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Abstract
Is science in the midst of a crisis of replicability and false discoveries? In a recent 
article, Alexander Bird offers an explanation for the apparent lack of replicability 
in the biomedical sciences. Bird argues that the surprise at the failure to replicate 
biomedical research is a result of the fallacy of neglecting the base rate. The base-
rate fallacy arises in situations in which one ignores the base rate—or prior prob-
ability—of an event when assessing the probability of this event in the light of some 
observed evidence. By extension, the replication crisis would result from ignoring 
the low prior probability of biomedical hypotheses. In this paper, my response to 
Bird’s claim is twofold. First, I show that the argument according to which the repli-
cation crisis is due to the low prior of biomedical hypotheses is incomplete. Second, 
I claim that a simple base-rate fallacy model does not account for some important 
methodological insights that have emerged in discussions of the replication crisis.

Keywords Philosophy of medicine · Philosophy of science · Replication crisis · 
Base-rate fallacy · Bayesianism

Introduction

The replication crisis refers to the subject of a methodological debate issuing from 
the observation that the outcomes of a number of scientific studies are difficult or 
impossible to replicate on subsequent investigation. The biomedical sciences are 
doubly affected by the replication crisis. On the one hand, medical research figures 
prominently in the discussion about the lack of replicability of scientific studies. 
Indeed, it has been argued that most published medical research is false [1]. On the 
other hand, physicians and patients rely on the accuracy of the published results in 
medicine in order to make treatment decisions on their basis. As a result, concerns 
regarding the reliability of medical research can have a direct impact on drug devel-
opment and public health policy.
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To illustrate, consider a study by Glenn Begley and Lee Ellis, in which scien-
tists at the biotechnology firm Amgen tried to replicate 53 high-impact findings in 
pre-clinical cancer research but could confirm the findings of only 6 studies (11%) 
[2]. These results appear to be consistent with those of others in the pharmaceutical 
industry. For instance, a team at Bayer HealthCare reported that only about 25% of 
published preclinical studies could be replicated [3]. Furthermore, Begley and Ellis 
lament that some non-replicable findings have given rise to a large secondary litera-
ture that expands on aspects of the original observation without seeking to confirm 
or falsify its fundamental basis.

In a recent paper, Alexander Bird offers an explanation for the apparent lack of 
replicability in the biomedical sciences [4]. Bird argues that the surprise—or some 
might say, shock—at the failure to replicate biomedical research is a result of the 
fallacy of neglecting the base rate. The base-rate fallacy arises in  situations in 
which one ignores the base rate—or prior probability—of an event when assessing 
the probability of this event in the light of some observed evidence. By extension, 
according to Bird, the replication crisis results from ignoring the low prior probabil-
ity of biomedical hypotheses.

In this paper, my response to Bird is twofold. First, I show that Bird’s argument 
that the replication crisis is due to the low prior of biomedical hypotheses is incom-
plete. In order to make the case that the observed lack of replicability in the biomed-
ical sciences is due to the low prior probability of biomedical hypotheses, a more 
fine-grained analysis of these prior probabilities in combination with an empirical 
rationale for their assignment is needed. Second, I argue that it is questionable that 
a simple base-rate fallacy model could sufficiently account for the replication crisis, 
since it ignores some crucial methodological insights, such as the role of selective 
reporting, that have emerged in discussions about the replicability of biomedical 
studies.

Base‑rate fallacy model

The base-rate fallacy is typically discussed in the context of medical diagnosis. Sup-
pose a patient begins displaying symptoms of an extremely rare, terminal disease, 
present in only 0.1% of the population. The patient, seeking a diagnosis and treat-
ment, goes to the doctor to have a test done. The doctor runs a highly accurate test 
and it comes out positive. How probable is it that the patient has the disease?

