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Abstract The paper deals with the statement and 
the application of the entropy principle, through the 
Clausius–Duhem inequality, in continuum physics. 
The conceptual role is taken from the Coleman–Noll 
paper of 1963 thus leading to the physical admissi-
bility of constitutive equations. The statement is gen-
eralized by letting the rate of entropy production be 
a constitutive property per se. This generalization 
proves essential in connection with the modelling of 
hysteretic phenomena. As to the application, the view 
of the Coleman–Noll procedure is maintained but a 
representation formula is shown to generalize the 
consequences of the entropy principle; as an exam-
ple the modelling of heat conduction is investigated. 
Furthermore, while applying the entropy principle 
to magnetic materials, it is shown an interesting con-
nection between the balance of angular momentum 
and the thermodynamic restrictions. Also, the mod-
elling through rate-type equations shows the need 
of Lagrangian fields to obey objectivity and that of 
the entropy production as a constitutive function 
to account for the difference between loading and 
unloading processes.
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procedure · Entropy production · Rate-type 
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1 Introduction

Continuum physics approaches are based on two 
essential tools namely the balance equations and 
the constitutive functions. Once these tools are set-
tled, practical methods can be applied for solving 
mathematical problems involving mainly differential 
equations, boundary-value formulations, and inte-
gral equations. To fix ideas here we restrict attention 
to single-phase continua though the basic concepts 
apply also to mixtures and continua with internal 
structure.

The balance equations are established through 
axioms that are commonly based on global proper-
ties. As to the balance of linear momentum, angu-
lar momentum, and energy the pertinent equation is 
assumed as the analogue of the balance for systems 
of particles (see, e.g., [1], ch. I). Classical thermody-
namics provides the analogous reference for the first 
and second law of continuous bodies; the balance of 
energy is based on both thermodynamic and mechani-
cal analogues.

A. Morro (*) 
DIBRIS, Università di Genova, Via All’Opera Pia 13, 
16145 Genova, Italy
e-mail: angelo.morro@unige.it

http://crossmark.crossref.org/dialog/?doi=10.1007/s11012-024-01804-3&domain=pdf


 Meccanica

1 3
Vol:. (1234567890)

In local form, the second law leads to the entropy 
or Clausius–Duhem (CD) inequality. As we show 
in the next section, though we are rightly accus-
tomed to the term inequality, the second law too is 
expressed by an equality.

While the balance of linear momentum and 
energy involve pertinent external supplies, upon 
accounting for the balance of energy the second law 
resulted (and results) in a supply-free inequality, 
for appropriate constitutive functions. The question 
about the conceptual role of the CD inequality was 
answered by Coleman and Noll in 1963 [2] by stat-
ing that the CD inequality has to be valid for any set 
of functions which are compatible with the balance 
equations. Hence if the balance equations are valid, 
the CD inequality is a test for the admissibility of 
the constitutive functions. Though with different 
methods, the paper by Coleman and Noll initiated 
much research into the restrictions imposed by ther-
modynamics on materials models.

The purpose of this paper is threefold. First, 
to revisit the formulations of the second law (or 
entropy principle) subsequent to the original one of 
Coleman and Noll. Secondly, to exhibit the methods 
of exploitation of the second law, through the CD 
inequality. Thirdly, to point out recent methods of 
exploitation and to apply them to the modelling of 
dissipative processes via rate equations. In particu-
lar, attention is addressed to hysteretic models and 
rate-type equations for heat conductors.

Notation. We let Ω be the time-dependent region 
occupied by the continuous body in the three-
dimensional space. The position vector of a point in 
Ω is denoted by x . Hence �(x, t) and v(x, t) are the 
mass density and the velocity fields at x , at time 
t ∈ ℝ . The symbol ∇ denotes the gradient, with 
respect to x , while ∇⋅ is the divergence operator. For 
any pair of vectors u,w , or tensors A,B , the nota-
tions u ⋅ w and A ⋅ B denote the inner product. Car-
tesian coordinates are used and then, in the suffix 
notation, u ⋅ w = uiwi , A ⋅ B = AijBij , the summation 
over repeated indices being understood. Also, symA 
and skwA denote the symmetric and skew-symmet-
ric parts of A while Sym is the space of symmetric 
tensors. A superposed dot denotes the total time 
derivative and hence, for any function f (x, t) on 
Ω ×ℝ we have ḟ = 𝜕tf + (v ⋅ ∇)f  . The symbol L 
denotes the velocity gradient, Lij = �xj vi , while 

D = symL and W = skwL . Further, T is the Cauchy 
stress tensor, b is the specific body force, and ⊗ 
denotes the dyadic product.

Let R be the region occupied by the body in a 
reference configuration. Any point in R is associ-
ated with the position vector X relative to a cho-
sen origin. The motion of the body is a C2 function 
�(X, t) ∶ R ×ℝ → Ω = �(R, t) . The gradient, with 
respect to X , of � is the deformation gradient F , 
FiK = �XK

�i.

2  Balance equations

Let P ⊂ R be any sub-region of R and denote by Pt 
the image through the motion in that Pt = �(P, t) ; we 
can say that Pt convects with the body.

Let Φ(x, t) be a density, per unit volume. If Φ is 
differentiable then

Let � be the mass density and hence

is the mass of the convecting region Pt . The conser-
vation of mass is expressed by

Applying Eq. (1) and using the continuity of the inte-
grand and the arbitrariness of Pt we find that

Consequently, for any specific density � we have

this result being referred to as Reynolds’ transport 
theorem.

