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Abstract
Machine Learning (ML) is on the rise in medicine, promising improved diagnostic, therapeutic and prognostic clinical 
tools. While these technological innovations are bound to transform health care, they also bring new ethical concerns to the 
forefront. One particularly elusive challenge regards discriminatory algorithmic judgements based on biases inherent in the 
training data. A common line of reasoning distinguishes between justified differential treatments that mirror true disparities 
between socially salient groups, and unjustified biases which do not, leading to misdiagnosis and erroneous treatment. In 
the curation of training data this strategy runs into severe problems though, since distinguishing between the two can be 
next to impossible. We thus plead for a pragmatist dealing with algorithmic bias in healthcare environments. By recurring 
to a recent reformulation of William James’s pragmatist understanding of truth, we recommend that, instead of aiming at a 
supposedly objective truth, outcome-based therapeutic usefulness should serve as the guiding principle for assessing ML 
applications in medicine.
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Introduction

“Ethics and epistemology are always very closely related, 
and if we want to understand our ethics, we must look at 
our epistemology”, the British philosopher and novelist Irish 
Murdoch noted in her early essay Metaphysics and Ethics 
(Murdoch 1957, p. 113). Her statement rings eminently true 
with regard to ethical challenges posed by the integration of 
Artificial Intelligence (AI) into health care. Medical deci-
sions are increasingly aided by recommender systems based 
on machine learning (ML) that support health care provid-
ers, e.g. in choosing an appropriate diagnosis or treatment 
for their patients. Particularly promising are programs using 
Deep Learning (DL) based on Artificial Neural Networks 
(ANN) (Topol 2019b; Esteva et  al. 2019). While much 
research has been devoted to ML-based diagnostic classi-
fiers, ranging from oncology to psychiatry, recent advances 

also promise more robust predictive measures of immediate 
clinical utility. For example, it has been shown that ML-
based systems can identify patients suffering from chronic 
lymphocytic leukaemia (CLL) for whom additional immu-
nosuppression would constitute a major risk for infection 
(Agius et al. 2020). Another very recent application of ML 
promises early predictions of circulatory failure for patients 
in intensive care settings (Hyland et al. 2020)—without 
doubt of high interest during the Covid-19 pandemic, and 
the list of such applications is ever increasing. For these 
reasons, many expect DL to revolutionize medicine and to 
constitute a major paradigm-shift in the practice of medicine 
towards an era of “Deep Medicine” (Topol 2019a).

By enhancing treatment and freeing time for patient-
physician interactions, these new developments have great 
potential to improve clinical care. Still, they also pose 
numerous ethical challenges that are narrowly tied to epis-
temological questions concerning these programs. Of key 
concern are the replication and reinforcement of existing 
discriminatory practices by training ML programs on biased 
data. As is well documented, bias in medicine is pervasive, 
whether it is based on unconscious prejudices or rooted in 
systematically skewed data collection, e.g. through clinical 
trials carried out predominantly with male participants. In 
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some instances, such biases can be easily detected and coun-
tered by appropriate data curation, for instance by assur-
ing an appropriate balancing of male and female training 
cases. In other instances, such biases remain hidden and may 
prove impossible to trace, particularly if the target variable 
of interest, such as a diagnostic category, is based on medi-
cal convention.

Following the lead of others, we therefore turn our atten-
tion to questions of epistemology (Grote and Berens 2020), 
and propose a different approach which takes inspiration 
from philosophy of science. Following a recent reformula-
tion of William James’s pragmatist theory of truth (Chang 
2017), we argue that for some medical contexts, the debate 
about bias can be improved by shifting the focus of atten-
tion beyond the mere correspondence of input and target 
variables. Instead of clinging to a supposedly objective truth 
of the training data, the outcome-based clinical utility of 
any medical ML program should be put to the forefront. 
The paper proceeds in three steps: first, we introduce the 
notion of algorithmic bias and provide some salient exam-
ples of bias in medicine. We then provide a critique of an 
understanding of ground truth based on the correspondence 
theory of truth and suggest an alternative pragmatist read-
ing. Lastly, we show how such an alternative view could be 
applied to reshape the debate about biases of medical ML. 
Modifying Box’s well-known maxim that all models are 
wrong, but some are useful (Box 1976, p. 792), we propose 
what one may call James’s maxim: that some models are 
true precisely because they are useful (James 1907 [1922], 
p. 204).