In order to address this question, some notation has to be introduced. Let H 
denote the hypothesis that the patient has the disease and T denote the event that the 
test comes out positive. The prior probability of the patient’s having the rare disease 
is assumed to be 0.001 (i.e., P(H) = 0.001), since 0.1% of the population carries the 
disease. This assignment of prior probabilities is typically seen as uncontroversial 
insofar as there are empirical frequency data about the prevalence of disease in a 
population on hand. The probability of the test coming out positive given that the 
patient has the disease is assumed to be equal to 0.97 (i.e., P(T|H) = 0.97). Further, 
the probability of the test coming out negative given that the patient does not have 
the disease is assumed to be equal to 0.9 (i.e., P(¬T|¬H) = 0.9). These numerical 
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values imply that the probability of the test coming out positive given that the 
patient does not have the disease equals 0.1 (i.e., P(T |¬H) = 0.1). This probability is 
referred to as the ‘false positive’ rate of the test. Similarly, the probability of the test 
coming out negative given that the patient does have the disease equals 0.03 (i.e., 
P(¬T|H) = 0.03). This probability is referred to as the ‘false negative’ rate of the 
test. The probability of the test coming out positive, P(T),  is given by P(T|H)P(H) 
+ P(T|¬H)P(¬H). Based on these assumptions, per Bayes’s theorem, the probability 
that the patient has the disease given that the test has come out positive is as follows:

The upshot is that even though the test has fairly low false positive and false neg-
ative rates, the probability of having the disease given a positive test result is very 
low. This result is due to the low prior probability of having the disease. Making 
inferences regarding the probability of having the disease based alone on the error 
rates of the test while neglecting the prior probability (or base rate) of having the 
disease amounts to a flawed form of probabilistic reasoning.

In order to apply this mathematical model to the replication crisis, some termi-
nology on null hypothesis significance testing also needs to be introduced. Suppose 
scientists would like to investigate a particular research hypothesis, such as exercise 
leads to weight loss. In a significance test, one does not directly address this hypoth-
esis of interest but rather evaluates the ‘null hypothesis’ that exercise is unrelated to 
weight loss. One calculates the p-value, that is, the probability of observing a sam-
ple realisation that would have given rise to a value of the test statistic greater than 
or equal to the one actually observed under the assumption that the null hypothesis 
is true. In a significance test, the false positive rate (i.e., the probability of rejecting 
a true null hypothesis) is fixed at some small number, usually 0.05 or 0.01, which 
is called the ‘significance level’ of the test and is denoted by α. If the p-value is 
smaller than α, then the null hypothesis is rejected. Otherwise the null hypothesis 
is not rejected. The false negative rate, that is, the probability of accepting a false 
null hypothesis, is denoted by β. The ‘power’ of a test refers to the term 1 − β. Tests 
with a power of 0.8 or higher are typically considered to be adequately powered in 
biomedical research.1

With this terminology in mind, I now turn to Bird’s diagnosis of the replication 
crisis. By close analogy to the base-rate fallacy model, Bird argues that ‘the surprise 
at the number of failed replications and consequent sense of crisis are a result of the 
fallacy of neglecting the base rate’ [4, p. 965]. More specifically, he claims that bio-
medical hypotheses have a low prior probability of being true just as the hypothesis 
that the patient has the rare disease has a low prior probability of being true in the 
base-rate fallacy example above. Due to the effect of this low base rate, published 
significant results in the biomedical literature also have a low probability of being 

P(H|T) =
P(T|H)P(H)

P(T)
≈ 0.01

1 It has been argued that the current practice of null hypothesis significance testing is a hybrid form of 
statistical inference combining ideas from Ronald Fisher [5] and Jerzy Neyman and Egon Pearson [6]. 
For further discussion, see Gerd Gigerenzer [7].
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true. For instance, if only 1% of tested hypotheses are true and a false positive rate 
of 0.05 and false negative rate of 0.2 are assumed (i.e., α = 0.05, β = 0.2), then 86% 
of published significant results will be false positives. The reason for this high rate 
of published false positives is that 5% of a very large number of false hypotheses 
is still larger than 80% of a very small number of true hypotheses. If many more 
false hypotheses than true hypotheses are tested, the relative frequency of significant 
results associated with true hypotheses will still be low. The base-rate fallacy model 
then seems to offer a simple mathematical explanation for why one should expect a 
large number of false positives in the biomedical literature.

Prior(s) of biomedical hypotheses

In order to make the case that biomedical hypotheses have low prior probabilities, 
Bird distinguishes between hypotheses that are derived from some more fundamen-
tal scientific theory and hypotheses that stem from sources other than theory. With 
regard to the former, Bird contrasts biomedical hypotheses with hypotheses in phys-
ics. He argues that our knowledge of physical systems is more complete than our 
knowledge of biological systems and that theories in physics enjoy stronger exper-
imental support than theories in biomedicine. As a result, biomedical hypotheses 
derived from theory have a lower prior probability than hypotheses derived from 
physical theories. With regard to the latter, biomedical hypotheses stemming from 
sources other than theory may be drawn from the results of observational studies 
or, more problematically, by unsystematic observations or the researcher’s intuition. 
Bird suggests that these kind of hypotheses again have only a low prior probability.

