwise, again, 
suitable bounds could be used to replace the VC dimensions, without changing significantly the follow-
ing conclusions.
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needed when “not all” other things are equal, and one has still to perform model 
selection.

Interestingly, many of these issues critically resurface in many fields, including 
statistics and artificial intelligence, especially in the context of model selection, 
where the problems of overfitting and generalizability are critical. Here, we focused 
on statistical learning theory, a mathematical framework which studies the optimal-
ity of model selection for various problems in machine learning, including the field 
of supervised machine learning. Recent contributions highlighted interesting con-
nections between SLT and earlier proposals in the philosophy of science, includ-
ing Popper’s characterization of simplicity in terms of falsifiability (Corfield et al., 
2009) and theories of inductive reasoning (Harman and Kulkarni, 2007, 2011).

This paper contributes to this line of research by focusing on the following ques-
tion: under which conditions does Occam’s razor favor truth approximation con-
strued as the selection of a model from the “right” family—i.e., the one correspond-
ing to the “true” data generating process? Or, stated a bit more technically, under 
which conditions does a preference for simpler models as construed in SRM by add-
ing a regularization term to the optimization problem favor truth approximation con-
strued as the selection of a model from the family corresponding to the “true” data 
generating process? We provided an answer to this question with a theoretical analy-
sis of how (families of) “simple” and “complex” models perform when learning is 
formalized based either on the ERM or on the SRM principle.

The main upshot is that, while the preference for simplicity may indeed favor 
truth approximation, in some cases it may also slow down the learning process, in 
the sense that, as compared to ERM, SRM may increase the minimal sample size 
needed to find a model in the correct class with a desired probabilistic guarantee 
(although no computational complexity analysis is performed here; see Sect. 4 for 
a discussion). This happens, roughly, when the training set is relatively small and 
then “simple” models can be selected even if the process generating the data is 
“complex” (in a suitably defined sense). In other words, the SML model has too 
little information on the realized outcomes (colloquially, too little experience of the 
world) to correctly learn the true underlying model that generated the data. In those 
cases, plain ERM performs better than SRM. It should be noted, however, that, even 
in those cases, the relative advantage of complex models over simpler ones would 
be typically counterbalanced by several disadvantages, such as a more difficult 
implementation. For instance, training a model characterized by a large number of 
parameters—i.e., finding the optimal values of its parameters, according to a suit-
able optimality index—could be subject to the curse of dimensionality (Bellman, 
1957). Thus, the practicing scientists may well still prefer a simpler model, because, 
e.g., of its easier implementation.

Another result of our analysis has to do with the characterization of the idea 
of truth approximation in a SML context. Such idea is often left implicit and not 
adequately analyzed; the same holds for its connections with the Occam’s razor 
principle. In this paper, truth approximation is explicitly interpreted as the pro-
cess of increasingly approaching, as the size of the training set increases, the mini-
mum expected risk over a given family (or families) of models. This is achieved 
via the minimization of an upper bound on it, which holds with high probability 
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“simultaneously” for all the models considered. Note that defining the true model as 
the one minimizing the expected risk over the union of families of models consid-
ered is a very reasonable assumption, commonly made in the statistics and machine 
learning literature. For instance, it is well-known (see, e.g., Cucker and Smale, 
2001) that the regression function—defined as the conditional expectation of the 
output variable given the input variables, hence a good candidate for being consid-
ered the true model, according to the discussion presented in Sect. 2.2—coincides 
with the minimizer of the expected square loss over a family of models (or over the 
union of the families of models), when it is an element of that family (or union of 
families). However, it cannot be practically computed if the data generating distribu-
tion is unknown.