Bias in medical machine learning

Bias has been at the forefront of ethical debates both in ML 
and in medicine for decades. The word originates from the 
Old Provençal word biais, where it described the behaviour 
of balls with a greater weight on one-side (OED 2020). In 
consequence, these balls tended to roll systematically in an 
oblique line into one particular direction and thus shifted 
the odds of a game. In the modern metaphoric sense, bias 
similarly describes such one-sided tendencies, usually with 
regard to decisions that systematically and erroneously 
favour or disadvantage particular decisions over others. In 
the context of ML, such biases take many different forms and 
can stem from various causes but are commonly summarized 
by the term algorithmic bias. Danks and London have sug-
gested a useful taxonomy distinguishing between five differ-
ent kinds of algorithmic bias, based on where in the design 
or use of a program the bias occurs (Danks and London 
2017). In the context of healthcare, Thomas Ploug and Søren 
Holm have recently distinguished between at least three dif-
ferent ways in which bias could lead to discrimination in 

ML-based diagnostics and treatment planning (Ploug and 
Holm 2020). While our discussion here follows examples 
of algorithmic biases linked to training data, we believe that 
an outcome-oriented approach could equally address other 
forms of biases such as algorithmic processing bias, e.g. 
introduced through the choice of regularization or smooth-
ing parameters (Danks and London 2017, p. 4693).

In medicine, practical examples of biases are frequently 
based on gender or race. They shape a plethora of vital diag-
nostic and therapeutic decisions, leading for example to the 
classic case of missed myocardial infarctions in women, 
which do not show the supposedly typical symptoms of a 
heart attack prevalent in men (Hobson and Bakker 2019). 
Another well-researched case concerns psychiatric decision 
making in black populations: black US-Americans are much 
more likely to be diagnosed with schizophrenia when pre-
senting with affective symptoms than their Caucasian peers 
(Strakowski et al. 2003). White patients presenting with sim-
ilar symptoms are in turn more likely to be diagnosed (argu-
ably correctly) with mood disorders such as major depres-
sion. Partially, this persistent phenomenon of misdiagnosis 
is thought to arise from socially entrenched biases passed 
on by clinicians (Gara et al. 2019). Other examples include 
widespread misperceptions about pain management in black 
patients based on erroneous assumptions about physiologi-
cal differences between black and white patients (Hoffman 
et al. 2016).

The rise of ML in medicine runs risk to exacerbate such 
biases, since structural racism is known to shape the col-
lection and integration of data as well as the delivery of 
targeted therapeutic interventions (Geneviève et al. 2020). If, 
for example, one were to use the historical health records of 
black patients treated for schizophrenia in the US to train a 
diagnostic ML program, it would arguably use race as a pre-
dictor for its calculations and continue the overdiagnosis of 
schizophrenia in its recommendations. However, one would 
not only risk purporting false clinical judgements from the 
past in the diagnostic ML program. More problematically, 
if such procedures would be dignified by the common belief 
in the objectivity of algorithms (Galison 2019), discrimina-
tory practices will become even more entrenched in medical 
practice and more difficult to address. Existing biases could 
become deeply hidden in the hyperparameters of an ANN, 
beyond the grasp of human understanding and intervention. 
Such algorithmic bias would skew the recommendations 
systematically for one particular group resulting in unfair 
treatment.

