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Abstract This article focuses on issues related to improving an argument about

minds and machines given by Kurt Gödel in 1951, in a prominent lecture. Roughly,

Gödel’s argument supported the conjecture that either the human mind is not

algorithmic, or there is a particular arithmetical truth impossible for the human mind

to master, or both. A well-known weakness in his argument is crucial reliance on the

assumption that, if the deductive capability of the human mind is equivalent to that

of a formal system, then that system must be consistent. Such a consistency

assumption is a strong infallibility assumption about human reasoning, since a

formal system having even the slightest inconsistency allows deduction of all

statements expressible within the formal system, including all falsehoods express-

ible within the system. We investigate how that weakness and some of the other

problematic aspects of Gödel’s argument can be eliminated or reduced.
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Introduction

Kurt Gödel investigated implications of his Second Incompleteness Theorem, in

giving the American Mathematical Society’s 1951 Josiah Willard Gibbs lecture.

Gödel presented an argument in support of a conjecture similar to the following,

where we use the phrase ‘‘perfectly consistent’’ to emphasize that the consistency is

without exception.

Conjecture: If human mathematical reasoning is perfectly consistent, then at least

one of the following two claims holds:

– Claim I: It is impossible for any computer program to accurately simulate the

input–output properties of human mathematical reasoning.

– Claim II: There exists a particular true statement, related to arithmetic, that is

impossible for human mathematical reasoning to master.

Claim I contradicts a form of computationalism; i.e., a computational theory of

mind. Such computationalism might have significant implications, perhaps implying

the lack of free-will, at least as that term is sometimes used, not just in making

impulsive decisions Libet et al. (1983), but also in making decisions related to

mathematical reasoning that would appear to be based on careful deliberation. There

is a variety of well-established opinions on computationalism and free will; for

instance, see Kane (2011). We avoid discussing such opinions here since doing so is

not essential for obtaining a theorem about computationalism and ‘‘absolute’’ truth,

which is the focus of this article.

Claim II might also have significant implications, since it asserts the existence of

a particular statement impossible for human reasoning to master and such that the

statement is an ‘‘absolute’’ truth; that is, such that the truth of the statement holds—

using Gödel’s wording here—‘‘in an absolute sense, without any further hypoth-

esis’’ Gödel (1995), p. 305. Gödel distinguishes such a truth from a truth within

‘‘some hypothetical-deductive system such as geometry (where the mathematician

can assert only the conditional truth of the theorems)’’, ibid.

This article investigates the above conjecture. As we explain later, we avoid some

controversial aspects of the conjecture Gödel considered in his lecture that we show

are not essential for obtaining a theorem about computationalism and ‘‘absolute’’ truth.

Also, the above Claim II does not mention the particular kind of arithmetical truth

Gödel considered (related to polynomial equations with integer coefficients), since the

kind of arithmetical truth does not affect the implication of Claim II mentioned in the

preceding paragraph. Although the above conjecture differs from the choice of

phrasing Gödel used (which is quoted later in this article), the author is indebted to him

for the intellectual stimulation such a conjecture can provide.

As emphasized by our use of italics prior to stating the two claims, Gödel’s

argument required assuming that human mathematical reasoning is perfectly

consistent.1 Such a consistency assumption is a strong infallibility assumption about

1 Although the ‘‘perfectly’’ in ‘‘perfectly consistent’’ is redundant, we use it occasionally to emphasize

that the consistency referred to has no exception. In everyday speech one would not be apt to describe as
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human reasoning, because a formal system of the kind Gödel considered that has

even the slightest inconsistency allows the deduction of all statements expressible

within the formal system, including all falsehoods expressible within that system. It

is well-known that many written critiques by scholars, on such a strong infallibility

assumption about human reasoning, reject the assumption. Reliance on such a

strong infallibility assumption is a serious weakness in Gödel’s argument, since

without that assumption his argument cannot be carried out, as we explain later.

The current article depends on three assumptions that might themselves be

viewed as subjective opinions, but are well-established since they are known to

underlie the work of many mathematicians and computer scientists. First is the

assumption that Turing machines provide an appropriate mathematical definition for

the inherent capabilities of computations. Second is the assumption that each

statement in the formal language of Peano arithmetic is either true or false,

according to the standard interpretation of the symbols of that formal language.

Third is the assumption that each statement provable in Peano arithmetic is true

(according to that standard interpretation). The first assumption, known as the

Church–Turing Thesis, is accepted by the vast majority of computer scientists. The

second and third assumptions are accepted by the vast majority of mathematicians.

(A ‘‘statement’’—sometimes also called a ‘‘sentence’’—in the formal language of

Peano arithmetic is a well-formed expression having no free variable, where a free-

variable can cause the truth or falsity of an expression to depend on a later binding

of that variable with one of the natural numbers 0, 1, 2,...; to keep the current article

concise, we refer the reader to any good logic book—such as Shoenfield (1967) or

Hodel (1995)—for an explanation of Peano arithmetic, of the standard interpretation

of the symbols in its formal language, and of Zermelo–Fraenkel Set Theory; the

explanation on pp. 443–446 of Charlesworth (2014) might suffice.)

In view of the current article’s focus on improving Gödel’s argument, it is

appropriate to mention that Gödel accepted the assumptions mentioned in the

preceding paragraph. Gödel used the phrase ‘‘mechanical procedure’’ rather than

‘‘computations’’, and stated:

We had not perceived the sharp concept of mechanical procedures sharply

before Turing, who brought us to the right perspective. And then we do

perceive clearly the sharp concept. Wang (2001), p. 205.

Also, Section 8.2 of Wang (2001) explains the reasons Gödel believed that each

statement in the formal language of Zermelo–Fraenkel Set Theory is either true or

false and that each statement provable in that system is true; it follows that each

statement of Peano arithmetic is either true or false. In fact, it is clear from his Gibbs

lecture that Gödel believed each statement provable in Peano arithmetic is true.

Given the three assumptions just mentioned, a simple example of a truth that

holds ‘‘without any further hypothesis’’ is 0 þ 0 ¼ 0 (whose truth value is that given

Footnote 1 continued

inconsistent a colleague one has known for decades, solely because several decades ago that colleague

had asserted ‘‘91 is a prime’’ and then had asserted ‘‘91 is not a prime’’, and it would normally be

considered pedantic to point out that it logically follows from those two assertions that ‘‘91 is a prime or 4

is a prime’’ and that ‘‘4 is a prime’’.
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according to the standard interpretation), since that statement is a theorem of Peano

arithmetic. Of course, one would naturally assert that that particular ‘‘absolute’’

truth is possible for human mathematical reasoning to master. In summary: the

preceding paragraphs clarify that, given the three assumptions mentioned, which are

widely-accepted by mathematicians and computer scientists and were accepted and

assumed by Gödel, Claim II refers to a truth that holds without further hypothesis.

