Skip to main content
Log in

Study of Industrial Aluminum Alloy 1580 Sheet Corrosion Resistance

  • Published:
Metallurgist Aims and scope

The corrosion resistance of aluminum alloy 1580 sheet semi-finished products 1.0 and 2.5 mm thick in the initial state and after argon arc welding is studied. Sheets are prepared by hot and subsequent cold rolling of large ingots, cast and then rolled under industrial conditions. A study of sheet corrosion resistance is performed by accelerated tests for intergranular and layer corrosion. Intergranular corrosion resistance tests show good resistance, both in the initial state and after welding, which exceed those of traditional magnalium grade 1560 sheets. It is also found that intergranular corrosion has almost no effect on strength and ductility of initial 1580 alloy specimens, and after welding and testing for intergranular corrosion resistance the reduction in strength does not exceed 10%. Delamination corrosion resistance tests of 1580 alloy sheets show good resistance, both in the initial state and after welding, and also that delamination corrosion has little effect on the strength of sheets in the initial state, but ductility of this material is almost halved after welding. It is shown that 1580 alloy sheets may be used as a replacement for traditional magnaliums in structures subject to corrosion, which will significantly reduce component weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. E. N. Kablov, “Innovative development of FGUP VIAM GNTs RF for implementing “Strategic area for development of materials and their processing technology in the period up to 2030,” Aviats. Mater. Tekhnol., No 1(34), 3–33 (2015).

  2. V. V. Antipov, “Strategy of developing titanium, magnaliums, magnesium, beryllium and aluminum alloys,” Aviats. Mater. Tekhnol., No. 5, 157–167 (2012).

  3. E. N. Kablov, O. V. Startsev, and I. M. Medvedev, “Review of overseas experience of studying corrosion and means of corrosion protection,” Aviats. Mater. Tekhnol., No. 2(35), 76–78 (2015).

  4. M. G. Abramova and A. A. Goncharov, “Intercrystalline corrosion of wrought aluminum alloys under natural and naturallyaccelerated climatic conditions,” Tr. VIAM, No. 11 (83), 85–96 (2019).

    Article  Google Scholar 

  5. M. G. Kurs, V. V. Antipov, A. N. Lutsenko, and A. E. Kutyrev, “Integral corrosion failure coefficient for wrought aluminum alloys,” Aviats. Mater. Tekhnol., No. 3 (42), 24–32 (2016); https://doi.org/10.18577/2071-9140-2016-0-3-24-32.

  6. M. G. Kurs, “Prediction of strength properties of an LA facing of wrought aluminum alloy V95o.ch.T2 using an integral corrosion breakdown coefficient,” Tr. VIAM: Elekrton. Nauch.-Tekhnich. Zh., No. 5(65), 11 (2018); URL: http://www.viamworks.ru (access date: 03.08.2018); https://doi.org/10.18577/2307-6046-2018-0-5-101-109.

  7. A. I. Bezrukikh, V. N. Baranov, I. L. Konstantinov, S. B. Sidelnikov, A. V. Zavizin, B. P. Kulikov, P. O. Yuryev, D. S. Voroshilov, Y. V. Baykovskiy, E. G. Partyko, A. A. Iliin, D. N. Bondarenko, Y. N. Mansurov, “Modeling of casting technology of large-sized ingots from deformable aluminum alloys,” Intern. J. of Advanced Manufacturing Technology, 120, No. 1/2, 761–780 (2022).

    Article  Google Scholar 

  8. V. N. Baranov, E. Yu. Zenkin, I. L. Konstantinov, and S. B. Sidelnikov, “The research of the cold rolling modes for plates of aluminum alloy sparingly doped with scandium,” Non-Ferrous Metals, No. 2, 48–52 (2019).

    Article  Google Scholar 

  9. V. Kh. Mann, S. B. Sidelnikov, I. L. Konstantinov, V. N. Baranov, I. N. Dovzhenko, D. S. Voroshilov, E. S. Lopatina, O. V. Yakivyuk, and I. N. Belokonova, “Modeling and investigation of the process of hot rolling of large-sized ingots from aluminum alloy of the Al–Mg system, economically alloyed by scandium,” Materials Science Forum, 943, 58–65 (2019).

    Article  Google Scholar 

  10. N. N. Dovzhenko, A. I. Demchenko, A. A. Bezrukikh, I. S. Dementeva, V. N. Gaevskiy, I. N. Dovzhenko, D. S. Voroshilov, V. N. Baranov, T. A. Orelkina, and E. S. Lopatina, “Mechanical properties and microstructure of multi-pass butt weld of plates made of Al–Mg–Zr alloy sparingly doped with scandium,” Intern. J. of Advanced Manufacturing Technology, 113, No. 3-4, 785–805 (2021).

    Article  Google Scholar 

  11. V. N. Baranov, P. O. Yuriev, I. L. Konstantinov, A. I. Bezrukikh, E. G. Partyko, and A. O. Ivanova, “Investigation of industrial 1580 alloy sheet weldability by friction stir welding,” Metallurgist, 66, No. 7-8, 815–821 (2022).

    Article  Google Scholar 

  12. D. V. Belov, S. N. Belyaev, M. V. Maksimov, and G. A. Gevorgyan, “Research of corrosion cracking of D16T and Amg6 aluminum alloys exposed to microscopic fungi,” Inorganic Materials: Applied Research, 13, No. 6, 1640–1651 (2022).