In view of the above definitions, our results in Sect. 3 can be more precisely stated 
as follows. First, the probability of finding via SLT, if not the true model itself, at 
least a sufficiently good approximation of the true model increases with the sample 
size, where “sufficiently” can be specified, e.g., by making a suitable bound hold. In 
other words, one can find with increasing probability a model having an expected 
risk sufficiently close to the minimum one.17 Moreover, a similar result holds also 
for finding “exactly” the true model if one is prepared to accept further assumptions. 
The first assumption (which holds, e.g., in the case of strictly convex learning prob-
lems (Shalev-Shwartz and Ben-David, 2014, Ch. 12)) is that the true model is the 
unique minimizer of the expected risk. The second (which is always satisfied when 
the uniqueness assumption holds and the number of admissible models is finite) is 
that its minimum expected risk is “well-separated” from the expected risks of all the 
other admissible models. This means that the difference between the expected risk 
of any admissible model which is different from the minimizer and the minimum 
expected risk is larger than some real number 𝛼 > 0 . If both assumptions hold, then 
also the probability of finding such true model “exactly” increases with the sample 
size. Finally, when the sample size is “too small” in a suitable specified sense,18 then 
SLT cannot typically find nor approach the truth. Of course, this is certainly not a 
drawback of SLT, because the same holds for every other possible approach of truth-
finding or truth-approximating.

17  It is also worth mentioning that, under additional mild conditions such as smoothness (e.g., Lipschitz 
continuity) of the loss functions and of the models (also called “hypothesis functions” in this setting), 
an upper bound on the expected risk translates into an upper bound on the pointwise risk (Zoppoli et al., 
2020). In this way, an upper bound on the distance between the pointwise prediction of the learned model 
and the one coming from the true model can also be obtained.
18  E.g., less than a constant times the largest of the VC dimensions of the family of models involved. The 
constant itself could be chosen by taking into account the maximum range of variation B − A of the loss 
function, and the confidence parameter � in the VC bound.
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5 � Concluding Remarks

We conclude by highlighting some pros and cons of our analysis, some connections 
with other proposals in the literature, and some interesting issues which are left for 
future research.

First, it is important to remark that algorithms in machine learning typically learn 
functions, where scientific models are usually thought of as more general mathe-
matical structures. As a consequence, the framework investigated in this work is not 
able to model all possible facets of Occam’s razor (which is also applied to scientific 
models).

Second, it is worth noting that the bounds computed in this paper only provide 
sufficient (not necessary) training sample sizes associated with the desired guaran-
tee of finding the correct family of models. Nevertheless, we believe they can be 
still quite useful in practice, since they belong to the class of so-called “distribution-
independent bounds” in SLT: i.e., they hold for any probability distribution that sat-
isfies the mild assumptions of the article: e.g., in the case of the quadratic loss, the 
fact that the distribution has a given compact support.19

Another issue has to do with the assumption we make that the minimum expected 
risk of a model in the “true family” is strictly smaller than the minimum expected 
risk in the “wrong family”, i.e., that |�| ≠ 0 holds. This guarantees that the prob-
ability of finding the correct family tends to 1 as the sample size E tends to +∞ , 
when either the ERM or SRM principle is applied.20 One can observe that not know-
ing a-priori which is the correct family excludes the possibility of comparing nested 
families of models in our analysis. For example, in an application of this analysis, 
instances of “simple” and “complex” families of models cannot be simply taken 
as families of “low-degree” and “high-degree polynomials”, respectively, because 
such families do not satisfy the non-nestedness assumption. Instead, admissible 
instances are any two families of models, respectively “with small VC dimension” 
and “with large VC dimension”, provided they are non-nested. As already discussed, 
the non-nestedness assumption is essential for the present analysis. Hence, it may 
be removed only by considering a different formulation of the comparison between 

19  Even though in principle there could exist “malign” probability distributions for which, under a com-
plex truth, the necessary “distribution-dependent” training sample size for SRM is actually lower than 
that for ERM, one has to recall that, in the present setting, the actual probability distribution is typically 
unknown. This implies that, in order to obtain a “distribution-independent” guarantee, one should take 
the supremum of the necessary “distribution-dependent” guarantee on all admissible probability distri-
butions. When doing this, such “malign” distributions are not expected to make the resulting necessary 
“distribution-independent” training sample size for SRM be actually lower than that for ERM (of course, 
further research is needed to confirm this expectation). This is also justified by the fact that such sce-
narios are expected to be the exception, not the rule. We believe that this is an interesting direction of 
further research.
20  This is obtained in the following way, as a by-product of the analysis reported in Sect. 3. For each 
sample size E, one looks for the minimal value �(E) of 𝛿 > 0 for which each of the inequalities (14), (15), 
and (16) holds. Since the choice � =