In investigating the above conjecture, we seek to avoid using philosophical

arguments. The emphasis here, instead, is on using mathematics. We employ a

mathematical framework that supported two recent theorems related to mathemat-

ical logic found in Charlesworth (2006). The first of the theorems is explicated in

Charlesworth (2014), and that first theorem justifies the terminology used in the

second theorem. Using that framework we prove a new theorem that avoids

infallibility assumptions, in contrast to Gödel’s argument for the conjecture in his

Gibbs lecture. Also, Gödel’s conjecture—like the above conjecture—is nonmath-

ematical; for instance, due to the lack of a mathematical definition of what Gödel

called ‘‘the human mind’’ (within the first Gödel quote of our section ‘‘The

Conjecture in Gödel’s Gibbs Lecture’’) and what the above conjecture calls ‘‘human

mathematical reasoning’’. The two recent theorems avoid the need for such a

definition, via a more general concept of an ‘‘agent’’, and the mathematical model

underlying the two theorems provides a simple mathematical definition of that

concept. This article also explains how the above conjecture avoids some other

problematic aspects of his argument. The proofs of the two theorems could be

carried out in principle in Zermelo–Fraenkel Set Theory, so they satisfy the current

standard criterion for rigorous mathematics. In turn, the application of the two

theorems is like any other application of pure mathematics to the physical universe.

The rest of the article is organized as follows. The next section discusses Gödel’s

Second Incompleteness Theorem, which leads to a section presenting Gödel’s actual

conjecture as well as a discussion of the questionable consistency of human

reasoning. That is followed by a section discussing the mathematical framework of

the two recent theorems mentioned above, which leads to a section using that

framework to present a new theorem that generalizes the conjecture at the beginning

of this article, stated in terms of any agent—not just human agents—and without

assuming any strong infallibility property about such an agent. After a section that

considers some of the specific phrases Gödel used within his conjecture, the article

concludes with a summary.

Gödel’s Second Incompleteness Theorem

Gödel’s Incompleteness Theorem roughly states that for each formal axiomatic

system S that includes formal Peano arithmetic (which we denote by PA) and whose

set of (number codes of) theorems can be checked by a Turing machine, if S is

consistent, then S is incomplete. [See any good logic book, such as Shoenfield

(1967) or Hodel (1995).] The latter means there exists a statement within S such that

neither it nor its negation has a formal proof within S.
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Gödel’s Second Incompleteness Theorem is a stronger result that gives a

particular example, ConS, of such an unprovable statement within S. The meaning of

ConS, according to the standard interpretation of PA, is that S is consistent. (See

Hodel 1995.) Thus, if S is consistent, then we have the following property: ConS is

true according to the standard interpretation but unprovable within S. It is important

to emphasize here (as explained further at the end of this section) that the hypothesis

of the just-stated implication is not only sufficient for the implication’s conclusion

but necessary for that conclusion; that is: if S is not consistent, then there is no
statement within S that is unprovable within S.

Since ConS is true but unprovable within S, it is customary to refer to ConS as a

‘‘Gödel statement’’ of S.

Roughly speaking, if the mathematical deduction of a set H of one or more

humans is entirely determined by the kind of Turing machine-based formal

axiomatic system S described above, and if S is consistent, then H cannot deduce

ConS using mathematical deduction. The preceding sentence, although a nonmath-

ematical statement, helps convey the spirit of attempts to apply the Second

Incompleteness Theorem to humans. That is presumably what Alan Turing had in

mind in 1947 when he stated:

In other words, then, if a machine is expected to be infallible, it cannot also be

intelligent. There are several theorems which say almost exactly that. But

these theorems say nothing about how much intelligence may be displayed if a

machine makes no pretense at infallibility. Turing (1986), p. 124.

It is important to notice that consistency is a strong infallibility property and an

extremely brittle assumption. As mentioned above, the Second Incompleteness

Theorem says that if S is consistent then we have the following property: ConS is

true according to the standard interpretation but unprovable within S. If the

mathematical deduction of a set H of one or more humans is entirely determined by

the kind of formal axiomatic system S described above and there is even a single

statement A, among the infinitely many statements of S, such that H decides (via

formal proofs) that both A and its negation hold, then by the definition of

‘‘consistency’’ S is not consistent. It then would follow from a simple well-known

argument—for the gist see our footnote 1 and for a formal logic approach see the

third paragraph on p. 467 of Charlesworth (2014)—that every statement of S would

be provable within S, regardless of whether the statement is true or false; for

instance, the false statement ConS would be provable within S. The deductive

capability of H would then be trivial.

The Conjecture in Gödel’s Gibbs Lecture

Here is the phrasing Gödel used, in what we shall call his ‘‘Gibbs conjecture’’.

Either mathematics is incompletable in this sense, that its evident axioms can

never be comprised in a finite rule, that is to say, the human mind (even within

the realm of pure mathematics) infinitely surpasses the powers of any finite
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machine, or else there exist absolutely unsolvable diophantine problems of the

type specified ... Gödel (1995), p. 310, emphasis in original.2

By a ‘‘finite machine’’ he meant a machine equivalent to a Turing machine. His

lecture explained that by ‘‘absolutely unsolvable’’ problems he meant problems that

are ‘‘undecidable, not just within some particular axiomatic system, but by any

mathematical proof the human mind can conceive’’ (ibid; emphasis in original). One

can view a ‘‘diophantine problem’’ as a problem of determining whether or not

certain polynomial equations with integer coefficients have natural number

solutions.

Here is the argument Gödel gave for the above Gibbs conjecture, where ‘‘this

theorem’’ refers to his Second Incompleteness Theorem:

It is this theorem which makes the incompletability of mathematics

particularly evident. For, it makes it impossible that someone should set up

a certain well-defined system of axioms and rules and consistently make the

following assertion about it: All of these axioms and rules I perceive (with

mathematical certitude) to be correct, and moreover I believe that they

contain all of mathematics. If someone makes such a statement he contradicts

himself. For if he perceives the axioms under consideration to be correct, he

also perceives (with the same certainty) that they are consistent. Hence he has

a mathematical insight not derivable from his axioms. Gödel (1995), p. 309,

emphasis in original.

In the words ‘‘... that they are consistent. Hence ...’’ Gödel makes explicit the

dependence of his argument on the assumption that human deduction is consistent.

That crucial dependence is because, as explained in our preceding section, the

consistency of S is necessary for obtaining the conclusion of Gödel’s Second

Incompleteness Theorem.

Although Gödel’s argument supporting the Gibbs conjecture assumed an

idealization of humans, he recognized the fallibility of actual humans, according

to perhaps the leading interpreter of Gödel who knew him personally, Hao Wang:

There is much more in Gödel’s philosophy of mathematics than is commonly

believed. For instance, contrary to the general impression, Gödel affirms the

fallibility of our mathematical intuition and investigates the different degrees

of clarity and certainty that exist within mathematics. Wang (2001), p. 5.

Indeed, the assumption that one can view human reasoning as consistent is highly

questionable, as indicated by the 1947 Turing quote in our preceding section, and

the following ten quotes.