I argue that Bird’s analysis of the prior probabilities of biomedical hypotheses 
is too coarse-grained. In particular, Bird does not explore the possibility that even 
when they are not grounded in an established scientific theory, biomedical hypoth-
eses can have significantly different prior probabilities due to their differing empiri-
cal support. Take, for instance, one of the first modern meta-analyses of randomised 
controlled trials, which addresses the use of antibiotic prophylaxis compared to 
no treatment in colon surgery. In it, Mark Baum et al.  analyse 26 trials published 
from 1965 to 1980 and find that there is strong evidence that antibiotic prophylaxis 
reduces postoperative morbidity from colon surgery [8]. However, as argued by John 
Ioannidis and Joseph Lau, the efficacy of antibiotic prophylaxis could have been 
identified as early as 1971 after the publication of the first five studies, which taken 
together involved about 300 patients [9]. In this way, Ioannidis and Lau’s assessment 
suggests that by the time Baum et al. published their meta-analysis in 1981, there 
already existed strong evidential support in favour of the hypothesis that antibiotic 
prophylaxis is efficacious, thereby warranting the assignment of a high prior prob-
ability to this hypothesis.

Such strong evidential support for a biomedical research hypothesis, how-
ever, cannot generally be assumed. For instance, hypotheses that are generated by 
exploratory analyses in risk-factor epidemiology are frequently published with the 
idea that they can be subjected to further causal assessment [10]. In the absence 
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of further evidence from toxicology, animal studies, or other disciplines that could 
potentially offer support, a high prior probability seems to be unwarranted for such 
hypotheses generated by ‘black-box’ epidemiology [11, 12].

Identifying an adequate reference class for a hypothesis is essential when making 
inferences based on the base-rate fallacy model. Returning to the original context 
of medical diagnosis, it can be misleading to assume base rates that are averaged 
across the whole population. To illustrate, consider a sexually active middle-aged 
gay man living in London who is being tested for HIV. Assume that the test has the 
error rates assumed in the previous example—that is, a false positive rate of 0.1 and 
a false negative rate of 0.03. What is the prior probability of having HIV? Phrased 
differently, what is an adequate reference class for calculating the relative frequency 
of HIV?

One could adopt the prevalence of HIV among all  men in the United  King-
dom: 2.3 per 1000  [13, p. 8]. Alternatively, one could use the prevalence of HIV 
among gay/bisexual men in London: 135 per 1000 [13, p. 8]. Given the error rates of 
the test, the post-test probability of having HIV will depend crucially on the choice 
of reference class. If the larger reference class is chosen and, hence, a prior prob-
ability of having HIV of 0.0023 is estimated, the post-test probability of having the 
virus will be 0.02; if the more specific reference class is chosen and, hence, a prior 
of 0.135 is estimated, the post-test probability of having HIV will be 0.6. In other 
words, the post-test probability of having HIV is approximately 30 times larger 
when the more specific reference class is chosen to estimate the base rate of having 
HIV. In this example, it seems misleading to use the whole British male population 
when calculating the prior probability of the patient’s having HIV. Doing so would 
ignore available HIV prevalence data that identify gay/bisexual men in London as a 
sub-population with a higher risk of being infected with HIV.

Returning to the replication crisis in biomedical research, it seems misleading 
to talk about the prior probability of biomedical hypotheses in general. Rather, an 
adequate Bayesian analysis of the replication crisis should allow for different kinds 
of biomedical hypotheses to have different chances of being true. An analysis of 
that kind has been done by Ioannidis [1]. Ioannidis broadly distinguishes between 
hypotheses assessed in randomised controlled trials, meta-analyses, exploratory 
epidemiological studies, and discovery-oriented exploratory research with mas-
sive testing. He posits dramatically different prior probabilities for hypotheses in 
these distinct research designs—for example, assigning discovery-oriented explora-
tory research with massive testing a prior of 1

1001
 but assigning meta-analyses pri-

ors ranging between 1
4
 and 2

3
 (see Table 1). Ioannidis’s priors cannot be considered 

Table 1  Prior probabilities of 
biomedical hypotheses

Research design Prior

Randomised controlled trial 1

6
–1

2

Meta-analysis 1

4
–2

3

Exploratory epidemiological studies 1

11

Discovery-oriented exploratory research 1

1001
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empirically based in the sense that they result from relative frequencies in real data 
sets. However, these priors can still be called empirically motivated insofar as they 
aim to capture the idea that different classes of biomedical hypotheses warrant dif-
ferent prior degrees of belief. Indeed, even some critics of Ioannidis’s argument, 
such as Steven Goodman [14] seem to be sympathetic to Ioannidis’s empirically 
motivated prior probabilities of biomedical hypotheses.