What about instances where we actually do want to dis-
cern between different socially salient groups though? A dif-
ferent example, where ethnicity also plays a crucial role, may 
serve as a useful example here. Systemic lupus erythema-
tosus (SLE), a severe autoimmune rheumatological disease 
which typically affects the skin, but also many other tissues 
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and internal organs, is known to affect more women than 
men and have a significantly higher prevalence in people of 
African, Asian or Hispanic descent (Lewis and Jawad 2017). 
Similar to schizophrenia, the exact underlying aetiology is, 
as of now, still unclear, rendering diagnosis rather difficult. 
With gender and ethnicity being crucial predictors for the 
occurrence of SLE, it would seem justified to include infor-
mation on the ethnicity or gender of patients in the training 
data for a diagnostic program for this disease. In contrast to 
schizophrenia, such inclusion could be seen as warranted 
since it accurately mirrors true disparities between socially 
salient groups.1

Unfortunately, in most medical examples the relation 
between the predictor and the target variable, which shapes 
the so-called ground truth for an ML algorithm, is difficult to 
determine since the features of interest are based on medical 
convention. In such instances, the feature may prove to be 
somewhat of a shifting target, e.g. due to changing diagnos-
tic classifications over time. Diagnostic categories in psy-
chiatry, which have shifted drastically over the past decades, 
as seen easily by the consecutive revisions of the Diagnostic 
and Statistical Manual of Mental Disorders (DSM) over the 
past decades, may serve as a particularly salient example. 
Here, distinguishing between wrong biases that lead to mis-
diagnosis and erroneous treatment and justified differential 
treatment that mirrors true differences seems highly chal-
lenging—particularly for the many conditions and treatment 
options where underlying causal relations remain unclear 
(London 2019). Yet, simply leaving out potentially discrimi-
natory labels such as gender or ethnicity as input variables 
can apparently not solve the problem either. After all, to our 
best knowledge, ethnicity and gender seem to play a role 
for diagnostic, therapeutic and prognostic purposes in many 
diseases, as the example of SLE highlights. So, what may 
we do about these unclear instances of bias, in lieu of a clear 
standard against which to measure it?

Bias and the pragmatist theory of truth

A common strategy to address the problem of bias is to 
further the transparency of ML models (Mittelstadt et al. 
2019; Vayena et al. 2018). The underlying assumption is 
that greater transparency will render algorithmic bias easier 
to detect and help understand a program’s erroneous deci-
sions, so that one can correct the algorithm’s mistakes and 
avoid bias by curating the input variables accordingly. For 

many instances this solution can be sufficient, e.g. to identify 
so-called Clever Hans predictors that base a ML program’s 
classification strategy on irrelevant correlations. A good 
example for such a misleading predictor is a program bas-
ing the classification of an image as ‘horse’ on a source tag 
in the training images for horses (Lapuschkin et al. 2019). 
Based on such ill-curated input data, the program will erro-
neously assume that all future testing images displaying 
this source tag depict horses, largely independent from the 
image’s actual content. Increasing a program’s transparency, 
one could identify the source tag as a decisive, yet mean-
ingless factor for the decision-making process, enabling an 
ex-post correction. Transferred to the clinical example, if 
an explainable program allows seeing that a diagnosis of 
schizophrenia is at least partly based on a person’s skin col-
our, anyone commanding trained judgement could notice 
this as erroneous and account for it.

In medicine, checking a program’s decisions is not just 
a technical challenge though. Returning to the two clini-
cal examples, both schizophrenia as well as SLE constitute 
heuristic constructs based on a number of diagnostic crite-
ria, while the underlying aetiology remains subject to scien-
tific debate. Put differently, there is no valid gold standard 
for establishing a ground truth—a wide-spread problem in 
medicine, that concerns all medical fields, even those with 
supposedly clear-cut pathological correlates such as oncol-
ogy (Adamson and Welch 2019). After all, most biological 
differences only become meaningful in medicine if they are 
correlated with symptoms and complaints—a process that is 
by definition highly conventional and ultimately also prag-
matic. How may one distinguish in these instances between 
irrelevant correlations, shaped by human prejudice and 
convention, and causally relevant, yet currently unknown, 
predictors, e.g. based on genetic factors that are more preva-
lent in certain groups? One seemingly easy remedy to avoid 
discriminatory practices would be to forego the potentially 
problematic category altogether. For example, one could 
simply leave out ethnicity or gender as an input to achieve a 
non-discriminatory program.