2 One might ask: Was Gödel’s claim actually stronger, that the human mind surpasses machines? Not in

his Gibbs conjecture. As Solomon Feferman put it: ‘‘Typically cautious, in his Gibbs lecture he stated his

conclusion from the second incompleteness theorem only as a disjunction, despite his personal conviction

that mind is not equivalent to a finite machine. Apparently the reason he did that is because he did not feel

he had a knock-down proof of the falsity of the mechanist position.’’ Feferman (2006), p. 145.
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– Martin Davis, in the journal Behavioral and Brain Sciences:

‘‘If insight is involved, it must be in convincing oneself that the given axioms

are indeed consistent, since otherwise we will have no reason to believe that

the Gödel sentence is true. But here things are quite murky. Great logicians

(Frege, Curry, Church, Quine, Rosser) have managed to propose quite serious

systems of logic which later have turned out to be inconsistent.’’ Davis (1990),

emphasis in original.

– Daniel Dennett, in the journal Behavioral and Brain Sciences: One

‘‘can perhaps fervently believe, and assert, that the joint or Ideal Mathemati-

cian is consistent and capable (in principle) of intuiting every mathematical

truth (and no falsehoods), but he cannot hope to persuade those of us who find

this an unlikely and unmotivated dogma by offering a mathematical proof, and

there seems every empirical reason for simply disbelieving it.’’ Dennett (1990)

– Rudi Lutz, in the journal Behavioral and Brain Sciences: The

‘‘argument that mathematicians use an infallible algorithm for determining

mathematical truth is unconvincing given several instances in the history of

mathematics of ‘theorems’ that later turned out to be false.’’ Lutz (1990)

– Drew McDermott, in the journal Behavioral and Brain Sciences:

‘‘any plausible candidate for an algorithm that duplicates a person would, far

from being an infallible procedure, have incomplete and even contradictory

beliefs about mathematics. ’’ McDermott (1990)

– Don Perlis, in the journal Behavioral and Brain Sciences:

‘‘What is needed to get our hands on an actual instance of the Gödel sort is,

typically, knowledge of the consistency of the system in question. Now, this is

emphatically not something we can in general see.’’ Perlis (1990)

– Adina Roskies, in the journal Behavioral and Brain Sciences:

‘‘Our intuitions about the self-evidence or truth of mathematical statements,

however, often turn out to be mistaken. For instance, Hilbert believed that

arithmetic was complete until Gödel proved him wrong, and Cantor and Frege

thought their formulation of set theory was consistent until Russell advanced

his paradox.’’ Roskies (1990)
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– Tony Dodd, in the journal Artificial Intelligence Review:

‘‘there is a hazy boundary area, whether near to or far from ordinary

mathematics is immaterial, where we would not explicitly assert the

consistency of our [mathematical] beliefs.’’ Dodd (1991)

– Marvin Minsky, in the book The Third Culture:

‘‘There’s no reason to assume ... that either human minds or computing

machines need to be perfectly and flawlessly logical’’ Minsky (1995).

– John Barrow, in the Oxford University Press book Impossibility: The Limits of

Science and the Science of Limits:

‘‘In all these debates, a single assumption is always lurking beneath the

surface. It is the assumption that the workings of the brain are infallible, when

viewed as logical processors. There is really no reason to believe this (and

many reasons not to!).’’ Barrow (1998), p. 232.

– Stuart Russell and Peter Norvig, in the book Artificial Intelligence: A Modern

Approach:

... if anything, humans are known to be inconsistent. This is certainly true for

everyday reasoning, but it is also true for careful mathematical thought. A

famous example is the four-color map problem. Alfred Kempe published a

proof in 1879 that was widely accepted and contributed to his election as a

Fellow of the Royal Society. In 1890, however, Percy Heawood pointed out a

flaw and the theorem remained unproved until 1977. Russell and Norvig

(2010), p. 1023.

Rather than provide a critique of Gödel’s Gibbs lecture, this article’s focus is to

present as expeditiously as possible a theorem that generalizes the nonmathematical

conjecture stated at the beginning of this article. Such a theorem is presented after

our next section. Critiques of Gödel’s Gibbs lecture have already been published.

See for instance the critique by Solomon Feferman (2006), the commentary by

George Boolos in the pages immediately preceding Gödel (1995), and an article by

Richard Tieszen (2006). Additional information about Gödel’s Gibbs lecture

appears in the tenth chapter of a biography of Gödel by John Dawson (1997) as well

as in a dozen places within Wang (2001).

Mathematical Framework

A standard unifying concept in Artificial Intelligence is the notion of an ‘‘agent’’;

see Russell and Norvig (2010). For the theorem we present in the next section, we

use a framework provided by Charlesworth (2006) and explicated in Charlesworth

212 A. Charlesworth

123



(2014), in which an agent is defined simply to be a function from a set of natural

numbers to the set of natural numbers.

One might ask: how could such a mathematical function be relevant to a conjecture

about human reasoning? That question is not an issue because it has been shown, using

a modification of a well-known approach used by Turing, that such a function can

model any single real-world agent in an environment providing appropriately

restrictive input, where the agent consists of ‘‘one or more ... supercomputers, humans,

humans with surgically-implanted silicon memory chips, and so forth’’ Charlesworth

(2014), p. 462. As explained on pp. 461–464 of that article, the real-world agent

modeled by the function can be far from infallible. Such an agent need not correctly

decode its real-world inputs and need not produce real-world outputs that can be

decoded to yield the required format for an answer to a question. For a given coded

input question, when an agent produces real-world outputs that (when successfully

decoded) do yield an answer, it is the first such answer by the agent that is considered as

the output of the function. Also, given appropriately coded inputs for the halting

problem for a Turing machine that has over a hundred different encodings, it is

possible for an agent to give the correct answer to the halting problem for one encoding

of that machine and the opposite answer (to the exact same halting problem) for the

remaining encodings.3 Notice that such an agent need not be correct on even as much

as a subset of 1% of its decisions.

Of course, an application of mathematics to any physical agent cannot itself be

fully mathematical since there is no fully mathematical definition of any physical

object. To illustrate the relevance to the issue of computationalism of a function

from natural numbers to natural numbers, we informally observe the following. In

chess, any single entire board configuration can be coded as a single input natural

number4 and the chess player’s choice of subsequent move can also be coded as a

single output natural number. The input–output properties of a player are required to

be fully due to the decision making of the player, so access by the player during the

game to books, the internet, or assistants is prohibited; compare that with the phrase

‘‘an environment providing appropriately restrictive input’’ in the preceding

paragraph. Also, the player cannot retract a move the player has made;5 compare

that with the phrase ‘‘first such answer’’ in the preceding paragraph. Notice that if it

is impossible for any computer program to accurately simulate the input–output

properties of a specific human grandmaster deciding the next move to make, then it

is impossible for any computer program to accurately simulate the decision making