In response to Ioannidis’s classification, one might wonder how the prior prob-
ability of a hypothesis can change depending on the method by which it is exam-
ined. The guiding idea here seems to be that in order to be made the subject of, say, 
a meta-analysis, a hypothesis has already been examined by a number of previously 
published studies. In that case, the prior of a hypothesis is really just an informal 
posterior. That is, rather than explicitly calculating a posterior in a Bayesian analysis 
based on the available studies, one estimates the prior probability of the hypothesis 
in the light of previous results in a non-formal way. In addition, a number of pre-
vious studies typically support the hypothesis under consideration; otherwise there 
would be little motivation to pursue a meta-analysis on the topic. Although there is 
no reason to think that the method of investigating a hypothesis can in itself change 
the prior probability of a hypothesis, empirical regularities suggest that hypotheses 
assessed by means of a meta-analysis typically enjoy stronger prior support than, 
say, a hypothesis subjected to an exploratory epidemiological study.

Suppose one adopts the prior probabilities in Table 1. What are the implications for 
the base-rate fallacy model? Not too surprisingly, the post-test probability that a bio-
medical hypothesis is true will depend on the class of hypothesis. For instance, while 
an adequately powered RCT with 0.5 prior probability has a post-test probability value 
(PPV) of 0.94, an adequately powered exploratory epidemiological study with a prior 
probability of 0.09 has a PPV of only 0.62 (see Table 2). In the model, an adequately 
powered meta-analysis with a prior probability of 0.25 comes out with a PPV of 0.84. 
At the other end of the spectrum, one finds the post-test probability of a hypothesis 
generated by discovery-oriented exploratory research with a negligible PPV of 0.004 
given a prior probability of 1

1001
 . Note, however, that in the case of discovery-oriented 

research, it is assumed that the test procedure is underpowered (i.e., β = 0.8). So the 
picture that results from this analysis is quite diverse. In any case, not every type of 
biomedical hypothesis will have a low post-test (or post-publication) probability of 
being true. To the contrary, the claim that most published research findings in the 
biomedical literature are false cannot be substantiated by means of the base-rate fal-
lacy model in combination with Ioannidis’s priors, if one focuses exclusively on ran-
domised controlled trials, meta-analyses, and exploratory epidemiological studies.

Table 2  Assumptions and 
results of the base-rate fallacy 
model

Research design Prior α β PPV

Randomised controlled trial 0.5 0.05 0.2 0.94
Meta-analysis 0.25 0.05 0.2 0.84
Exploratory epidemiological studies 1

11

0.05 0.2 0.62

Discovery-oriented exploratory research 1

1001

0.05 0.8 0.004
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While the present analysis suggests taking a more fine-grained view on the prior 
probabilities of biomedical hypotheses when applying the base-rate fallacy model, 
one might object that Bird is, effectively, talking about an average prior probabil-
ity of biomedical hypotheses. Based on this view, the use of a single prior for bio-
medical hypotheses is unproblematic. However, in order to make the case that the 
prior of biomedical hypotheses—understood as the average prior probability of 
biomedical hypotheses—is responsible for the replication crisis, a further explana-
tory step is needed. Specifically, doing so requires demonstrating that the weighted 
average prior probability of biomedical hypotheses is sufficiently low to result in an 
observed low post-test probability in the base-rate fallacy model. That is, one would 
have to take into account the proportion of the different types of hypotheses in the 
biomedical literature or, maybe more specifically, some sub-field within biomedi-
cine (e.g., pre-clinical cancer research) or some particular biomedical journal. These 
proportions can then be used to assign different weights when averaging over the 
priors of the different types of biomedical hypotheses. So the average prior of a bio-
medical hypothesis would depend not only on the priors assigned to the individual 
hypothesis classes but also on the proportion of these hypotheses discussed in the 
biomedical literature. It remains an open question as to whether this additional anal-
ysis, taking into account both the prior probability of different kinds of biomedical 
hypotheses as well as their representation in the biomedical literature, can support 
Bird’s claim regarding the role of the prior of biomedical hypotheses in the repli-
cation crisis. In any case, the moral remains that one cannot explain a quantitative 
phenomenon, such as the rate of failed replications in the biomedical sciences, by 
means of a Bayesian model without detailed quantitative assumptions.