Prima facie, this would safeguard the World Medical 
Association’s Declaration of Geneva, prohibiting consid-
erations of ethnic origin, gender or race to interfere with 
medical duties (Parsa-Parsi 2017). However, this approach 
runs into two major problems. First, it has been shown to 
be very challenging to implement, since the category which 
should not influence the training data may be inferred by 
other seemingly innocent input data, with ZIP-codes and 
socio-economic status being amongst the most obvious 
(Mehrabi et al. 2019). Second, for specific instances, e.g. 
unequal distribution of genetic disease predisposing factors 
in humans from different races, some form of positive dis-
crimination may seem warranted, justifying the inclusion 
of ethnicity in the training data. Again, the example of SLE 

1  Of course, this is not to make any metaphysical claims or advocate 
a naturalistic understanding of diseases. We merely want to highlight 
that categories such as gender or ethnicity, intricately related to social 
and environmental factors, can often serve as useful predictors for 
diagnostic or therapeutic decisions.
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can serve as a useful example here. As discussed above, 
SLE mainly affects populations which constitute minorities 
in most Western countries. If ethnicity was categorically 
excluded as a potential input in the training data, it would 
be more difficult to obtain a correct diagnosis for this vulner-
able population. Rendering the diagnosis of a disease such 
as SLE less accurate in minority populations by disregarding 
race could easily be regarded as discriminatory.

One solution to this conundrum may lie in taking a step 
back and looking at the relation between input and output 
space anew, which as the terminology of the field already 
indicates, is supposed to be a truth relation. The way such 
truth is usually constructed assumes the classic understand-
ing of truth, namely the correspondence theory of truth.2 
Commonly ascribed to Aristotle, this theory posits that a 
proposition “p” is true if and only if it corresponds to some 
fact. Put differently, according to this theory truth describes 
a relation between a truth bearer such as a proposition or a 
judgement and a truth-maker, such as an observable fact in 
the empirical world. In the context of ML, the ground truth 
relation can be similarly described as a mapping of different 
spaces onto each other.

In its simplest form, such mapping occurs between an 
observable input space and an intended output or decision 
space. In addition to these, some authors have proposed add-
ing a so-called construct space in-between these two, captur-
ing unobservable, yet meaningful predictors, as a third medi-
ating space to formally address structural bias (Friedler et al. 
2016). Seemingly, one could also apply their framework to 
the medical cases at hand here: the input space would con-
tain clinical observations, e.g. symptoms or clinical findings, 
whereas the decision space would contain the recommended 
treatment. The construct space could be found in the agreed 
upon diagnostic criteria that are presumed to be of relevance 
by the medical community. Unfortunately, for the many and 
highly relevant cases in medicine where such causal rela-
tions between the different spaces continue to be unknown, 
such mapping remains highly spurious. As long as we do 
not know, for example, the causal link between brain-based 
pathology causing psychotic episodes, the presumed diag-
nostic construct of schizophrenia and the therapeutic mecha-
nism of specific antipsychotic drugs, any such mapping will 
remain to some extent arbitrary and open to challenge.

However, there are also other ways to construe truth, that 
look at practices rather than at propositions and which may 

be better suited to the medical contexts at hand. One sugges-
tive model is the pragmatic theory of truth, the best-known 
version of which was formulated by William James in 1907 
(James 1907 [1922]). James, who tellingly had received 
medical training himself, famously stressed the practical 
value of statements. Turning against both rationalist and 
empiricist conceptions, James argued for defining their truth 
in terms of utility. In his lectures Pragmatism: A New Name 
for Some Old Ways of Thinking, James famously espoused 
this “instrumental view of truth”, describing it as “any idea 
upon which we can ride, so to speak; any idea that will carry 
us prosperously from any one part of our experience to any 
other part, linking things satisfactorily, working securely, 
simplifying, saving labour” (James 1907 [1922], p. 58). His 
challenge to the correspondence theory finally culminates 
in his frequently cited statement that “you can say of it then 
either that “it is useful because it is true” or that “it is true 
because it is useful”. Both these phrases mean exactly the 
same thing” (James 1907 [1922], p. 204).