(and hence some aspect of the overall reasoning) of that human.6

3 The typical Turing machine has more than one single natural number encoding, since its states and tape

symbols can be arbitrarily ordered Hopcroft et al. (2007), p. 379.
4 The EPD (Extended Position Description) of the board configuration is a finite list of elements from a

predetermined finite set. It is well-known that any such list can be coded as a single natural number.
5 See Article 4 of the Laws of Chess FIDE (2014). Another important fact: a winning chess player can

make a single illegal move, which is ignored (except for clock issues and for disallowing another illegal

move), by Article 7 of those Laws of Chess. Our mathematical framework ignores all incorrectly

formatted output by an agent, as discussed near the end of the section ‘‘The Theorem’’.
6 The converse need not hold. For it is conceivable that the input–output properties of a noncompu-

tational agent—perhaps a human, if human reasoning is noncomputational—in playing chess
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The same computationalism-related implication also holds for generalized chess

in which the chessboard has size n by n, with n� 8. Generalized chess plays a more

important role in theoretical computer science than does usual chess. For a

consideration of generalized chess, see Fraenkel and Lichtenstein (1981), which has

a purpose different from our purpose of simply illustrating the relevance of a

function on the natural numbers to the issue of computationalism. The single natural

number code for a board configuration would include information about the value of

n for the instance of generalized chess. (Of course, the ten digits suffice to construct

the numeral for any n.) Although the halting problem game the two recent theorems

in Charlesworth (2006, 2014) are about seems quite different from generalized

chess, it is the case that for both kinds of games—unlike for usual chess—there is an

infinite number of possible natural number inputs (and outputs).

Modeling a real-word agent, such as an individual human’s mathematical

reasoning, with a mathematical function is a useful simplification. But, by itself, that

simplification falls far short of enabling one to obtain a theorem whose hypothesis

would be widely accepted, related to the Gibbs conjecture. As explained in our

preceding section, obtaining a theorem about human reasoning via Gödel’s Second

Incompleteness Theorem requires a hypothesis expressing a highly questionable

point-of-view: that human mathematical deduction is (perfectly) consistent.

Achieving a widely-acceptable theorem thus requires replacing the role of the

Second Incompleteness Theorem by a fundamentally different result, applicable to a

real-world agent that need not satisfy strong infallibility properties.7 The theorem in

the next section is such a theorem, and is related to halting problems.

Of course, a ‘‘halting problem’’ is any problem that, for a piece of software with

some input for that software, asks which of these two statements is correct: the

software (eventually) halts, the software does not halt.8 Questions related to halting

problems as well as attempts at formal proofs are coded as natural numbers. We use

Turing machines as the standard mathematical abstraction for capturing the notion

of software. It is common to use computer software equivalent in power to a Turing

machine to construct artificial neural networks. One can also simulate a parallel

program, such as IBM’s Deep Blue chess-playing AI system and such as IBM’s

Watson Jeopardy-playing AI system, by a Turing machine program that switches

around among the various processes it simulates.

Footnote 6 continued

(alternatively in playing blackjack, or producing square roots) could be accurately simulated by a chess-

playing computer program that agent might have learned (alternatively, by a ‘‘card counting’’ program, or

by the Babylonian method for finding square roots).
7 One might ask: Where is the assumption of an infallible agent avoided? Earlier in this section we

mentioned several ways that the mathematical model of an agent’s reasoning using a function on the

natural numbers avoids infallibility assumptions about that agent’s reasoning. See pp. 465–466 of

Charlesworth (2014) for an explanation of additional ways infallibility assumptions on an agent are

avoided.
8 One might ask: How important are halting problems? Their wide importance is elucidated from p. 442

through the first full paragraph on p. 447 of Charlesworth (2014).

214 A. Charlesworth

123



The mathematical framework we use appears in Charlesworth (2006), aimed at a

readership of specialists familiar with applying logic to systems like PA and formal

Zermelo–Fraenkel Set Theory. An explanation for a readership experienced in

Artificial Intelligence and/or Cognitive Science appears in Charlesworth (2014),

which—assisted by its Electronic Supplement—addresses over twenty relevant

questions. (There is Open Access to that article via the hyperlink just prior to the

current article’s Introduction.) Although the expressed focus of those questions is on

one specific theorem of Charlesworth (2006), many of those answers given are

relevant to the theorem in our next section.

As suggested in our Introduction, the mathematical framework we use assumes

that all axioms of PA are true; i.e., that PA is ‘‘sound’’. The formal proofs given by

an agent A are given within a suitable formal system F. To be suitable9 a formal

system must have a formal language that includes at least the symbols of PA, must

have axioms that include at least those of PA, must have Gödel numbering

compatible with that of PA, and must satisfy the property that any statement of PA

provable in F is true10 according to the standard interpretation of PA. There is no

requirement that an algorithm must exist for determining which of the statements of

F are axioms11, or that there must be an algorithm for checking the correctness of

proofs in F. Thus the set of theorems of F need not be computably enumerable.

It follows from the section ‘‘Definition of ‘Adequate’ Formal System’’ on

pp. 458–459 of Charlesworth (2014) that there exists what we call here a ‘‘suitable’’

formal system whose set of axioms is not computably enumerable and there also

exists a ‘‘suitable’’ formal system whose set of axioms is computably enumerable. In

fact there exist such systems that are natural to consider.

The resulting approach avoids the petitio principii fallacy of begging a

question.12 If all proofs by any agent were required to be within a specific F

whose theorems were computably enumerable, then by the mere act of imposing

such a requirement a fundamental issue related to computationalism would become

trivial. For there would in principle then be a single Turing machine that would be

as successful in providing a yes/no decision for any mathematics conjecture

(necessarily in F’s formal language, because of the requirement we are considering),

9 A ‘‘suitable’’ formal system would also be ‘‘adequate’’, according to the definition of the latter term in

both Charlesworth (2006, 2014), if its axioms also include the members of a specific computationally-

defined set T of formulas of PA, where the definition of the specific set T is independent of the agent; the

weaker concept of suitable suffices for the new theorem presented in this article.
10 One might ask: Why is assuming a soundness property of F not assuming the agent A is infallible?

That is not an issue, because of the distinction between the agent and the system F. See the section on

p. 466 of Charlesworth (2014) entitled ‘‘How Can One Assume that a System Used by an Agent is Sound

Without Assuming Agent Infallibility?’’.
11 Axioms can become generally accepted that previously were not, such as the axiom asserting the

existence of an infinite set, largely due to investigations of Georg Cantor in the 1800s. Gödel and some

others have questioned whether the current standard criterion for rigor in mathematics, provability in

principle in Zermelo–Fraenkel Set Theory, must by definition forever be the standard criterion for rigor;

see Section 3 of Charlesworth (2006).
12 In contrast, there is no petitio principii fallacy in the important facts that, in principle, there exists an

algorithm to check correctness of proofs in PA and there exists an algorithm to check correctness of

proofs in Zermelo–Fraenkel Set Theory.
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and in proving that such a decision is logically correct, as any agent could be, indeed

as all other agents combined could be. That single Turing machine would simply

take as input the given conjecture, generate the unending list of theorems of F, and

when and if one of the theorems is the given conjecture or its negation, report the

decision. Whenever the conjecture could be settled (necessarily within F, because of

the requirement we are considering), that single Turing machine could settle the

question; otherwise neither that Turing machine nor any other agent or combination

of agents could settle the conjecture. Note that this explanation has not conflated

‘‘computably enumerable’’ with the stronger concept of ‘‘computable’’.