The global form of a balance law is stated by 
assuming that the rate of a volume integral consists of 
volume and surface integrals. If �� is the supply, per 
unit volume, and � the supply per unit area then the 
balance law is given the form

(1)
d

dt ∫Pt

Φ dv = ∫
Pt

[�tΦ + ∇ ⋅ (Φv)]dv.

m(Pt) = ∫
Pt

�dv

d

dt ∫Pt

�dv = 0.

(2)�̇� + 𝜌∇ ⋅ v = 𝜕t𝜌 + ∇ ⋅ (𝜌v) = 0.

(3)
d

dt ∫Pt

𝜌𝜑dv = ∫
Pt

𝜌�̇�dv,
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If � = v this is the balance of linear momentum and 
� = b is the body force while � = t is the tension. 
Cauchy’s theorem implies the existence of the stress 
tensor so that t(x, n, t) = T(x, t)n . Hence we find the 
local form

By the balance of angular momentum it follows that 
T = TT ; for materials with couple stress tensors, the 
Cauchy stress T is no longer symmetric.

A purely mechanical balance of energy is not con-
sistent except for particular cases (e.g. incompress-
ible fluids). A general form is then considered with 
an energy density � , a supply �r and a surface power 
density h,

A Cauchy-like proof shows that there is a vector field, 
say −q , such that

Using Eqs. (3) and (5) we then find the local form

the consistency with the classical first law of thermo-
dynamics allows us to view � as the specific internal 
energy, r the specific heat supply, and q the heat flux 
vector.

Let � be the specific entropy density. The balance 
of entropy too can be assumed in the form (4) with

Again a Cauchy-like theorem shows that there is a 
vector field, say j , such that

j being viewed as the entropy flux. We then obtain the 
balance of entropy in the local form as

Simple models in classical thermodynamics (see, e.g., 
[3], ch. 9; [4], ch. 6) indicate that the rate of entropy 
is related to the rate of heat divided by the absolute 

(4)
d

dt ∫Pt

�� dv = ∫
Pt

�� dv + ∫
�Pt

� da.

(5)𝜌v̇ = ∇ ⋅ T + 𝜌b.

d

dt ∫Pt

�(
1

2
v2 + �)dv = ∫

Pt

�(b ⋅ v + r)dv + ∫
�Pt

(t ⋅ v + h)da.

h = −q ⋅ n.

(6)𝜌�̇� = T ⋅ D − ∇ ⋅ q + 𝜌r;

� = �, � = �� , � = �� .

�� = −j ⋅ n,

𝜌�̇� = 𝜌𝛽𝜂 − ∇ ⋅ j.

temperature � . Further, since entropy is not conserved 
then the balance of entropy is subject to the general 
requirement (e.g. [4], §6.5)

This suggests that

where � is the specific (rate of) production of entropy. 
Hence the local form of the balance of entropy can be 
written as

The assumption

then results in the relation

let us call it the entropy inequality. The definition (7) 
denotes that both r∕� and � happen as volume densi-
ties; r∕� arises from an external source [12], while � 
is an internal production.

3  Entropy principle and entropy inequality

The non-negative character of the entropy production 
has been taken by Coleman and Noll as a criterion for 
the selection of admissible constitutive equations. To 
make this point precise let a thermodynamic process 
be the set of fields entering the model of the con-
tinuum (through balance and constitutive equations). 
Then we state the following

Entropy principle A thermodynamic process is 
admissible if the inequality

is valid.
It is natural to ask about the presumed argument, 

by Coleman and Noll, underlying the statement of 
the entropy principle. Also, we need operative meth-
ods for the exploitation of the entropy principle as a 
procedure for the selection of admissible constitutive 
equations. Before answering these questions we point 

entropy change = entropy transfer + entropy production.

(7)�� =
r

�
+ � ,

(8)𝜌�̇� =
𝜌r

𝜃
− ∇ ⋅ j + 𝜌𝛾 .

� ≥ 0

(9)𝜌�̇� −
𝜌r

𝜃
+ ∇ ⋅ j ≥ 0;

� ≥ 0
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out that different expressions have been established of 
the entropy production while preserving the entropy 
principle.

Consistent with the view that the rate of entropy 
is related to the rate of heat divided by the absolute 
temperature, Coleman and Noll [2] and Truesdell and 
Toupin ([5], §257), assume j = q∕� . Hence the entropy 
inequality (9) becomes

The requirement (10) is given in [5],  §258, and is 
regarded as a postulate of irreversibility. Accordingly, 
sometimes (e.g. [6]) equation (9) is called the Clau-
sius–Duhem–Truesdell–Toupin inequality; the name 
Clausius–Duhem inequality would be more appropri-
ate for the special case r = 0 . Really the name Clau-
sius–Duhem inequality was given to (10) by Truesdell 
himself [7], Eq. (28.5), for the case r = 0 . Following 
a wide literature, we keep denoting (9), and the par-
ticular case (10), as the entropy or Clausius–Duhem 
inequality.

In 1967 Müller [8] generalized the entropy inequal-
ity by letting j as given by an unknown constitutive 
function and hence avoiding the assumption j = q∕� . 
In this connection it is standard to let

k being viewed as the extra-entropy flux. Accordingly 
the expression of � is given by

Some years later, Green and Naghdi [9] while keep-
ing j = q∕� as in the original CD inequality, observed 
that Eq. (8) is an equation

and furthermore that the entropy production � , as well 
as � , �,T,q , is specified by a constitutive equation 
(while k = 0 in Ref. [9]). If j = q∕� + k then (12) is 
replaced by

(10)𝜌�̇� −
𝜌r

𝜃
+ ∇ ⋅

q

𝜃
≥ 0.

j =
q

�
+ k,

(11)𝜌𝜃𝛾 = −𝜌(�̇� + 𝜂�̇�) + T ⋅ D −
1

𝜃
q ⋅ ∇𝜃 + 𝜃∇ ⋅ k.