Ever since their publication, these claims have subjected 
James to myriads of strong criticism, due to his supposedly 
antirealist stance (Capps 2019). Notwithstanding this cri-
tique, we take it that a pragmatic approach may be worth 
reconsidering for construing truth in medical ML and, in 
particular, to address some of the ethical challenges posed 
by algorithmic bias. However, to do so, it may be more con-
venient to turn to a contemporary reading of James from the 
philosophy of science, which already addresses the criti-
cism of James’s account. The philosopher of science Hasok 
Chang, whose work has already been successfully employed 
to address other challenges in the context of nosology 
(Kendler 2012), prominently advocates a Jamesian pragma-
tist model of epistemology in the sciences. Chang reframes 
James’s model to provide an understanding of truth based 
on operational coherence, rooted in action. While Chang 
explicitly rejects a correspondence theory of truth, his notion 
of coherence also “goes beyond consistency between propo-
sitions; rather, it consists in various actions coming together 
in an effective way towards the achievement of one’s aims” 
(Chang 2017, p. 109).

Applied to the medical context, such aims can entail sim-
pler tasks such as immobilizing a broken bone with a plaster 
cast to promote its healing process, or highly complex aims 
requiring many different actors. The recent development of 
workable tracing apps to contain the spread of Covid-19 may 
serve as an example here. Within such given contexts, true 
statements are those necessary to achieve one’s aims. As 
Chang puts it: “A statement is true in a given circumstance 
if (belief in) it is needed in a coherent activity” (Chang 
2017, p. 113). Based on the coherent system in question, 
different and possibly contradictory statements may have 
been adopted as true in the history of science insofar as they 

2  We do not intend to make any claims concerning the factual episte-
mological beliefs of ML developers here. Many may in fact embrace 
an instrumental understanding of truth, whether explicitly or implic-
itly. However, the term ground truth itself and its historical origins 
in geography and aerial reconnaissance, referring to the physical 
ground, seem to suggest a relation of correspondence (Gil-Fournier 
and Parikka 2020).
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produced or improved certain kinds of knowledge for par-
ticular aims.

Given this historical contingency of science, one may 
be tempted to disregard the notion of truth in science alto-
gether. While James’s original approach may seem to sup-
port such a relativist stance, rendering the world dependent 
upon the interests of its describer (Putnam 1994, p. 448), 
Chang’s model of operational coherence does not severe 
the crucial connection between knowledge and reality in a 
similar fashion, precisely because it demands to be rooted in 
empirical facts: “operational coherence cannot be achieved 
in an arbitrary fashion by decree, wishful thinking, or mere 
mutual agreement. On the contrary, in order to do things 
successfully in the world, we need to have an understanding 
and mastery of our surroundings. It is operational coher-
ence, not the mirage of correspondence, through which the 
mind-independent world is actually brought to bear on our 
knowledge” (Chang 2017, p. 112).

Leaving more fundamental philosophical questions aside, 
this implies two crucial practical benefits for its applica-
tion to medical ML. First, it does not undermine the power-
ful notion of scientific truth in the public sphere—a notion 
that seems to be intricately related to public trust in science 
(Shapin 1995). Second, it supports retaining the vocabulary 
of (ground) truth as a technical term for the necessary pair-
ing of input and output variables (Gil-Fournier and Parikka 
2020), without making overly ambitious claims about medi-
cal truths—which as we have seen are frequently subject to 
contingent conventions. As Chang notes, his approach of 
“[c]hecking for pragmatic necessity may not live up to some 
overblown image of a philosophical test, but it is how we 
get on in science, and in the rest of life too” (Chang 2017, 
p. 115). In the following, we will show what this may mean 
practically in the context of medical ML.