When we refer to the meaning of a formula of PA, we shall assume the standard

interpretation of the language of PA. As mentioned in footnote 3, a typical Turing

machine has more than one encoding as a natural number, which we will simply

refer to as a (natural number) code for the Turing machine. Our interest will be in

statements of PA that relate to individual Turing machines. Since each such

statement will be expressed in PA’s language via a specific choice of code for a

specific Turing machine, sometimes it will be important to mention the existence of

such a specific code choice.

As mentioned in Charlesworth (2006), using standard techniques of mathematical

logic it can be shown that there exists a formula H of PA having exactly one free

variable (i.e., having exactly one variable that is not bound within the scope of a

universal or existential quantifier) and having the following two properties, where

H½#P� denotes the substitution of PA’s notation representing the (natural number)

code for Turing machine P into the slots of H where the free variable of H is not

bound by a quantifier:

– ‘‘P halts’’ if and only if H½#P� is true

– ‘‘P halts’’ if and only if H½#P� is a formal theorem of PA

for every choice #P of code for P. Here the input for P includes a code for P itself,

within a pair hP;Halt?i explained later in this section. The meaning of the

arithmetical statement H½#P� is ‘‘P halts’’, and the meaning of the arithmetical

statement :H½#P� is ‘‘P does not halt’’, where : denotes negation.

Our goal is a theorem somewhat like our next sentence, where an agent is

required to give formal proofs in a ‘‘suitable’’ formal system F and where A is an

agent that need not be consistent or otherwise infallible. At least one of the

following two assertions holds:

– (a) It is impossible for any software to accurately simulate the input–output

properties of A.

– (b) There exists a true halting-problem arithmetical statement such that, when

asked about the truth value of the statement, A cannot decide that the statement

is true.

It is straightforward to define what it could mean to say that A is ‘‘asked about the

truth’’ of such a statement: A would be given the Gödel code for the PA statement
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and asked to provide as output the code for a list (that could be a formal proof)

whose last member is the statement, when A ‘‘decides’’ the statement is true. (What

A is expected to do when A decides the statement is false will turn out to be

irrelevant to this explanation, so there is no need to suggest what those details might

be.) Let us try to prove the above theorem attempt. Suppose both (a) and (b) fail to

hold. The failure of (a) to hold implies that there exists a Turing machine that

accurately simulates the input–output properties of A; let S denote such a Turing

machine. The failure of (b) to hold implies that it is possible for S to correctly decide

the truth value of each true halting statement of the form H½#P� or :H½#P�. Due to

the Unsolvability of the Halting Problem, we can successfully reach a contradiction

if we can show that S solves the halting problem as follows. When S is given as

input the code for any Turing machine P (together with input for P), one of the two

halting statements about P—that it halts, alternatively that it fails to halt—will be

true, and S will definitely (based upon the logic of the current proof attempt) be able

to decide that the true one of those two halting statements is indeed true. Just let (a

straightforward modification of) S indicate, as its output, which of those possibilities

it decides is true. That contradicts the Unsolvability of the Halting Problem. [End of

proof attempt]

Saying that the S in the preceding paragraph can correctly decide that each true

arithmetical statement is true does not imply that S cannot also decide that some

false arithmetical statements are true; it does not even imply that S cannot decide

that every false arithmetical statement is true. That is, the proof attempt in the

preceding paragraph assumes that A is consistent about what it decides is true

whereas a very important goal (emphasized throughout the current article, and made

clear in the hypothesis of that theorem attempt) is the lack of such a consistency

assumption. If A is inconsistent, then S is inconsistent, and thus the fact that S

decides on the truth value of a halting assertion provides no indication of the actual

truth value of that halting assertion, so there is no reason to conclude that the output

of S (mentioned near the end of the above proof attempt) would be correct. Thus a

fatal flaw is evident in that attempt. Trying to repair that flaw, by assuming S could

always attempt to prove the correctness of a potential decision prior to making the

decision and use an algorithm to check the correctness of each such proof, overlooks

the importance of the part of the hypothesis of the theorem attempt that avoids

making the assumption that F provides such an algorithmic proof-checking

capability. (Recall the discussion earlier in this section about avoiding a petitio

principii fallacy in defining ‘‘suitable’’ formal system.)

We presented the above proof attempt because some readers might otherwise have

considered such an attempt themselves, might have overlooked its flaw, and might

wonder why we did not use that approach, which is simpler than our approach below.

In fact, no repair of that proof attempt is possible, since there is a counterexample to

the above theorem attempt: just take A to be a function that ‘‘decides’’ that every

statement of PA is true, regardless of whether such a decision is correct. For that A,

both (a) and (b) are easily seen to fail to hold, because it is easy to define a Turing

machine A that asserts that each statement of PA is true and because there is no true

arithmetical statement which that A would not decide is true.
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Thus our approach must be different from the above faulty attempt. The gist of

our approach is that we bind the two possibilities—halt, does not halt—for each

halting problem into a single input to be given to an agent, and we ask the agent to

make a choice between them. Such an approach is suggested by Lemma 7.15 of

Charlesworth (2006), which is also explained on p. 455 of Charlesworth (2014) and

its eight pages leading up to that page.

Before giving additional definitions, we emphasize again that the typical Turing

machine has more than one (natural number) code; see footnote 3. As a result, the

notation H½#P� to represent a PA statement is ambiguous even when the specific

Turing machine P is not ambiguous, since the actual PA statement would depend on

which code of P plays the role of #P. Avoiding such an ambiguity is not usually

important because the truth value of H½#P� (as well as its provability status in any

suitable formal system F) is unaffected by the choice of code for P. But avoiding

such an ambiguity in this article is important: we do not assume an agent must be

logically consistent, hence an agent’s decision about the truth value of H½#P� can

differ for different choices of codes for P. Rather than define unnecessarily

complicated unambiguous notation to use for such a PA statement that would have

the notation for a natural number m within the notation, we use careful explanations

in which ‘‘specific’’ will mean specific to a choice of code for the Turing machine.