(12)𝜌�̇� = 𝜌(
r

𝜃
+ 𝛾) − ∇ ⋅

q

𝜃
,

𝜌�̇� = 𝜌(
r

𝜃
+ 𝛾) − ∇ ⋅

q

𝜃
− ∇ ⋅ k;

a priori, the sign of ∇ ⋅ k is undetermined whereas � is 
required to be non-negative. If r = 0 then Eq. (12) can 
be written in the form

still with � ≥ 0 and sign of ∇ ⋅ k a priori undeter-
mined. Letting both j and � be given by constitutive 
equations is a generalization of the entropy principle 
by Coleman and Noll [2] and, as shown by a num-
ber of examples, allows for a consistent framework of 
behaviours in matter.

To give a possible motivation underlying the state-
ment of the entropy principle we observe that the bal-
ance of linear momentum and energy express the equi-
librium between the pertinent fields and the supplies 
( b, r ). The balance of mass instead is a constraint on the 
fields � and v . Rather, once we substitute for r from (6) 
into (9), the CD inequality (11), possibly with k = 0 , 
involves constitutive equations but not supplies. It is 
then a constraint on the constitutive functions subject to 
the condition � ≥ 0 . If r = 0 then (12), with � ≥ 0 , is a 
constraint.

3.1  Remarks on the rate of entropy production

It is worth reporting the objection, by an anonymous 
reviewer, to viewing the (rate of) entropy production 
as independent of other conventional constitutive equa-
tions. The entropy production � is just an abbreviation 
for the left-hand-side (LHS) of e.g. Eq. (9). Indeed, in 
examining some of the standard books in continuum 
mechanics this is made explicitly clear. For example, 
in Ch. 5 of [10], � is not even defined; Liu just uses 
directly the inequality displayed in Eq. (9). Or one can 
examine §  4.6 of [11] or §§  4.3 and 4.11 of [12] where 
it is explicitly noted that � is defined by the LHS of Eq. 
(9).

Answering the objection, we say that for many mod-
els the entropy production � is in fact given by the other 
constitutive functions. For instance, in Fourier-like 
models of heat conduction the CD inequality reduces to

and hence � = −(q ⋅ ∇�)∕��2 is determined by the 
function q , provided � ≥ 0 . Instead there are cases 
where � is independent of the other constitutive func-
tions. In Sect.  7.2 we show that this happens for 

𝜌�̇� = 𝜌𝛾 − ∇ ⋅ (
q

𝜃
+ k),

−q ⋅ ∇� = ��2�



Meccanica 

1 3
Vol.: (0123456789)

the modelling of magnetic hysteresis where, e.g., 
𝛾 = 𝜁 |Ḣ| is non-negative and independent of the other 
functions, see Eqs. (35) and (36). Further examples 
are given, e.g., in [13, 14].

4  Exploitation methods of the entropy inequality

In light of the entropy principle, and the relation 
(9) for ��� , the CD inequality can be written in the 
form

The entropy inequality and the entropy principle hold 
for any single-phase, non-polar continuum; things 
change according to the nature of the continuum as 
to the balance equations and hence for the analogue 
of (11). To fix ideas we let (13) be the form of the 
CD inequality; later on we will consider deformable 
magnetic continua.

For technical reasons it is often convenient to work 
within the Lagrangian description. In this connection 
we multiply Eq. (13) by J = detF > 0 and write

Let

denote the second Piola stress, the referential heat 
flux and the referential extra-entropy flux. Notice that, 
for any function f (x, t),

while [15, 16]

Further,

where E = (FTF − 1)∕2 . By (14), since J� = �
R
 is the 

referential density then we can write the referential 
entropy inequality in the form

(13)

−𝜌(�̇� + 𝜂�̇�) + T ⋅ D −
1

𝜃
q ⋅ ∇𝜃 + 𝜃∇ ⋅ k = 𝜌𝜃𝛾 ≥ 0.

(14)
−J𝜌(�̇� + 𝜂�̇�) + JT ⋅ D −

1

𝜃
Jq ⋅ ∇𝜃 + 𝜃∇ ⋅ k = J𝜌𝜃𝛾 ≥ 0.

T
RR
= JF−1TF−T , q

R
= JF−1q, k

R
= JF−1k

∇
R
f ∶= �Xf = ∇fF

Jq ⋅ ∇� = q
R
⋅ ∇

R
�, J∇ ⋅ k = ∇

R
⋅ k

R
.

JT ⋅ D = T
RR
⋅ Ė,

where �
R
= �

R
� , �

R
= �

R
�.

Granted the balance equations, the entropy princi-
ple, through the CD inequality, becomes a criterion 
of admissibility of the assumed constitutive functions. 
To derive the restrictions on the constitutive equa-
tions two procedures are used.

4.1  The Coleman–Noll procedure

To exploit the requirement of the entropy principle 
it is essential to envisage the freedom allowed by the 
balance equations for the admissible thermodynamic 
processes. In dynamic problems b and r are usually 
regarded as assigned a priori. Here we take the view 
that conceptually the functions b(x, t) and r(x, t) can 
be selected arbitrarily. Hence for any value of the 
right-hand sides of

the balance equations hold because b and r are just 
taken to be given by (16). Analogous claims hold for 
the space and time derivatives. Hence Eq. (16) pro-
vide the body force b and the heat supply r, and pos-
sibly their derivatives, that must be applied to support 
the process. Based on this view, we find that, given 
any spatial point x and any time t, it is possible to find 
a process such that �̇�, �̈�,∇�̇� and L, L̇, L̈,∇L or Ḟ, F̈ 
have arbitrarily prescribed values at that point and 
time (see, e.g., [16], §3.4).