Bias in medical ML: a pragmatist approach

We argue that a pragmatic understanding of “ground truth” 
can be highly informative for algorithmic bias in medical 
ML. Clearly, the overarching aim of the medical commu-
nity needs to concur with the Ancient Hippocratic idea: 
the aim of medicine is to work for the benefit of the sick, 
to cure them or at least make them better. In our opinion, 
these general ambitions provide a rather clear purpose for 
our collective epistemic practices—even though the exact 
determination of its content will be subject to much debate 
for different applications in different diseases and diverse 
clinical contexts. To enable an open debate about the clinical 
utility of particular programs and their potential risks, it is 
worth trying to consider medical ML in terms of operational 
coherence guided by specific medical aims. Outcome-based 
therapeutic usefulness should serve as the guiding principle 

for their design, not a recourse to a supposedly objective 
truth based on a static correspondence theory.3

Returning to the two clinical examples of schizophrenia 
and SLE, we can now apply this model to the context of 
bias in medical ML. In the case of schizophrenia, it seems 
clear that the diagnostic practice of US psychiatrists of read-
ily diagnosing their black patients with schizophrenia did 
not further their well-being but may in fact have resulted in 
maltreatment and harmful medication and should hence be 
abolished. In comparison, the case of lupus provides quite 
a different picture. Here, a differentiation based on ethnic-
ity could contribute to patients’ well-being, if it increases 
diagnostic accuracy resulting in adequate treatment; it would 
thus be (to some degree) warranted to be included in the 
construction of ground truth.

There are at least three points of major concern that could 
be levelled against this position. First, one could argue that a 
utility-based account of ground truth is not adequate for all 
medical applications. And indeed, for some instances, mere 
data curation may be sufficient. When causal links between 
clinical observation, diagnostic construct and available treat-
ment are clearly established, interpretable or explainable ML 
models can help to identify misleading or unnecessary input 
data. As a classical example one could think of diabetes 
mellitus type 1 (DM1), where the destruction of pancreatic 
beta-cells provides a clear aetiology that can be linked to 
clinical observations such as recurrent hyperglycaemia, the 
diagnostic construct of DM1 with certain predicted meas-
urements under fasting, and the suggested treatment with 
insulin (Stegenga 2018, p. 26). However, as we have shown, 
this is far from the rule in medicine—not only in specialties 
with a notoriously challenging nosology such as psychiatry 
but also in e.g. internal medicine or dermatology. As Alex 
London has argued, the unknown aetiology of many medical 
conditions thus demands a primate of accurate diagnosis and 
treatment over explainability in the context of medical ML 
(London 2019).4

A second and potentially more serious problem con-
cerns the measurement and operationalisation of clinical 
utility.5 After all, a pragmatist evaluation of medical ML 
based on clinical utility will need to be based on clear and 

3  With regard to diagnostic hypotheses, Stanley and Nyrup have 
recently made a similar point drawing on Charles Sanders Peirce, and 
suggested to conceptualise the diagnostic process as a form of strate-
gic reasoning (2020).
4  While we agree with London (2019), who recommends prioritizing 
accuracy over explainability in the context of medical ML, we believe 
that a pragmatic focus on clinical utility may be better suited to stress 
the value-ladenness of ML systems as well as their embeddedness in 
a pragmatic context.
5  We would like to thank two anonymous reviewers for their help in 
making this point more explicit.
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operationalizable criteria to avoid an infinite circle and 
yield a useful guide for developers and regulating bodies. 
At the same time, one should also aim to avoid an overly 
prescriptive and potentially paternalistic definition of clini-
cal utility, without patient involvement. The increasing use 
of short- and long-term Patient-Reported Outcome Meas-
ures (PROMs) aims to address this conundrum (McClimans 
2010), but relies on inherently subjective criteria (Alex-
androva 2017, pp. 135–138). Of course, this is a problem 
that not only applies to medical ML, but evidence-based 
medicine more generally, and defies a simple and general 
answer. In consequence, heading Jacob Stegenga’s advice 
that “(t)he instruments employed in clinical research should 
measure patient-relevant and disease-specific parameters” 
(Stegenga 2015, p. 62), it may be fruitful to return to the 
concrete examples of SLE and schizophrenia.