Bias

Having argued that Bird’s account does not, as it stands, provide a satisfactory 
explanation for the replication crisis, one might ask whether the simple base-rate fal-
lacy model needs to be enriched by other parameters to account for the current rep-
lication rates in the biomedical sciences. A candidate for such an additional model 
parameter is bias. In the context of the replication crisis, bias is generally understood 
as any systematic error that can over- or underestimate an intervention effect (e.g., 
[15]). Bird is sceptical of explanations of the replication crisis that make reference 
to bias; or, at least, he thinks that it is unnecessary to invoke bias since the low prior 
probability of biomedical hypotheses—or, more precisely, the combination of low 
prior of biomedical hypotheses and low significance level—is sufficient to explain 
the observed lack of replicability. Given the limitations of Bird’s explanation, how-
ever, a closer look at the potential role of bias in the replication crisis is indicated.

An early attempt to capture the influence of bias in a Bayesian model of the 
replication crisis is provided by Ioannidis [1].2 Introducing a bias parameter into 

2 Other mathematical models of the replication crisis that include bias can be found in Pfeiffer et al. [16] 
and Jager and Leek [17].
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a Bayesian model of the replication crisis helps to account for the claim that the 
greater a researcher’s degree of freedom—that is, the greater the flexibility in 
designs, definitions, and outcomes in a scientific field—the lower the probability 
that a published finding is true. Furthermore, Ioannidis shows that the probability 
that a published finding is true decreases when the proportion of reported significant 
results that are the artefact of some bias increases, unless the power of a test is less 
than or equal to its significance level.

In Bird’s explanation for the replication crisis, the prior probability of biomedi-
cal hypotheses plays a central role. Debates concerning the numerical value of the 
prior probability of a research hypothesis are notoriously difficult to resolve. There 
is, however, good reason to believe that bias plays an important role in accounting 
for the rate of published false positives in the biomedical sciences. Consider, for 
instance, the case of selective reporting (or ‘p-hacking’), understood as the conduct-
ing of alternative analyses on the same data set and then selectively reporting those 
that provide statistically significant support for a publishable claim. Eric Wagen-
makers et al. consider scientists’ ability to fine-tune their analyses to the data to be 
the main factor for the replication crisis in the empirical sciences [18]. In line with 
this view, methodological research has accumulated evidence on the proportion of 
studies in which at least one primary outcome was changed, introduced, or omitted 
during the course of the analysis [19–22].

Providing an adequate account of the replication crisis in the biomedical sciences 
is not only of interest from a theoretical perspective but also has important impli-
cations for methodological reform in the empirical sciences. If selective reporting 
contributes significantly to the number of failed replications in biomedicine, then 
targeted interventions to improve statistical methodology in this field are needed. In 
contrast, generic calls for more basic research in the biomedical sciences in order to 
increase the prior probability of published research hypotheses, such as that by Bird 
[4], do not address this specific methodological issue.

Preregistration amounts to defining the research question and analysis plan before 
observing the research outcome. A number of initiatives have been put forward to 
incorporate preregistration into the publication process. For instance, the preregis-
tration challenge provides researchers with a financial incentive to preregister their 
hypotheses before conducting the analysis of their study [23]. Preregistered stud-
ies avoid the problems associated with selective reporting, outcome switching, and 
other potential difficulties that result from blurring the line between exploratory and 
confirmatory research. In particular, preregistration makes sure that the methodo-
logical principle is warranted that in a hypothesis test, the data may be used only 
once. When researchers look for interesting patterns in a data set, they already use 
the data to help formulate a particular research hypothesis. The same data should 
then not be used to test the hypothesis that they helped to formulate [18]. In addition 
to being compelling based on general methodological considerations, there exists 
empirical support that preregistration dramatically reduces the rate of reported posi-
tive findings. Robert Kaplan and Veronica Irvin analyse randomised controlled trials 
between 1970 and 2012 funded by the National Heart, Lung, and Blood Institute on 
interventions aimed at decreasing the risk of cardiovascular disease and death [24]. 
In particular, they compare 30 studies published pre-2000 and 25 studies published 
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post-2000. The year 2000 is of importance since the studies after this date were pre-
registered while the studies before this date were not. Kaplan and Irvine report that 
while 57% of the interventions studied pre-2000 show a positive effect, this number 
drops to 8% for the preregistered interventions investigated after 2000.