We let Halt? denote the number 1, since doing so helps to clarify the nature of the

notation now explained. We let hP;Halt?i denote a computational encoding (whose

inverse is also computational) of the two-member list containing a specific code for

P and also containing the number 1. Let A be an agent, and let AðnÞ denote the

output (if there is an output) of A for input n. Then A answers halting problem

related questions in the following way. If A produces output for the input hP;Halt?i
(for a specific choice of code #P for P), then that output is a decision about
hP;Halt?i iff AðhP;Halt?iÞ is a number that, first, can be computationally decoded

in one way to produce A’s binary decision—exactly one of H½#P� and :H½#P�
(for the specific code choice of P)—and, second, can be computationally decoded in

another way to produce a list of codes of formulas, in a situation where A gives an

attempted proof of the correctness of its binary decision. (That list of codes of

formulas can be the empty list; A is permitted to make a binary decision—including

an incorrect binary decision—for a halting problem without giving any justification

for the binary decision; it is thus easy for A to give an output that is at least in the

acceptable output form.) AðhP;Halt?iÞ is logically correct in F iff A’s attempted

proof is a (correct) formal proof in F. One can define such a two-fold computational

decoding in a straightforward way; the details here are relatively unimportant, see

the footnote on p. 453 of Charlesworth (2014). A is a decision system iff for each

Turing machine P (and each code for P) the output (if there is any) that A produces

for the input hP;Halt?i is a decision about hP;Halt?i; a decision system is called a

‘‘deduction system’’ in Charlesworth (2006).

We say software accurately simulates the input–output properties of A to

mean the software has the same (natural number) input–output properties as A. By a

specific halting problem we mean the problem of deciding the output to give for an

input hP;Halt?i that contains a specific code for a Turing machine P. By the
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corresponding true arithmetical statement for the specific halting problem

hP;Halt?i we mean the true one of the pair of PA statements (H½#P�, :H½#P�),
where the same specific code for P is used as was used in the specific halting

problem.

The Theorem

As mentioned earlier, since there is no known mathematical definition of ‘‘human’’,

the conjecture stated at the beginning of the article is nonmathematical. This section

presents and discusses a mathematical theorem, whose hypothesis is also much

more widely applicable.

Notice that assertion (1) and assertion (2) in the following, like the two assertions

within Gödel’s Gibbs conjecture, form an Inclusive Or.

Theorem (COAT, Computationalism-impossible Or ‘‘Absolute’’ Truth)

Let F be any suitable formal system, in which formal proofs are to be given,

and let A be any agent, which need not be consistent or otherwise infallible.

At least one of the following two assertions holds:

1. It is impossible for any software to accurately simulate the input–output

properties of A.

2. There exists a specific halting problem such that A cannot decide to choose

its corresponding true arithmetical statement.

Moreover, there is a computational function that maps any decision system that

is a counterexample for (1), if such a counterexample exists, to a particular
example of (2) that demonstrates A’s lack of mastery of arithmetical truth.

Proof We prove the inclusive or within the theorem by supposing both assertion

(1) and assertion (2) fail to hold, and reaching a contradiction. The failure of (1) to

hold implies that there exists a (deterministic) Turing machine that accurately

simulates the input–output properties of A; let S denote such a Turing machine. The

failure of (2) to hold then implies that for each specific halting problem, S’s binary

decision is the corresponding true arithmetical statement. Then a Turing machine M

could solve the halting problem, by doing the following: Given any input code for a

Turing machine P (together with input for P), let M first construct the two-member

list hP;Halt?i, using the specific given code for P. Then let M provide the code of

that list as input to S, thereby asking S which of the PA statements in the pair

(H½#P�, :H½#P�) is true, where the same specific code for P is used. Finally, let

M output S’s binary decision, which is guaranteed (by the reductio ad absurdum

assumption within this proof) to be the corresponding true statement. That

capability of Turing machine M contradicts the Unsolvability of the Halting

Problem.
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We now prove the theorem’s final sentence. By Lemma 7.15 of Charlesworth

(2006) (which uses ‘‘deduction system’’ for what we call ‘‘decision system’’), there

is a Turing machine that maps the code for any decision system Turing machine P to

the code for a Turing machine P0 such that P cannot produce a correct binary

decision for what we here call the specific halting problem hP0;Halt?i, where the

same specific code for P0 is used within it. (That Turing machine P0 might seem

analogous to a Gödel statement, but an important difference is the lack of an

assumption of infallibility of P in the hypothesis of that lemma.) It is thus sufficient

to see that there is a Turing machine that maps the code for any such P0 to the code

for the corresponding hP0;Halt?i, which is straightforward. h

Since it can be applied to any agent without requiring that the agent satisfy an

infallibility property, the COAT Theorem is much more widely applicable than the

Gibbs conjecture. Another aspect of its wide applicability is the fact that the set of

theorems in the F chosen for the application need not be computably enumerable

(but can be, if such an F is desired). The statement and proof of the COAT

Theorem also avoid using the mathematically-undefined concept of human

reasoning.

Suppose the mathematical function A models some real-world agent so that the

input–output of A is fully due to that real-world agent. Informally speaking, if

assertion (1) holds then it is impossible for any software to accurately simulate that

real-world agent; for consider the contrapositive of that implication. Compare this

with the illustration of the human chess grandmaster near the beginning of the

preceding section.

Assertion (2) implies—and is considerably stronger than saying that—it is

impossible for A to produce an output related to the specific halting problem in (2)

such the output contains a formal proof and satisfies our definition of being

‘‘logically correct’’ output. In the rest of this paragraph, we discuss the situation

when assertion (2) is true, letting s denote the corresponding true arithmetical

statement mentioned in that assertion. The statement s is a true statement of PA that

A cannot always decide is true. That is, A is limited in its mastery of a particular

arithmetical truth in the sense that A cannot decide s is true when given input that is

the specific halting problem mentioned in (2) and thus is input related in a

straightforward computational way to the pair consisting of s and its negation. [As

illustrated by the proof attempt in our preceding section, unusual care is needed

when proving a ‘‘particular’’ limitation to a not-necessarily consistent agent, and our

approach has been to bind into a single input (what we call a ‘‘specific halting

problem’’) two opposite halting assertions. There could be other situations in which

the A mentioned earlier in this paragraph could be reasonably said to ‘‘decide’’ that

the corresponding true statement s of assertion (2) is true. For instance, suppose we

define a 0 (‘‘false’’) or 1 (‘‘true’’) output of an agent to be a ‘‘decision’’ by that agent

of the truth value of an input that is the code for a PA statement having the form

H½#P� or :H½#P�, rather than an input that is the code for what we call a ‘‘specific

halting problem’’. Then it is possible that agent A could give output 1 for input that

is the code for s. Nonetheless, we have the italicized definitive limitation on the

ability of A to master a particular arithmetical truth.]
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Assertion (2) implies that the particular true statement s of PA that agent A
cannot master is an ‘‘absolute’’ truth, in the sense of ‘‘absolute’’ mentioned in our

Introduction; that is, the truth of that statement holds—using Gödel’s wording

here—‘‘in an absolute sense, without any further hypothesis’’, given the three

widely-accepted assumptions mentioned in the Introduction. (Also, those three

assumptions could be weakened somewhat and one still could obtain a result similar

to the COAT Theorem. For instance, the assumption that the Church–Turing Thesis

holds can be avoided by expressing ‘‘software’’ and ‘‘computational’’ in the COAT

Theorem in terms of deterministic Turing machine concepts, as we have done in the

proof of that theorem.)