In the case of schizophrenia, the very construct of the 
disorder, as laid out in ICD-10 and DSM5, largely relies on 
clinical observations by the attending psychiatrist, which 
are based on verbal self-reports from the patient. Outcome 
measures of schizophrenia are thus always multi-faceted 
attempts to grasp this complex reality—including neurobi-
ological measures, drop-out from antipsychotic treatment, 
hospitalisations, structured symptom scales and patient-
reported outcomes such as personal well-being—and have 
changed drastically since the disorder was first described 
by Kraepelin in 1896 (Burns 2007). In addition, since the 
course of the disorder seems to be influenced heavily by 
social context (Leff et al. 1992), outcome measures need to 
be adapted to specific contexts. In comparison, SLE seems to 
pose fewer problems, with standardized and congruent dis-
eases activity scores, based on clinical observations such as 
seizures and objectifiable measures like proteinuria (Ameri-
can College of Rheumatology 2004). Similarly, standardized 
PROMs for SLE have successfully been adapted for differ-
ent cultural contexts (Navarra et al. 2013; Kaya et al. 2014; 
Bourré-Tessier et al. 2013), so the utility of an intervention 
for SLE could tentatively be evaluated based on a combina-
tion of these instruments. Still, as these examples highlight, 
choosing an appropriate outcome-measure will be context- 
and disease-specific, and always open for debate—in the 
context of ML as much as for other medicinal products. It is 
thus crucial that studies are explicit about their operationali-
zation and measurement of clinical benefit, to allow patients 
and physicians to arrive at an informed choice regarding 
their individual use.

A third challenge relates directly to ethics. If we are to 
follow clinical utility as the single most important criterion 
for the evaluation of medical applications of ML, this could 
be misinterpreted as a call for a simplistic reading: that 
maximizing the benefit for the majority of patients justifies 
disregarding the needs of a potentially vulnerable minority. 
Our approach is different insofar as we deem it necessary to 

embrace explicit criteria for algorithmic fairness, derived 
from moral philosophy. We consider John Rawls’ differ-
ence principle to be a potential contender, which prioritizes 
the well-being of those who are worst off (Rawls 1999, pp. 
132–134).

Such a principle may be enacted by constrained optimiza-
tion algorithms that maximize clinical utility but also need 
to satisfy other set conditions, based on evaluations calcu-
lated separately for various subgroups (Corbett-Davies et al. 
2017). There is extensive research from the area of fair ML 
that demonstrates how Rawls’ theory of justice can be practi-
cally incorporated (Lundgard 2020), e.g. as a constraint for 
classification (Jabbari et al. 2017; Joseph et al. 2016) or as 
loss minimization (Hashimoto et al. 2018). Of course, imple-
menting a fairness constraint for ML algorithms requires 
intricate ethical judgements, e.g. concerning who counts as 
worse-off than others, a point which will often be conten-
tious. In addition, there may be good reasons to implement 
fairness constraints that go beyond Rawls, “artificial intel-
ligence’s favorite philosopher” (Procaccia 2019, cit. in Lun-
dgard 2020, p. 3). For instance, in many ML applications 
ensuring the benefit of the patient will require a careful eval-
uation of different layers of vulnerabilities, as Paolo Corsico 
has recently argued with view to psychosis (2020). In the 
medical context, such approaches could translate to regula-
tory rules that demand tests whether an ML program per-
forms worse in ethnic minorities, in terms of clearly defined 
outcome-measures, and denies approval to those which do.