1

E
 satisfies all the three inequalities for E large enough (due to the 

functional form of �(h,E, �) ), one gets �(E) ≤ 1

E
 for large E, then limE→+∞(1 − �(E)) = 1.
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“simple” and “complex” families of models. For this reason, the possibility of adapt-
ing our analysis to the case of nested families is left to further research.

Despite the above limitations, our analysis has a couple of important advantages 
over other proposals in the literature. In particular, the VC bound on which we base 
our analysis is a “nonasymptotic bound”: i.e., it holds for a finite—possibly even 
“small”—number of training set data, and depends on such a number. On the con-
trary, other commonly-used statistical bounds are “asymptotic bounds”: they hold 
(approximately) when the sample size is “sufficiently large”, but the threshold on 
the sample size above which this occurs is typically unspecified. This significantly 
distinguishes SLT from other related tools for model selection, such as the Akaike 
Information Criterion (AIC) and the similar Bayesian Information Criterion (BIC). 
For instance, the AIC, which is also based on principled statistical arguments, can 
be interpreted as an estimate of the expected relative distance between a fitted model 
and the unknown true mechanism that generates the data (see Cavanaugh and Neath, 
2019, for a short derivation). However, this estimate is typically obtained by making 
a “large sample approximation” (without quantifying how large the sample should 
be), and the variance of such an estimate is not addressed (at least in common usage 
of that criterion). A “corrected AIC” is also used in the statistical literature to take 
into account the possibly finite sample size, but this is essentially a correction of the 
bias of the AIC estimate, not of its variance. Hence, the bounds provided by SLT 
(which is more recent) appear to be, in this regard, better than the ones provided 
either by the AIC or by the corrected AIC. A similar argument holds for the BIC, 
whose estimate is analogous to the one provided by the AIC.

In this connection, our analysis can be related to other ideas in machine learning, 
and extended in different directions. For instance, our results are in line with the 
so-called “no free lunch theorems” in machine learning (Wolpert, 1996), according 
to which all training algorithms have the same expected performance, when a suit-
able average over all possible supervised machine learning problems is taken. These 
theorems are another important formalization of philosophical principles (Schurz, 
2017; Lauc, 2020) and would deserve further investigation in connection with our 
analysis. Moreover, the connections with philosophical results on inductive learning 
and truth approximation could be explored from the point of view of machine learn-
ing and SLT. As Niiniluoto (2005) notes, both the Carnapian research program on 
inductive logic and the Popperian one on verisimilitude or truthlikeness delivered a 
wealth of results that may be translated and studied in the machine learning frame-
work, in order to shed light on crucial philosophical and methodological problems, 
including that of cognitive and scientific progress (Niiniluoto, 2019; Cevolani and 
Tambolo, 2013). In this regard, the frameworks of Probably Approximately Correct 
(PAC) learning, and Agnostic PAC learning (both excellently presented in Shalev-
Shwartz and Ben-David, 2014) seem to be particularly relevant (see, e.g., Herrmann, 
2020).

It is worth noting that the analysis  proposed in the present article could be 
extended to the more realistic case in which the data-generation model belongs to 
one among more than two families of models, since knowing ex-ante that it belongs 
to one of only two families of models may appear as a strong assumption. Another 
interesting future research direction concerns extending the comparison made in this 
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article by taking into account also the computational complexity of learning (Sha-
lev-Shwartz and Ben-David, 2014, Chapter 8), e.g., the computational time needed 
to solve each of the two optimization problems (8) and (9) as a function of the sam-
ple size and of the complexity of the family. For instance, for a given “budget” con-
straint on the total computational time, one could consider in the comparison the 
possibility of having a different number of training examples for the two families, 
taking into account the possibly different computational complexities of the two 
optimization problems (8) and (9).21

Finally, the theoretical analysis proposed here may be supplemented, and vali-
dated, by numerical experiments, by simulating “simple” and “complex” learning 
environments and studying the performance of different families of models with 
training sets of varying size. In the technical Appendix 1.3, we outline a procedure 
to implement such numerical experiments; for the time being, however, this is ongo-
ing work for the future.