While the motivation for incorporating preregistration into the publication pro-
cess becomes obvious when the role of bias, particularly selective reporting, is 
accounted for, it is less clear how such a policy can be motivated based on a simple 
base-rate fallacy model that ignores bias. Providing a comprehensive specification 
of the data analysis plan prior to observing the research outcome should not affect 
the prior probability of the research hypothesis under consideration. As a result, it is 
unclear why policy initiatives aimed at addressing selective reporting, such as pre-
registration, should play a central role in an ongoing methodological reform tackling 
the replication crisis if the main cause of the crisis is to be found in the low prior 
probabilities of biomedical hypotheses. The simple base-rate fallacy model therefore 
fails to account for some important methodological insights that have emerged in 
discussions of the replication crisis.

Conclusion

Bird uses a simple base-rate fallacy model to emphasise the role that prior prob-
abilities of biomedical hypotheses play in the replication crisis [4]. I have taken 
issue with two aspects of this account. First, I argued that Bird’s assignment of prior 
probabilities is too coarse-grained. Explaining a quantitative phenomenon such as 
the rate of false positives in the medical literature by means of a Bayesian model 
requires quantitative assumptions about the numerical prior probabilities of biomed-
ical hypotheses. Without a justification for these prior probabilities, the attempted 
explanation of the replication crisis remains unsatisfactory. Second, I argued that 
a simple base-rate fallacy model does not do justice to some important methodo-
logical developments in response to the replication crisis. Selective reporting has 
become a main cause of concern in discussions of statistical methodology in the 
biomedical sciences. Preregistration—that is, the requirement adopted by a num-
ber of scientific journals to specify the research question and analysis plan prior to 
observing the research outcome—remains unmotivated if the diagnosis of the rep-
lication crisis focuses primarily on the role of the prior probabilities of biomedical 
hypotheses. I take this to be a deficit of a Bayesian model of the replication crisis 
that ignores bias.

Acknowledgements I would like to thank the audience at the 8th Philosophy of Medicine Roundtable in 
Paris as well as the anonymous reviewers of the journal for helpful comments and suggestions.

Funding Open Access funding provided by the IReL Consortium.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 



242 B. Autzen 

1 3

are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen 
ses/ by/4. 0/.

References

 1. Ioannidis, John P.A. 2005. Why most published research findings are false. PLoS Medicine 2: e124. 
https:// doi. org/ 10. 1371/ journ al. pmed. 00201 24.

 2. Begley, C. Glenn, and Lee M. Ellis. 2012. Drug development: Raise standards for preclinical cancer 
research. Nature 483: 531–533.

 3. Prinz, Florian, Thomas Schlange, and Khusru Asadullah. 2011. Believe it or not: How much can we 
rely on published data on potential drug targets? Nature Reviews Drug Discovery 10: 712.

 4. Bird, Alexander. 2021. Understanding the replication crisis as a base rate fallacy. British Journal for 
the Philosophy of Science 72: 965–993. https:// doi. org/ 10. 1093/ bjps/ axy051.

 5. Fisher, R.A. 1925. Statistical methods for research workers. Edinburgh: Oliver and Boyd.
 6. Neyman, J., and E.S. Pearson. 1933. On the problem of the most efficient tests of statistical hypoth-

eses. Philosophical Transactions of the Royal Society of London A 231: 289–337.
 7. Gigerenzer, Gerd. 2004. Mindless statistics. Journal of Socio-Economics 33: 587–606.
 8. Baum, Mark L., David S. Anish, Thomas C. Chalmers, Henry S. Sacks, Harry Smith, and Richard 

M. Fagerstrom. 1981. A survey of clinical trials of antibiotic prophylaxis in colon surgery: Evidence 
against further use of no-treatment controls. New England Journal of Medicine 305: 795–799.

 9. Ioannidis, John P.A., and Joseph Lau. 1999. State of the evidence: Current status and prospects of 
meta-analysis in infectious diseases. Clinical Infectious Diseases 29: 1178–1185.