Lessons for the evaluation of medical ML

For the design of medical ML programs, developers should 
thus focus on ex-post corrections of particular ML pro-
grams in medicine and evaluate a program’s performance 
based on the relative treatment outcome within certain 
vulnerable populations.6 The examples of schizophrenia 
and SLE highlight this. Clearly, the pragmatic benchmark 
of a ML-based diagnostic program would be the treatment 
success that results from applying it to patients.7 Let us 
consider two options: (1) implementing a ML program 
designed to be blind to ethnicity and (2) designing the ML 
algorithm in a way that it explicitly or implicitly incor-
porates ethnicity as input variable in the training data. 
Embracing a pragmatic approach, the decision for using 
program 1 or 2 would focus on the clinical results which 

6  It should be noted though that such outcome-based evaluation of 
different programs would need to refer to their entire design process, 
including the choice of respective training data.
7  With regard to diagnostic decisions based on ML, we take it that 
these will also largely affect treatment outcomes since they determine 
the indication of therapeutic intervention.
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either program brings about. If, for example, algorithm 2 
results in better outcomes in both black and white popula-
tions, then the differential treatment would be useful and 
hence, in the pragmatic sense, true. Based on our current 
knowledge, one would expect to find this result for the case 
of SLE. However, if algorithm 1 results in better treatment 
outcomes in both groups, than a differential treatment is 
apparently harmful, biased and should be disregarded, as 
may be the case in schizophrenia.

Still, based on the concept of operational coherence, 
these a priori assumptions require empirical testing. After 
all, one could similarly envision a contrary case, where an 
algorithm explicitly taking into account ethnicity performs 
better in terms of fairness for diagnosing schizophrenia. 
For example, depending on the design, ethnicity could be 
used as a correcting factor that counters the known over-
diagnosis of schizophrenia among black patients. Here, 
transparency will be key for a critical reassessment of the 
assumptions underlying each particular program. Still, the 
choice of ML program will ultimately need to be adjudi-
cated by its tangible clinical benefit.

While this may run counter to preferences in the 
machine learning community to focus on ex-ante mech-
anisms to ensure fairness, such an approach has been 
proven to be highly efficient in addressing discriminatory 
behaviour of algorithms, based for example on gender ste-
reotypes (Zhao et al. 2017). In medicine, some form of 
such ex-post tests on fairness could be integrated in clini-
cal trials, conducted so that a specific program receives 
approval by regulatory bodies such as the US Food and 
Drug Administration (FDA) (He et al. 2019). This would 
also imply that both short- and long-term outcome of the 
ML system are tested and its safety and utility evaluated 
in different phases, transitioning from few healthy volun-
teers to large clinical trials in the target population (Paulus 
et al. 2016).

We thus believe that a pragmatist approach focusing on a 
program’s output would also constitute a viable and realistic 
way to address disparities for medical applications where ex-
ante considerations are potentially impossible due to limited 
etiological knowledge and the often-conventional nature of 
medical practice. If we thereby move closer to accepting that 
also ML will replicate and not remove the shifty and often 
pragmatic ground of medicine, this could be a safeguard to 
avoid an overselling of the promises of medical ML. Such 
a viewpoint may further render us humbler and more will-
ing to accept the epistemic limitations and historical contin-
gency of much contemporary medical knowledge (Stegenga 
2018, p. 185–187). Thus, instead of focusing on potentially 
fruitless nosological speculations, we should instead try and 
privilege a focus on operational coherence, centred around 
the most crucial criterion in the medical domain: the better-
ment of the patient.

Conclusion

In this paper, we have argued for a pragmatic construction 
of truth in the context of supervised medical ML. Fol-
lowing two clinical examples with unknown etiological 
underpinnings, we have defended a position that stresses 
the importance of rigorous ex-post tests for medical ML 
programs to tackle harmful biases. Instead of aiming for 
a potentially unobtainable objective truth, developers, 
clinicians and regulators should pragmatically focus on 
clinical utility for specific socially-salient groups when 
evaluating the fairness of a ML system—as well as the 
many other ethical and value-laden considerations that 
Char et al. (2020) have recently identified, such as: who 
devises these programs, based on which assumptions, and 
with which aims? If a pragmatist account of bias can help 
to clear the view for such questions, this may be all the 
more reason to embrace it.
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