We now discuss the final sentence of the theorem. As clarified near the beginning

of the preceding section, our mathematical framework does not assume agents are

infallible; for instance, it is possible within our framework that all of an agent’s

decisions could be incorrect, or that all but one of the agent’s decisions could be

incorrect, or that any number of an agent’s decisions could be incorrect and any

number of the agent’s decisions could be correct. Recall from our footnote 5 that the

official chess rules accommodate fallible chess players: a player who makes one

illegal move in a chess match can still win the chess match, with the illegal move

ignored (except there is a time penalty, and just one such illegal move is permitted).

Our mathematical framework accommodates fallible agents even more than does

chess, by ignoring any number of an agent’s ‘‘illegal’’ outputs (i.e., outputs that are

not in the defined acceptable form for an output). Thus, for any specific halting

problem hP;Halt?i for which A actually gives output but simply does not format

that output correctly, that output of A is ignored according to our mathematical

framework. That is, our mathematical framework considers an agent to be what the

preceding section defines as a ‘‘decision system’’. Thus, by the final statement of the

theorem, if assertion (1) fails to hold, then a specific halting problem that is a

particular example of the lack of mastery of A for arithmetical statements can be

computationally determined from the code of the resulting simulation software.

Our intent has been to use the word ‘‘particular’’ in a special way in this article.

That word appears in our brief explanation of Gödel’s Second Incompleteness

Theorem (which is why it appears in the conjecture at the beginning of the article,

which is based indirectly on that theorem of Gödel), and that word also appears in

the statement of the COAT Theorem. We now explain our intended meaning of that

word. First, consider its use in our description of Gödel’s Second Incompleteness

Theorem, a theorem that does not merely say that there exists a true unprovable

statement within a certain kind of formal system S (a fact already implied by

Gödel’s Incompleteness Theorem), it says there is a special such statement, ConS.

Based on mathematical logic, one can construct a computable function such that,

when the function is given as its input a full mathematical description of any

appropriate S satisfying the hypothesis of the Second Incompleteness Theorem, the

function would produce as its output a statement ConS for that system S. That is why

we consider that formal statement to be ‘‘particular’’, rather than an arbitrarily

chosen entity (once a function as described in the preceding sentence has been

constructed) having the desired property of being true and unprovable. Next

consider the use of ‘‘particular’’ in the COAT Theorem. Although Charlesworth
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(2006) does not consider anything analogous to the COAT Theorem, it follows from

the proof of its Lemma 7.15 that one can construct a computable function having

the properties described in the final sentence of the COAT Theorem: a function that

takes the code of any decision system counterexample of assertion (1)—if there is

such a counterexample—as its input and produces as its output the code of an

example of a specific halting problem that satisfies the description in assertion (2).

That is why we consider such an example of assertion (2) to be ‘‘particular’’, rather

than an arbitrarily chosen entity (once a function as described in the preceding

sentence has been constructed) having the desired property of satisfying assertion

(2). In addition to the fact that each of Gödel’s Gibbs conjecture and the COAT

Theorem provides an inclusive or related to computationalism and ‘‘absolute’’ truth,

each identifies a particular limitation related to the mastery of ‘‘absolute’’

arithmetical truth.

Discussion of Specific Phrases in the Gibbs Conjecture

This section considers the use of the phrases ‘‘evident axioms’’, ‘‘infinitely

surpasses’’, and ‘‘diophantine problem’’ in the statement of Gödel’s Gibbs

conjecture.

Gödel’s use of the phrase ‘‘evident axioms’’—that is, axioms that are evidently

true—is problematic since logicians recognize the phrase lacks clarity. As J.

R. Shoenfield pointed out in his book Mathematical Logic:

An interesting question is whether every mathematical truth (or at least every

mathematical truth expressible in L(N)) can be proved from axioms which are

evidently true. However, we cannot hope to make much progress with this

question until we understand more clearly what is meant by being evidently

true. Shoenfield (1967), p. 133.

(Here L(N) means the language of a specific system of formal arithmetic Shoenfield

used in his book). The statement of the COAT Theorem avoids that problematic

issue by avoiding the use of the phrase ‘‘evident axioms’’ or a similar word or

phrase.

Gödel’s phrase ‘‘infinitely surpasses’’ is problematic because that phrase can

suggest a human or set of humans can carry out a process of reasoning about an

infinite number of mathematical truths. [In another context Gödel has been quoted

as saying ‘‘By mind I mean an individual mind of unlimited life span’’ Wang

(2001), p. 189.] The statement of the COAT Theorem also avoids that problematic

issue, by not requiring the agent it mentions to make decisions about infinitely many

halting problems. It is possible that the total number of decisions such an agent

makes could be infinite, but it is also possible that it could be any finite number,

including zero.

Gödel’s use of the phrase ‘‘diophantine problem’’ has the advantage of selecting a

kind of arithmetical problem whose nature seems simple, at least on the surface. It is

more difficult to explain the nature of the true arithmetical statement mentioned in

assertion (2) of the COAT Theorem, to a person unfamiliar with the representation
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within PA of assertions about Turing machines. Citing a kind of arithmetical

problem whose nature seems simple to a broad audience is not essential if one’s goal

is a theorem about computationalism and ‘‘absolute’’ truth.

Summary

This article’s single purpose is to seek to use mathematics to improve an argument

about minds and machines given by Kurt Gödel, rather than to prove theorems

sharply different from those of Charlesworth (2006, 2014), or to include a

philosophical discussion of the extensive literature of commentary related to

Gödel’s Gibbs conjecture, including somewhat-related well-known arguments—that

had a different purpose than Gödel’s stated purpose—given by J. R. Lucas and

Roger Penrose. (We would not suggest comparing this article with any of Gödel’s

articles, except to say that most of his articles also had strictly mathematical

purposes. Although he mentioned the Richard Paradox and Liar Paradox [Gödel

(1986), p. 149] in the groundbreaking article that stated his Second Incompleteness

Theorem as its Theorem XI, that article included no discussion of the philosophical

literature related to those paradoxes.)

The mathematical framework underlying the COAT Theorem avoids the standard

simplification often made by logicians (when considering issues relevant to a topic

like that of the present article) that Turing machines and formal logical systems are

generally logically interchangeable with one another. Here is part of that standard

simplification: ‘‘given any formal language L, any Turing machine M can be made

to correspond to a formal system S in L, by extracting from the numbers it

enumerates those that are the Gödel numbers of L, and taking their deductive

closure to be the theorems of S.’’ Feferman (2006), p. 138. It follows from that

simplified way of associating a Turing machine with a formal system that ‘‘To say

that the human mind—in its capacity as a producer of mathematical truths—is

equivalent to a finite machine amounts ... to the same thing as saying that the set of

humanly demonstrable theorems can be axiomatized by an effectively given formal

system S.’’ ibid, p. 7. Notice that the ‘‘deductive closure’’ requirement within that

simplification implies an extremely strong infallibility assumption about human

reasoning: humans would be assumed to have the capability of producing any of the

theorems within such a formal system S; when S is PA there is no upper bound13 on

the length14 of a required proof and humans would also be assumed never to

produce a result that fails to be a (correct) theorem of the formal system S. In

contrast, in the framework underlying the COAT Theorem, less than 1% of the

decisions by an agent modeled by a Turing machine need to be correct decisions,

and the agent can make blatantly inconsistent decisions; see the second paragraph of

our section ‘‘Mathematical Framework’’. Yet, since there is no ‘‘deductive closure’’

13 Such an upper bound would imply a decision method for PA, contradicting Church’s Theorem; see

Shoenfield (1967) for a statement of Church’s Theorem.
14 A reminder: numbers themselves can be extremely large even when denoted using concise notation.