    Article  Google Scholar 

  13. Emad H. Bartawi, E. H. Bartawi, O. V. Mishin Shaban Ghada, Jan H. Nordlien, and R. Ambat, “Electron microscopy analysis of grain boundaries and intergranular corrosion in aged Al–Mg–Si alloy doped with 0.05 wt.% Cu,” Corrosion Science, 209, 110758 (2022).

  14. D. K. Ryabov, N. I. Kolobnev, and A. O. Ivanova, “Effect of cobalt and scandium addition on mechanical properties and corrosion resistance of medium strength profiles of the alloy system Al–Zn–Mg with addition of copper,” Tr. VIAM, No. 6 (42) (2016).

  15. Y. Qiu, X. Yang, and J. Xu, “Enhanced mechanical property and corrosion resistance of alloy 5182 FSW joints by Sc and Zr alloying,” Materials Characterization, 194, 112412 (2022).

    Article  CAS  Google Scholar 

  16. Y. X. Chen, D. Y. Lin, J. C. Han, X. J. Xia, Y. Y. Chen, W. K. Hao, B. K. Yang, P. H. Hu, S. F. Chen and Y. J. Lu, “Corrosion susceptibility of different planes of AlMgScZr alloy produced by selective laser melting,” J. of Manufacturing Processes, 84, 240–250 (2022).

    Article  Google Scholar 

  17. X. F. Shen, Z. Y. Cheng, C. G. Wang, H. F. Wu, Q. Yang, G. W. Wang, and S. K. Huang, “Effect of heat treatments on the microstructure and mechanical properties of Al–Mg–Sc–Zr alloy fabricated by selective laser melting,” Optics and Laser Technology, 143, 107312 (2021).

    Article  CAS  Google Scholar 

  18. Z. Wang, X. Lin, Y. Tang, N. Kang, X. Gao, S. Shi, and W. Huang, “Laser-based directed energy deposition of novel Sc/Zrmodified Al–Mg alloys: columnar-to-equiaxed transition and aging hardening behavior,” J. of Materials Science and Technology, 69, 168–179 (2021).

    Article  CAS  Google Scholar 

  19. M. Khomutov, A. Chereshneva, P. Petrovskiy, D. Daubarayte, V. Cheverikin, A. Sova, A. Travyanov, and I. Smurov, “Microstructure of Al–Mg–Sc–Zr alloy cold spray deposits after heat treatment and hot isostatic pressing,” J. of Alloys and Compounds, B, 157644 (2020).

  20. H. Fang, H. Liu, Y. Yan, X. Luo, X. Xu, X. Chu, Y. Lu, and D. Wang, “Evolution of texture, microstructure, tensile strength and corrosion properties of annealed Al–Mg–Sc–Zr alloys,” Materials Science and Engineering A, 804, 140682 (2021).

    Article  CAS  Google Scholar 

  21. A. B. Spierings, K. Dawson, T. Heeling, P. J. Uggowitzer, R. Schäublin, F. Palm, and K. Wegener, “Microstructural features of Scand Zr-modified Al–Mg alloys processed by selective laser melting,” Materials and Design, 115, 52–63 (2017).

    Article  CAS  Google Scholar 

  22. V. S. Sinyavskii, V. D. Val’kov, and E. V. Titkova, “The effect of scandium and zirconium additions on corrosion properties of Al–Mg alloys,” J. of University of Science and Technology Beijing, 20, No. 5, 549 (1998).

  23. B. Wei, S. Pan, G. Liao, A. Ali, and S. Wang, “Sc-containing hierarchical phase structures to improve the mechanical and corrosion resistant properties of Al–Mg–Si alloy,” Materials and Design, 218, 110699 (2022).

    Article  CAS  Google Scholar 

  24. X. Huang, Q. Pan, B. Li, Z. Liu, Z. Huang, and Z. Yin, “Microstructure, mechanical properties and stress corrosion cracking of Al–Zn–Mg–Zr alloy sheet with trace amount of Sc,” J. of Alloys and Compounds, 650, 805820 (2015).

    Article  Google Scholar 

  25. GOST 9.908–85, Corrosion Protection. P. 4. Full-Scale Test Methods: Coll. GOST, IPK Izd. Standartov, Moscow (1999).

  26. P. O. Yuryev, V. N. Baranov, T. A. Orelkina, A. I. Bezrukikh, D. S. Voroshilov, M. Yu. Murashkin, E. G. Partyko, I. L. Konstantinov, V. V. Yanov, and N. A. Stepanenko, “Investigation the structure in cast and deformed states of aluminum alloy, economically alloyed with scandium and zirconium,” Intern. J. of Advanced Manufacturing Technology, 115, 263–274 (2021).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Bezrukikh.

Additional information

Translated from Metallurg, Vol. 67, No. 6, pp. 35–42, June, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezrukikh, A.I., Konstantinov, I.L., Sidelnikov, S.B. et al. Study of Industrial Aluminum Alloy 1580 Sheet Corrosion Resistance. Metallurgist 67, 757–767 (2023). https://doi.org/10.1007/s11015-023-01563-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11015-023-01563-8

Keywords

Navigation