Appendix 1: Technical appendix

In this appendix, we prove the main results of our analysis in Sect. 3 and discuss 
some technical details related to it. First, in Appendix 1.1 we discuss minor changes 
in the theoretical analysis needed to deal with possible nonexistence/nonuniqueness 
of the minimizers. Second, in Appendix 1.2 we discuss relationships among mini-
mizers of the empirical risks and minimizers of the expected risks, also introduc-
ing some notation used later in Appendix  1.3. Third, in Appendix  1.2 we derive 
conditions (14), (15), and (16) presented in Sect.  3. Finally, in Appendix  1.2 we 
discuss some ways in which the results of our theoretical analysis could be validated 
by numerical experiments.

Appendix 1.1: Existence and Uniqueness of Minimizers of the Expected 
and Empirical Risks

In the work, existence and uniqueness of minimizers of the expected and empirical 
risks over the two families of models have been assumed to simplify the presenta-
tion of the main ideas. In the following, we report the reasons why the analysis is not 
significantly affected by possible non-existence/non-uniqueness of such minimizers.

With reference to the expected risk:

•	 If the minima over the two families of models do not exist, one can replace them 
in the analysis with infima, and each minimizer by an �-minimizer (i.e., for a 
sufficiently small 𝜖 > 0 , a vector whose expected risk is smaller than or equal to 

21  A similar idea was recently used in different contexts in Gnecco and Nutarelli (2019); Gnecco et al. 
(2020,, 2021), where the optimal trade-off between the number of training examples and their precision 
of supervision was investigated for several machine-learning problems, under a given budget constraint 
on the total cost of their acquisition.
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the infimum expected risk plus � ). The only change required in the analysis is the 
replacement of � with either � − 2� (if 𝛥 > 0 ) or � + 2� (if 𝛥 < 0 ). Both have the 
same sign as � if � is sufficiently small.

•	 Multiple minimizers in each family simply provide the same value of the mini-
mum expected risk in that family. They do not alter the value of � . As the goal of 
the analysis is to find the correct family of models (not to find one specific mini-
mizer, among multiple ones), no changes in the analysis are required in this case.

A similar remark holds for the empirical risk (of course, several combinations of 
cases could be considered for the empirical/expected risks, for what concerns non-
existence/non-uniqueness of minimizers).

Appendix 1.2: Relationship Between Minimizers of the Expected and Empirical 
Risks

It is worth remarking that both ERM and SRM work by considering the minimizers 
of the empirical risk over the two families of models. Such minimizers have been 
denoted in the paper, respectively, as �̂S and �̂C . It is worth recalling that, once the 
training set has been observed, the empirical risk of each model can be computed 
exactly, simply by evaluating the summation in the definition of empirical risk. 
As mentioned in the text, instead, the expected risks cannot be typically computed 
exactly, which prevents one from finding their minimizers over the respective fami-
lies of models. In the following, let us denote such minimizers by

and

respectively. Nevertheless, one can actually find relationships between the expected 
risks of �◦

M
 and �̂M with M ∈ {C, S} and also between their empirical risks, by 

exploiting their definitions as minimizers of the respective expected/empirical risks. 
This is a standard “trick” used in SLT (see, e.g., Zoppoli et al. (2020, Chapter 4)), 
which is reported here to make the work self-contained. It is based on the applica-
tion of the triangle inequality and on the fact that, according to Theorem 3.1, with 
probability pS ≥ 1 −

�

2
 the expected/empirical risks are related by (4) for the “sim-

ple” family and, still with probability pC ≥ 1 −
�

2
 , they are related by (5) for the 

“complex” family (Vapnik, 2000, Sect. 3.7).