Donald Knuth has suggested that ‘‘the magnitude of this number 10 """" 3 is so large as to be beyond

human comprehension’’; see Knuth (1996), p. 1236.
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requirement on such an agent, the agent need not make any additional incorrect

decisions.

Avoiding the simplification discussed in the preceding paragraph is one key part

of the path to the COAT Theorem. Our section ‘‘Mathematical Framework’’ begins

by describing several ways the framework avoids infallibility assumptions about an

agent’s reasoning. The hypothesis of the COAT Theorem itself avoids infallibility

assumptions. In contrast, as explained in our section ‘‘The Conjecture in Gödel’s

Gibbs Lecture’’, Gödel’s argument in support of the Gibbs conjecture—based on his

Second Incompleteness Theorem—crucially depends on the assumption that human

reasoning is perfectly consistent, where we use the modifier ‘‘perfectly’’ to

emphasize that the consistency must be without exception. Thus, by avoiding

assumptions about the infallibility of the agent mentioned in its statement, the

COAT Theorem is a new result that differs sharply from the Gibbs conjecture.

Gödel’s Gibbs conjecture uses the phrase ‘‘absolutely unsolvable’’, yet his

argument in support of his Gibbs conjecture assumes that the only way humans make

decisions about mathematical and logical questions is to use deductive reasoning.

That restrictive assumption is not made in the context of the COAT Theorem, which

permits but does not require a formal proof to accompany an agent’s decision.

Cognitive scientists study a variety of ways that humans reason. The book How We

Reason summarizes that variety, including deduction, induction, and abduction

Johnson-Laird (2006). The part of that book entitled How We Make Deductions

summarizes scientific evidence from that author’s experiments that suggest humans

often employ what are termed ‘‘mental models’’ when given questions related to

predicate logic, rather than employing what logicians would term ‘‘deductions’’.

In addition to the above distinctions between the COAT Theorem and the Gibbs

conjecture, the Gibbs conjecture does not qualify for being the statement of a

theorem. The critique of Gödel’s Gibbs lecture in Feferman (2006) points out several

ways the Gibbs conjecture fails to be a mathematical theorem, largely due to the lack

of mathematical definitions for several of its concepts: ‘‘the human mind’’, ‘‘evident

axioms’’, and ‘‘infinitely surpasses’’. Although Gödel judged the Gibbs conjecture

sufficiently important to become a main focus of his 1951 highly-visible invited

lecture to the American Mathematical Society, and although he published a few

articles between then and his death in 1978, he never published that conjecture. A

possible explanation is his well-known preference for publishing theorems rather than

imprecise conjectures,15 and that he did not find a mathematical way to formulate and

prove something more like his Gibbs conjecture than his Second Incompleteness

Theorem. Another possibility is that he came to realize, and was unable to overcome,

what many others would view as the highly questionable use of an idealization of

humans within his argument. His Gibbs lecture was only published posthumously, in

the part of his Collected Works containing his unpublished papers Gödel (1995).

Among other things, the COAT Theorem answers the following questions: Can a

mathematical theorem related to the Gibbs conjecture be obtained? Can the

hypothesis of such a theorem avoid assuming an agent must have strong infallibility

15 Recall the Wang quote mentioning Gödel’s concern for ‘‘clarity and certainty’’, in our section ‘‘The

Conjecture in Gödel’s Gibbs Lecture’’.
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properties? Can the hypothesis of such a theorem avoid assuming that the reasoning

by the agent mentioned in the theorem must be deductive? When an agent does use

deductive reasoning, can the hypothesis of such a theorem avoid assuming that the

formal theorems within the formal system the agent uses must be computably

enumerable (which would imply there is a single Turing machine that is at least as

successful making and correctly justifying mathematical decisions as all other

possible agents, including humans)? Are phrases like ‘‘human mind’’ and ‘‘evident

axioms’’ and ‘‘infinitely surpasses’’ necessary in such a result? The answers to these

questions are yes, yes, yes, yes, and no, respectively.

The COAT Theorem also raises questions. Many questions about the appropri-

ateness of the mathematical framework we use are answered in Charlesworth

(2014). For example, those explanations indicate how one can view each ‘‘rigorous’’

(according to the current standard criterion for rigor in mathematics) conjecture as a

halting problem without confusing the formalization of a problem (within a Kleene-

like hierarchy of problems) with the formalization of provability of a problem in

Zermelo–Fraenkel Set Theory.

The degree of belief in each of the two assertions in the inclusive-or COAT

Theorem might vary from person to person, when the theorem is applied to any

specific agent A. The COAT Theorem essentially implies there should be a rational

constraint on those two degrees of belief for any single person.16

Many who might be interested in the relevant issues may not have taken an

opinion position related to the assertions in Gödel’s Gibbs conjecture since they

gave that conjecture little thought because that conjecture was clearly not a theorem

or because Gödel’s argument in support of it crucially depends on an infallibility

assumption or because his argument crucially assumes that reasoning about

arithmetical truths must be purely deductive. Will that change, now that there is a

mathematical theorem that avoids those assumptions? Will others be stimulated to

provide fresh reasons to justify such opinions?

Finally, will the COAT Theorem—and its demonstration of how a mathematical

model in terms of Turing machines has an advantage over a mathematical model in

terms of formal logical systems when seeking such a theorem and its illustration of

the relevance a simple mathematical function can have to computationalism—

stimulate others to seek ways to improve upon it?
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16 A metaphor might help. First, recall that according to one established interpretation, a probability

represents a ‘‘degree of belief’’ in an assertion, Russell and Norvig (2010), p. 504. The alternative

terminology ‘‘plausibility’’ is used in Jaynes (2003). The COAT Theorem implies that one’s degree of

belief in its first assertion should be constrained by one’s degree of belief in its second assertion and vice

versa, since the sum of the two degrees of belief (each of which is a real number from 0.0 to 1.0 inclusive)

should be from 1.0 to 2.0 inclusive. If considering its first assertion highly plausible corresponds to

shining a bright red light upon a white lab coat and its second assertion highly plausible as shining a

bright green light, then both assertions highly plausible corresponds to shining a very bright golden-

yellow light, due to the additive nature of two colored light beams. That gives a metaphorical ‘‘coat of

many colors’’, in the sense that people having differing opinions about the plausibility of one or both of

the two assertions would have differing views of the color of the coat.
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