Let Σ be a set of variables and assume the entropy 
inequality takes the form

If � can take arbitrary (positive or negative) values, 
independent of Σ and � , then (17) implies f = 0 and 
p ≥ 0 . Likewise, if vectors are involved then

implies f = 0 . If tensors are concerned in the form

than the arbitrariness of A implies F = 0 . If A ∈ Sym 
(or Skw ) then F ∈ Skw (or Sym).

If (17) is changed to

(15)
−(�̇�

R
+ 𝜂

R
�̇�) + T

RR
⋅ Ė −

1

𝜃
q

R
⋅ ∇

R
𝜃 + 𝜃∇

R
⋅ k

R
= 𝜌

R
𝜃𝛾 ≥ 0,

(16)b = v̇ −
1

𝜌
∇ ⋅ T, r = �̇� −

1

𝜌
T ⋅ D +

1

𝜌𝜃
∇ ⋅ q

(17)f (Σ)� + p(Σ, �) ≥ 0.

f ⋅ � + p ≥ 0

F ⋅ A + p ≥ 0
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then dividing by |�| we have

Hence it follows that f (Σ) = 0 . The analogue holds 
for f and F .

4.2  The Liu procedure

In a different procedure established by Liu [17] the 
entropy inequality is exploited for supply-free bodies. 
Hence all of the balance equations are constraints and 
the CD (or entropy) inequality is written in the (Eule-
rian) form

Λ�,�v,Λ� being the Lagrange multipliers, viewed as 
additional constitutive functions of the chosen inde-
pendent functions. The linearity and arbitrariness of 
�t�, �t�, �tv imply that

whence we obtain formally the Lagrange multipliers 
Λ�,Λ�,�v . Further restrictions are derived via the 
reduced inequality and the appropriate constitutive 
assumptions.

The conceptual difference of the two methods 
is given by the use of the supplies b, r . In the Cole-
man–Noll procedure we make use of the conceivable 
arbitrariness of the functions b(x, t), r(x, t) whereas 
in Liu’s procedure b = 0, r = 0 . Henceforth we apply 
the Coleman–Noll procedure and show how further 
methods are applicable to investigate the compatibil-
ity with the entropy principle.

5  Exploitation through a representation formula

From the mathematical side, the entropy principle 
requires that we determine the constitutive functions 

f (Σ)� + p(Σ, �) ≥ 0, p(Σ, �) = o(|�|),

sgn (f (Σ)
�

|�|
+

p(Σ, �)

|�|
) = sgn f (Σ)

�

|�|
= sgn f (Σ)�.

�t(��) + ∇ ⋅ (��v) + j) − Λ�[�t� + ∇ ⋅ (�v)]

− �v ⋅ [�t(�v) + ∇ ⋅ (�v⊗ v − T)]

− Λ�[�t(�(� +
1
2
v2))

+ ∇ ⋅ (�(� + 1
2
v2)v − vT + q))] ≥ 0,

��(��) − Λ� − Λ�[
1
2
v2 + ��(��)] = 0,

��� − Λ���� = 0, Λv + Λ�v = 0,

that satisfy the balance equations and inequality (13). 
About the inequality, and still into line with Cole-
man–Noll’s procedure, we need an improvement 
when the entropy inequality has the form

for the unknown constitutive tensor (or vector) func-
tion Ȧ . We then look for the solution Ȧ to

5.1  Representation formula

Let N be a tensor, of any order n, subject to N ⋅ N = 1 . 
Any tensor Z , of the same order, can be decomposed 
in the form

Assume Z ⋅ N is known, say Z ⋅ N = g . If Z
⟂
 is 

unknown we can represent it in the form

where G is an arbitrary tensor of order n and � is the 
identity 2n-order tensor.

Let Z be a vector subject to

and select

Consequently

and then

If Γ is the set of variables then g and G are functions 
of Γ.

5.2  Application to the modelling of heat conduction

We consider a thermoelastic body and follow a 
Lagrangian description. We have in mind that heat 

F(Σ,A) ⋅ Ȧ + p(Σ,A) = 𝛾(Σ,A)

F(Σ,A) ⋅ Ȧ = g(Σ,A), g = 𝛾 − p.

Z = (Z ⋅ N)N + Z
⟂
, Z

⟂
⋅ N = 0.

Z
⟂
= (� − N⊗ N)G = G − (G ⋅ N)N

Z ⋅F = g

N =
F

|F|
.

Z ⋅ N =
g

|F|

(18)Z =
g

|F|2
F + (� −

F⊗F

|F|2
)G.
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conduction is described by a rate equation and 
hence we let �,E,q

R
,∇

R
� be the set of variables for 

the constitutive functions

Computation of �̇�
R
 and substitution in Eq. (15) result 

in

By applying repeatidly the argument associated with 
(17) we conclude that the factors of �̇�, Ė,∇

R
�̇� should 

vanish, which implies that

Likewise we find that k
R
 is independent of E,q

R
,∇

R
� 

and hence

This term might be associated with q
R
⋅ ∇

R
� ; yet the 

isotropy of the body implies the vanishing of a vec-
tor k

R
 produced by the scalar � . Thus we let k

R
= 0 . 