 10. Greenland, Sander, Manuela Gago-Dominguez, and Jose Esteban Castelao. 2004. The value of risk-
factor (“black box”) epidemiology. Epidemiology 15: 529–535.

 11. Feinstein, Alvan R. 1988. Scientific standards in epidemiologic studies of the menace of daily life. 
Science 242: 1257–1263.

 12. Skrabanek, Petr. 1994. The emptiness of the black box. Epidemiology 5: 553–555.
 13. Kirwan, Peter D., Cuong Chau, Alison Brown, O. Noel Gill, Valerie Delpech, and contributors. 

2016. HIV in the UK: 2016 report. London: Public Health England. https:// assets. publi shing. servi 
ce. gov. uk/ gover nment/ uploa ds/ system/ uploa ds/ attac hment_ data/ file/ 602942/ HIV_ in_ the_ UK_ 
report. pdf.

 14. Goodman, Steven N. 2014. Discussion: An estimate of the science-wise false discovery rate and 
application to the top medical literature. Biostatistics 15: 23–27.

 15. Page, Matthew J., Joanne E. McKenzie, and Andrew Forbes. 2013. Many scenarios exist for selec-
tive inclusion and reporting of results in randomized trials and systematic reviews. Journal of Clini-
cal Epidemiology 66: 524–537.

 16. Pfeiffer, Thomas, Lars Bertram, and John P.A. Ioannidis. 2011. Quantifying selective reporting and 
the Proteus phenomenon for multiple datasets with similar bias. PLoS ONE 6: e18362. https:// doi. 
org/ 10. 1371/ journ al. pone. 00183 62.

 17. Jager, Leah R., and Jeffrey T. Leek. 2014. An estimate of the science-wise false discovery rate and 
application to the top medical literature. Biostatistics 15: 1–12.

 18. Wagenmakers, Eric-Jan, Ruud Wetzels, Denny Borsboom, Han L.J. van der Maas, and Rogier A. 
Kievit. 2012. An agenda for purely confirmatory research. Perspectives on Psychological Science 7: 
632–638.

 19. Hahn, S., P.R. Williamson, and J.L. Hutton. 2002. Investigation of within-study selective reporting 
in clinical research: Follow-up of applications submitted to a local research ethics committee. Jour-
nal of Evaluation in Clinical Practice 8: 353–359.

 20. Chan, Ann-Wen, and Douglas G. Altman. 2005. Identifying outcome reporting bias in randomised 
trials on PubMed: Review of publications and survey of authors. BMJ 330: 753–759.

 21. Chan, Ann-Wen, Asbjørn Hróbjartsson, Mette T. Haahr, Peter C. Gøtzsche, and Douglas G. Altman. 
2004. Empirical evidence for selective reporting of outcomes in randomized trials: Comparison of 
protocols to published articles. Journal of the American Medical Association 291: 2457–2465.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1371/journal.pmed.0020124
https://doi.org/10.1093/bjps/axy051
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/602942/HIV_in_the_UK_report.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/602942/HIV_in_the_UK_report.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/602942/HIV_in_the_UK_report.pdf
https://doi.org/10.1371/journal.pone.0018362
https://doi.org/10.1371/journal.pone.0018362


243

1 3

Is the replication crisis a base-rate fallacy?  

 22. Dwan, Kerry, Carrol Gamble, Paula R. Williamson, and Jamie J. Kirkham. 2013. Systematic review 
of the empirical evidence of study publication bias and outcome reporting bias—an updated review. 
PLoS ONE 8: e66844. https:// doi. org/ 10. 1371/ journ al. pone. 00668 44.

 23. Nosek, Brian A., Charles R. Ebersole, Alexander C. DeHaven, and David T. Mellor. 2018. The pre-
registration revolution. PNAS 115: 2600–2606.

 24. Kaplan, Robert M., and Veronica L. Irvin. 2015. Likelihood of null effects of large NHLBI clinical 
trials has increased over time. PLoS ONE 10: e0132382. https:// doi. org/ 10. 1371/ journ al. pone. 01323 
82.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

https://doi.org/10.1371/journal.pone.0066844
https://doi.org/10.1371/journal.pone.0132382
https://doi.org/10.1371/journal.pone.0132382

	Is the replication crisis a base-rate fallacy?
	Abstract
	Introduction
	Base-rate fallacy model
	Prior(s) of biomedical hypotheses
	Bias
	Conclusion
	Acknowledgements 
	References