Theorem 4.1  Let the assumptions of Theorem 3.1 hold, and M ∈ {C, S} . With prob-
ability pM ≥ 1 −

�

2
 with respect to the i.i.d. generation of the training set, both the 

following inequalities hold:

(18)�
◦

S
∶= argmin

�S∈WS
R
exp

S
(�S)

(19)�
◦

C
∶= argmin

�C∈WC
R
exp

C
(�C) ,

(20)|Rexp(�̂M) − Rexp(�◦

M
)| ≤ 2𝜀 ,
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The proof of Theorem 4.1 is divided into the following steps.

•	 By Theorem 3.1, with probability pM ≥ 1 −
�

2
 , one has 

 for all �M ∈ WM (here, � refers to the right-hand side of either the VC bound (4) 
or the one (5)).

•	 Moreover, by their definitions, �◦

M
 minimizes Rexp(�M) over WM , and �̂M mini-

mizes Remp,E(�M) over WM.
•	 Hence, one gets (all the following bounds, from (23) to (28), holding simultane-

ously with probability pM ≥ 1 −
�

2
 ): 

 (since �◦

M
 minimizes the expected risk over WM ), 

 (since �̂M minimizes the empirical risk over WM ), and 

 Therefore, subtracting Rexp(�◦

M
) from the above, one gets 

 and finally, 

 Similarly, one gets 

So, also in the typical case for which �◦

M
 is unknown, it is still possible to relate 

(with probability pM ≥ 1 −
�

2
 ) its empirical/expected risk to the one of �̂M . Finally, 

following the same argument provided in the main text after the statement of Theo-
rem 3.1, the bounds (27) and (28) hold simultaneously for both M = C, S with prob-
ability p ≥ 1 − �.

(21)|Remp,E(�̂M) − Remp,E(�◦

M
)| ≤ 2𝜀 .

(22)|Rexp(�M) − Remp,E(�M)| ≤ � ,

(23)Rexp(�◦

M
) ≤ Rexp(�̂M)

(24)Remp,E(�̂M) ≤ Remp,E(�◦

M
)

(25)

Rexp(�◦

M
)

≤ Rexp(�̂M)

≤ Rexp(�̂M) − Remp,E(�̂M) + Remp,E(�̂M)

≤ Rexp(�̂M) − Remp,E(�̂M) + Remp,E(�◦

M
)

= Rexp(�̂M) − Remp,E(�̂M) + Remp,E(�◦

M
) − Rexp(�◦

M
) + Rexp(�◦

M
)

≤ |Rexp(�̂M) − Remp,E(�̂M)| + |Remp,E(�◦

M
) − Rexp(�◦

M
)| + Rexp(�◦

M
)

≤ 2𝜀 + Rexp(�◦

M
) .

(26)−2𝜀 ≤ 0 ≤ Rexp(�̂M) − Rexp(�◦

M
) ≤ 2𝜀 ,

(27)|Rexp(�̂M) − Rexp(�◦

M
)| ≤ 2𝜀.

(28)|Remp,E(�̂M) − Remp,E(�◦

M
)| ≤ 2𝜀 .
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Appendix 1.3: Derivation of Conditions (14), (15), and (16) in Theorems 3.2 
and 3.3

Let the assumptions of Theorem 3.1 hold. By the discussion following that theorem, 
with probability p ≥ 1 − � , the bounds (4) and (5) hold simultaneously for all the mod-
els in the two respective families. Then, one can conclude the following (all the follow-
ing bounds hold simultaneously with probability p ≥ 1 − �):

•	 the empirical risk of the (unknown) model (associated with �◦

S
 ) that minimizes the 

expected risk over the “simple” family of models is at most 

 away from that expected risk.
•	 the empirical risk of the (unknown) model (associated with �◦

C
 ) that minimizes the 

expected risk over the “complex” family of models is at most 

 away from that expected risk.
•	 The following bound—which is derived from (5)—relates the empirical risk of the 

model associated with �̂C and the expected risk of the model associated with �◦

C
 : 