Hence we are left with

Equation (19), along with the balance equa-
tions (2), (5), and (6), gives a system of differ-
ential equations for the unknowns �,� , q

R
 and 

� = �
R
∕J, J = [det(2E + 1)]1∕2 , with �

R
 a given con-

stant. The form of (19) depends on the functions 
�

R
(�,E, q

R
) and �(�,E,q

R
,∇

R
�) . Using the represen-

tation formula (18) we now derive explicit forms of 
q̇

R
.
Assume �qR�R

≠ 0 and let N = �qR�R
∕|�qR�R

| . 
Using the representation formula (18), applied to 
vectors, and Eq. (19) we find

g being any vector function of �,E,q
R
,∇

R
� . For defi-

niteness, if g = J
R
∇
R
� , where J

R
 is a second-order ten-

sor possibly dependent on �,E,q
R
 , then we have

𝜓
R
, 𝜂

R
, 𝛾 , q̇

R
.

− (���R + �)�̇ + (TRR − �E�R) ⋅ Ė − �qR�R ⋅ q̇R

− �∇R��R ⋅ ∇R�̇ −
1
�
qR ⋅ ∇R� + �∇R ⋅ kR = �R�� .

�
R
= −���R

, T
RR
= �E�R

, �∇R�
�

R
= 0.

∇
R
⋅ k

R
= ��kR

⋅ ∇
R
�.

(19)−𝜕qR𝜓R
⋅ q̇

R
−

1

𝜃
q

R
⋅ ∇

R
𝜃 = 𝜌

R
𝜃𝛾 ≥ 0.

(20)

q̇
R
= −

q
R
⋅ ∇

R
𝜃 + 𝜌

R
𝜃2𝛾

𝜃|𝜕qR𝜓R
|2

𝜕qR𝜓R
+ (1 −

𝜕qR𝜓R

|𝜕qR𝜓R
|
⊗

𝜕qR𝜓R

|𝜕qR𝜓R
|
)g,

where

We now go back to Eq. (20) and consider the particu-
lar case g = 0 . Hence we have

Since 𝛾 > 0 it follows that, in stationary conditions,

this is a necessary condition, subject only to 
�qR�R

≠ 0 , and provides the classical result of heat 
conduction inequality.

An interesting particular case of (20) follows by let-
ting �qR�R

= �q
R
 so that

Hence selecting g = −∇
R
�∕�� we have

Equation (21) has the standard form of the Maxwell-
Cattaneo equation (see, e.g., [18, 19]) with relaxation 
time � and conductivity � given by

If, rather, the conductivity � , e.g. as a function of � , is 
given then we determine the entropy production,

as a function of the variables q
R
 and � . The positive 

valuedness of the entropy production � implies the 
positive valuedness of the heat conductivity �.

q̇
R
= −�

R
(𝜃, q

R
)∇

R
𝜃 − 𝜌

R
𝜃𝛾

𝜕qR𝜓R

|𝜕qR𝜓R
|
,

�
R
= −

𝜕qR𝜓R
⊗ q

R

𝜃|𝜕qR𝜓R
|2

+ �
R
−

𝜕qR𝜓R
⊗ (𝜕qR𝜓R

�
R
)

|𝜕qR𝜓R
|2

.

q̇
R
= −

q
R
⋅ ∇

R
𝜃 + 𝜌

R
𝜃2𝛾

𝜃|𝜕qR𝜓R
|2

𝜕qR𝜓R
.

q
R
⋅ ∇

R
� = −�

R
�2� ≤ 0;

q̇
R
= −

q
R
⋅ ∇

R
𝜃

𝜃𝛼q2
R

q
R
−

𝜌
R
𝜃𝛾

𝛼q2
R

q
R
−

q
R
⋅ g

q2
R

q
R
+ g.

(21)q̇
R
= −

𝜌
R
𝜃𝛾

𝛼q2
R

q
R
−

1

𝛼𝜃
∇
R
𝜃.

� =
�q2

R

�
R
��

, � =
q2

R

�
R
�2�

.

� =
q2

R

�
R
�2�

,
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6  Entropy inequality and selection of variables

It is customary to assume that a thermodynamic pro-
cess satisfies the balance equations and then constitu-
tive restrictions are determined so that the entropy ine-
quality holds. There are cases though where the entropy 
inequality can be employed to select appropriate inde-
pendent variables. This feature is exemplified through 
the modelling of electromagnetic continua.

For simplicity consider a deformable magnetic body. 
Let m and M be the magnetization per unit mass and 
unit volume. The balance of angular momentum leads 
to ([16], §2.16.1)

Owing to the balance of energy,

we obtain the entropy inequality in the form

Since

we let

and write the entropy inequality in the form

If F,H and e.g. �,∇� are the variables then we have

the dots denoting the terms in �̇�, Ḣ, (∇𝜃)̇ . Upon sub-
stitution of �̇� we can write Eq. (24) in the form

The linearity an arbitrariness of (∇𝜃)̇, �̇�,L, Ḣ imply 
that

(22)T + 𝜇0H⊗M ∈ Sym.

(23)𝜌�̇� = 𝜇0𝜌H ⋅ ṁ + T ⋅ L + 𝜌r − ∇ ⋅ q,

−𝜌(�̇� + 𝜂�̇�) + T ⋅ L + 𝜇0𝜌H ⋅ ṁ −
1

𝜃
q ⋅ ∇𝜃 = 𝜌𝜃𝛾 .

(−�̇� + 𝜇0H ⋅ ṁ) = (−𝜓 + 𝜇0H ⋅m)̇− 𝜇0m ⋅ Ḣ

� = � − �0H ⋅m

(24)

−𝜌(�̇� + 𝜂�̇�) − 𝜇0M ⋅ Ḣ + T ⋅ L −
1

𝜃
q ⋅ ∇𝜃 = 𝜌𝜃𝛾 .

�̇ = �F� ⋅ Ḟ +⋯ = �F� ⋅ (LF) +⋯ = (�F�FT ) ⋅ L +⋯

− 𝜌(𝜕𝜃𝜙 + 𝜂)�̇� + (T − 𝜌𝜕F𝜙F
T ) ⋅ L

− (𝜌𝜕H𝜙 + 𝜇0M) ⋅ Ḣ

− 𝜌𝜕∇𝜃𝜙 ⋅ (∇𝜃)̇ −
1

𝜃
q ⋅ ∇𝜃 = 𝜌𝜃𝛾 .

We now investigate the compatibility of the symme-
try requirement (22) with the thermodynamic restric-
tions (25). The function � might depend separately on 
F (e.g. through |F| or |E| ) and H (through |H| ). Hence 
we notice that

Consequently it follows

or

and

Hence

Thus the symmetry requirement (22) holds in the spe-
cial case where T ∈ Sym and H⊗M ∈ Sym.

More realistic models should allow for a cross 
dependence on F and H so that a magnetome-
chanical coupling [29] is obtained. Both FTH (i.e. 
(FTH)

P
= FiPHi ) and F−1H are invariant under 

Euclidean transformations (SO(3) invariant). Based 
on SO(3) invariance we might look for a depend-
ence on FTH or F−1H possibly multiplied by any 
power of the scalar invariant J = detF . First we 
check the SO(3) invariance of JnFTH and JnF−1H , 
with n ∈ ℕ.

Under the Euclidean transformation

(25)

�∇�� = 0, � = −���,

T = ��F�F
T , �0M = −��H�,

q ⋅ ∇� = −��2� ≤ 0.

�
F
|F| =�

F
(F ⋅ F)1∕2 = F∕|F|,

�
F
|E| =�

F
(E ⋅ E)1∕2 = (E ⋅ E)−1∕2(�

F
E)E,

�FiK

1

2
(FlPFlQ − �

PQ
) =

1

2
(FiQ�KP

+ FiP�KQ
),

�
H
|H| =H∕|H|.

�F�F
T = �|F|�FFT ∈ Sym,

�F�F
T = �|E|�

1

|E|
FEFT ∈ Sym,

�H� =
1

|H|
�|H|�H.

T = 𝜌𝜕
F
𝜙FT ∈ Sym,

H⊗M = −
1

|H|
𝜕|H|𝜙H⊗H ∈ Sym.

x∗ = c(t) +Q(t)x, detQ = 1,



Meccanica 

1 3
Vol.: (0123456789)

we have [15, 16]

and the like for JnF−1H.
Now let

and assume � = �(�,E,A) . We find that

Though T and H⊗M are non-symmetric we have

and then T + 𝜇0H⊗M ∈ Sym . Hence the depend-
ence on JnFTH makes the symmetry requirement (22) 
valid for any n ∈ ℕ . It is worth remarking that this 
conclusion is consistent with the literature where the 
field A = FTH ( n = 0 ) is adopted as the Lagrangian 
form of the magnetic field [20–23].

Now, JnF−1H is also objective and hence we may 
look for the possible function �(�,E,A) , with

Since

then we find

Consequently

Hence T + 𝜇0H⊗M ∈ Sym and also the depend-
ence on A is objective and satisfies the requirement 
(22). Nevertheless the dependence on A seems to be 
uncommon in the literature.

F
∗ = QF, H

∗ = QH,

(JnFT
H)∗ = (detF∗)nFT∗

H
∗ = (detF)n(QF)TQH

= JnFT
Q

T
QH = JnFT

H

A = JnFTH

Tij =��FiK
�FjK = ��EPQ

� 1
2
(FiQFjP + FiPFjQ)

+ ��AP
�(nJn�ijAP + JnHiFjP),

�0HiMj = − �Hi�Hj
� = −�Hi�AP

�JnFjP.

Tij + �0HiMj = ��EPQ
�

1

2
(FiQFjP + FiPFjQ) + �nJnA

P
�AP

� �ij

A = JnF−1H.

�FiK
F−1

Pm
= −F−1

Pi
F−1

Km

Tij =��FiK
�FjK = ��EPQ

�
1

2
(FiQFjP + FiPFjQ) + ��AP

�(nJnF−1
Ki
F−1

Pm
Hm − JnF−1

Pi
F−1

Km
Hm)FjK

�0HiMj = − Jn�Hi�AP
�F−1

Pj
.

Tij + �0HiMj =��EPQ
�

1

2
(FiQFjP + FiPFjQ) + ��AP

� nJnF−1
Pm
Hm�ij

− ��AP
� Jn(F−1

Pi
Hj + F−1

Pj
Hi).

7  Dissipation through the entropy production 
or the dissipation potential

Dissipative phenomena are associated with a posi-
tive entropy production. Indeed, relative to the CD 
inequality, dissipative phenomena are characterized 
by the reduced inequality. Here we show how differ-
ent approaches to the analysis of the reduced inequality 
lead to qualitatively different models of continua.

For definiteness we consider magnetic solids subject 
to the fields H,M,B . For simplicity it is assumed that 
the material is thermally and electrically non-conduct-
ing. The possible electric field E is then viewed as a 
vector parameter.

7.1  Relation to some reversible-irreversible 
decompositions

We review Ref. [24] and start with the balance of 
energy in the form

where u is the internal energy density. The mechani-
cal power T ⋅ �̇ means that we assume T ∈ Sym and 
D is replaced with the time derivative of the infinitesi-
mal strain � . The magnetic power H ⋅ Ḃ is consistent 
with the expression 𝜇0H ⋅ Ṁ in that � is assumed to 
be constant and hence (26) is consistent with (23) by 
letting �� = �u − �0|H|2∕2 . In light of (26) the CD 
inequality reads

We assume the additive decomposition of B and � in 
the form

the irreversible parts are considered to describe dis-
sipative effects, here magnetostriction or hysteresis. 
A possible internal variable � is here ignored. Let S 
be the entropy density, Ψ = �u − �S the free energy 
density. We let Ψ, S,T,H be functions of the variables

(26)𝜌u̇ = H ⋅ Ḃ + T ⋅ �̇ + 𝜌r,

(27)−(Ψ̇ + S�̇�) +H ⋅ Ḃ + T ⋅ �̇ ≥ 0.