 This can be expressed equivalently as 

 Similarly, one gets 

•	 Since the two models above are “candidate” empirical risk minimizers in the two 
families, and the difference of their expected risks is � , condition (14) guarantees 
the choice of the correct family, with probability p ≥ 1 − � . Indeed, if 𝛥 > 0 , with 
probability p ≥ 1 − � , under this condition, one gets (using (32) in the fourth ine-
quality of the next formula (34)) 

(29)�(hS,E, �)

(30)�(hC,E, �)

(31)

R
emp,E

C
(�̂C)

≥ R
exp

C
(�̂C) − 𝜀(hC,E, 𝛿)

≥ min
�C∈WC

R
exp

C
(�C) − 𝜀(hC,E, 𝛿)

= R
exp

C
(�◦

C
) − 𝜀(hC,E, 𝛿) .

(32)−R
emp,E

C
(�̂C) ≤ −R

exp

C
(�◦

C
) + 𝜀(hC,E, 𝛿) .

(33)−R
emp,E

S
(�̂S) ≤ −R

exp

S
(�◦

S
) + 𝜀(hS,E, 𝛿) .
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 hence 

 and the correct family of models is selected. The case 𝛥 < 0 is proved similarly.
•	 Conditions (15) and (16) are obtained in an analogous way, by taking into 

account that SRM selects a model that minimizes the regularized empirical risk, 
and that the regularization terms 

 and 

 are different for models belonging to different families, but they are constant 
within each of the two families.

Appendix 1.4: Possible Design of Numerical Experiments

The following is a possible procedure that could be used to corroborate the theoreti-
cal results of the paper with results of numerical experiments:

•	 First, one could generate the output data according to a model belonging to one 
of the two families (of course, without letting the machine know the underlying 
data generating process).

•	 Then, one would select one of the two families of models by applying ERM and 
SRM, respectively, for various choices of the training set size, and compare the 
results obtained in the two cases (e.g., to find situations where SRM chooses the 
wrong family of models, and ERM chooses the right one, or SRM starts choos-
ing the correct family only for a larger training set size with respect to ERM).

A possible situation for which the comparison above is expected to be in favor of 
SRM is when all the following holds: 

(34)

(35)min
�S∈WS

R
emp,E

S
(�S) < min

�C∈WC

R
emp,E

C
(�C) ,

(36)�(hS,E, �)

(37)�(hC,E, �)

min
�S∈WS

R
emp,E

S
(�S)

≤ R
emp,E

S
(�◦

S
)

≤ R
exp

S
(�◦

S
) + 𝜀(hS,E, 𝛿)

≤ R
exp

S
(�◦

S
) − R

emp,E

C
(�̂C) + R

emp,E

C
(�̂C) + 𝜀(hS,E, 𝛿)

≤ R
exp

S
(�◦

S
) − R

exp

C
(�◦

C
) + 𝜀(hC,E, 𝛿) + R

emp,E

C
(�̂C) + 𝜀(hS,E, 𝛿)

< R
exp

S
(�◦

S
) − R

exp

C
(�◦

C
) + R

emp,E

C
(�̂C) + 𝛥

= −𝛥 + R
emp,E

C
(�̂C) + 𝛥

= min
�C∈WC

R
emp,E

C
(�C) ,
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(a)	 𝛥 < 0 (so the correct family of models is the “complex” one), but its absolute 
value |�| is “small”.

(b)	 The training data are generated according to a probability distribution for which 
the VC bounds (4) and (5) are loose (indeed, since VC bounds are distribution-
free, it is well-known from the literature on SLT that they tend to get loose 
for certain probability distributions; see, e.g., Herbrich and Williamson, 2002). 
In this case, one would expect, even for a modest training set size E, to have 
(loosely speaking), with large probability, both 

 for all the models in the “simple” family, and 

 for all the models in the “complex” family.
(c)	 The condition 

 holds, so the regularization term for “complex” models is much larger than the 
one for “simple” models, making SRM choose the “simple” family.
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