B = Brev + Birr, � = �rev + �irr,
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Inequality (27) becomes

The arbitrariness of �̇�, Ḃ , and �̇rev implies

and hence

For technical convenience the free energy Ψ is then 
assumed to be a function with appropriate depend-
ences, Ψ = Ψ(�,B − Birr, �rev) . Hence it follows

and the reduced inequality (28) can be written in the 
form

To satisfy (29), appeal is made to a function �(H,T) 
and the rates Ḃirr

, �̇irr are required to be given by

while

Granted these conditions, � is called a pseudopoten-
tial [25]. If, further, 𝜑 = �̂�(|H|, |T|) then the inequal-
ity reads

and holds if �̂� is convex, relative to |H| and |T| , with 
�̂�(0, 0) = 0 . More generally we might have

where A ( C ) is a second-order (fourth-order) positive 
definite tensor. In that case we have

if only the derivatives f1, f2 , with respect to the first 
and second variable, are non-negative.

Thus the model is characterized by two poten-
tials, Ψ and � . Yet, as a general remark on the use of 

�,B,Birr, �rev, �.

− (𝜕𝜃Ψ + S)�̇� + (H − 𝜕
B
Ψ) ⋅ Ḃ + (T − 𝜕�Ψ) ⋅ �̇

− 𝜕
B
irrΨ ⋅ Ḃ

irr
+ T ⋅ �̇irr ≥ 0.

S = −��Ψ, H = �BΨ, T = ��Ψ,

(28)−𝜕BirrΨ ⋅ Ḃ
irr
+ T ⋅ �̇irr ≥ 0.

�BirrΨ = −�BΨ = −H

(29)H ⋅ Ḃ
irr
+ T ⋅ �̇irr ≥ 0.

Ḃ
irr

= 𝜕H𝜑, �̇irr = 𝜕T𝜑,

H ⋅ �H� + T ⋅ �T� ≥ 0.

�|H|�|H| + �|T|�|T| ≥ 0

� = f (H ⋅ AH,T ⋅ CT),

f1H ⋅ AH + f2T ⋅ CT ≥ 0

pseudopotentials, we observe that the functions Ψ and 
� depend on different variables,

respectively.
A similar approach is developed in [26] where the 

variables are

where C is the Cauchy-Green tensor, B is the Lagran-
gian induction field; the additive decomposition is 
assumed for B,

Be,Bv being viewed as elastic and viscous parts. 
Instead, the deformation gradient F is factorized as

and Ce = FT
e
Fe , Cv = FT

v
Fv . A free energy density Ω 

is considered and the CD inequality is written in the 
form

where T
RR

 is the second Piola stress to within a pres-
sure term due to the possible incompressibility con-
straint. It follows

Next, for simplicity of the model it is assumed that 
the separate inequalities

are satisfied while

The second requirement of (30) is satisfied by letting

It is worth mentioning that this type of solution is 
adopted also by appealing to relaxation toward equi-
librium [27]. Indeed, if e.g. Ωv depends on Bv in the 
form

then

�,B,Birr, �rev and �,H,T,

C,Cv,B,Bv,

B = Be + Bv,

F = FeFv,

1

2
T

RR
⋅ Ċ + (H − 𝜕BΩ) ⋅ Ḃ − 𝜕Cv

Ω ⋅ Ċv − 𝜕Bv
Ω ⋅ Ḃv ≥ 0,

H = 𝜕BΩ, 𝜕Cv
Ω ⋅ Ċv + 𝜕Bv

Ω ⋅ Ḃv ≤ 0.

(30)𝜕Cv
Ω ⋅ Ċv ≤ 0, 𝜕Bv

Ω ⋅ Ḃv ≤ 0

Ω(C,Cv,B,Bv) = Ωe(C,B) + Ωv(C,Cv,B,Bv).

(31)Ḃv = −𝜅𝜕Bv
Ω, 𝜅 > 0.

Ωv = qv|B − Bv|
2
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if B is constant then Bv − B approaches zero as t 
approaches infinity.

Differently from the approach of [24], in [26] the set 
of variables is kept unchanged when establishing the 
equation for the rate Ḃv.

In both approaches the set of variables does not 
involve the time derivative Ḃ , or Ḃirr , and hence hyster-
etic models would seem out of reach. Now, in [28] the 
dissipation potential is assumed to be a function of Ḃirr 
whereas the constitutive functions are not dependent on 
Ḃ
irr . Next, by Legendre transformations, a constitutive 

equation is established in the form

and experimental data are simulated through

where � is the permeability and �, Z are parameters. 
This system follows by suitable assumptions on the 
dissipation potential, the dependence on an additional 
internal variable, � , and Legendre transformations. 
Things would be different by maintaining the same 
variables for all of the constitutive functions.

7.2  Hysteretic models through the entropy 
production

Consider the CD inequality (24) and, for formal sim-
plicity, neglect heat conductivity so that

Hysteretic models necessarily involve the rates of the 
magnetic fields H,B,M . Since the time rates Ḣ, Ḃ, Ṁ 
are not objective then we consider an objective ana-
logue of H , namely

which is Euclidian invariant. Now,

and

Ḃv = −2𝜅qv(Bv − B);

Ḃ
irr

= F(|H −G|n∕D)
H −G

|H −G|

Ḃ =𝜇Ḣ + F(|H − G|n∕D)
H − G

|H − G|
,

Ġ =𝜈[Ḃirr − (G − K)|Ḃirr|∕Z] + Ḃirr∕𝜇,

K̇ =Ḃirr∕𝜇,

(32)−𝜌(�̇� + 𝜂�̇�) − 𝜇0M ⋅ Ḣ + T ⋅ L = 𝜌𝜃𝛾 .

ℌℌℌ = FTH,

Ḣ = F−Tℌ̇ℌℌ − LH

Substitution in (32) results in

where

Since we have in mind hysteretic effects in deform-
able ferromagnets, the minimal set of variables is 
𝜃,F,ℌℌℌ,𝔐𝔐𝔐,ℌ̇ℌℌ  or possibly with ℌ̇ℌℌ replaced by �̇�� . The 
free energy � is Euclidean invariant and hence we let

Computation of �̇� and substitution in (33) yields

The linearity and arbitrariness of �̇�,ℌ̈ℌℌ,W imply

If Ė is independent of ℌ̇ℌℌ and �̇�� then it follows

Consequently we obtain the reduced inequality

where 𝛾(𝜃,F,ℌℌℌ,𝔐𝔐𝔐,ℌ̇ℌℌ).
Inequality (34) is the condition for the occurrence 

of dissipative processes. To describe hysteretic effects 
we need a distinction between increasing and decreas-
ing of the source field. We may consider the mag-
netic field as the source field and then we model the 
entropy production in the form

Since � ≥ 0 then (34) is satisfied and we can view

as the rate equation governing the hysteretic 
processes.

T ⋅ L = T ⋅ D + T
RR
⋅ Ė.

(33)
− 𝜌(�̇� + 𝜂�̇�) − 𝜇0𝔐𝔐𝔐 ⋅ ℌ̇ℌℌ

+ T
RR
⋅ Ė + (T + 𝜇0H⊗M) ⋅W = 𝜌𝜃𝛾 ,

𝔐𝔐𝔐 = JF−1M, T
RR
= T

RR
+ 𝜇0C

−1ℌℌℌ⊗𝔐𝔐𝔐.

𝜙 = 𝜙(𝜃,E,ℌℌℌ,𝔐𝔐𝔐,ℌ̇ℌℌ).

− 𝜌(𝜕𝜃𝜙 + 𝜂)�̇� + (T
RR
− 𝜌𝜕

E
𝜙) ⋅ Ė

− (𝜇0𝔐𝔐𝔐 + 𝜌𝜕ℌℌℌ𝜙) ⋅ ℌ̇ℌℌ − 𝜌𝜕𝔐𝔐𝔐𝜙 ⋅ �̇�𝔐𝔐

− 𝜌𝜕ℌ̇ℌℌ𝜙 ⋅ ℌ̈ℌℌ + (T + 𝜇0H⊗M) ⋅W = 𝜌𝜃𝛾 .

𝜂 = −𝜕𝜃𝜙, 𝜕ℌℌℌ𝜙 = 0, T + 𝜇0H⊗M ∈ Sym.

T
RR
= ��E�.

(34)−(𝜇0𝔐𝔐𝔐 + 𝜌𝜕ℌℌℌ𝜙) ⋅ ℌ̇ℌℌ − 𝜌𝜕𝔐𝔐𝔐𝜙 ⋅ �̇�𝔐𝔐 = 𝜌𝜃𝛾 ≥ 0

(35)𝜌𝜃𝛾 = 𝜁(𝜃,F,ℌℌℌ,𝔐𝔐𝔐)|ℌ̇ℌℌ|, 𝜁 ≥ 0.

(36)−(𝜇0𝔐𝔐𝔐 + 𝜌𝜕ℌℌℌ𝜙) ⋅ ℌ̇ℌℌ − 𝜌𝜕𝔐𝔐𝔐𝜙 ⋅ �̇�𝔐𝔐 = 𝜁 |ℌ̇ℌℌ|
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For simplicity, and also with reference to experi-
mental setups [29, 30], we restrict attention to one-
dimensional models. Let e be a fixed direction and let

We observe that Ḣ and Ṁ are Euclidean invariants. 
This is so because

and the like for M. Hence H, M are scalar Euclidean 
invariants and so are Ḣ, Ṁ.

In a linear approximation, relative to H,M, Ḟ we 
can write

Hence Eq. (36) is approximated by

Subject to Ḣ ≠ 0 , it is

that is the differential magnetic susceptibility. Thus 
dividing (37) by Ḣ we have

The occurrence of sgn Ḣ produces different depend-
ences of M in terms of H, in hysteretic systems, 
depending on whether H increases or decreases. Fur-
thermore Eq. (38) is determined by the free energy 
� and the entropy production � through � . It is worth 
remarking that the crucial term sgn Ḣ arises because 
of the constitutive property of the entropy production. 
The free energy � cannot depend on ℌ̇ℌℌ because � 
occurs through the time derivative �̇� ; instead � occurs 
through the value possibly dependent on ℌ̇ℌℌ . Exam-
ples of hysteresis cycles determined by equations like 
(38) are given in [16], ch. 15.

8  Conclusions

The paper deals with the application of the entropy 
principle, through the Clausius–Duhem inequality, 

F = diag(F11,F22,F33), H = He, M = Me,

ℌℌℌ = F11He, 𝔐𝔐𝔐 = F22F33Me.

H∗ = (H ⋅ e)∗ = (QH) ⋅ (Qe) = H ⋅QTQe = H ⋅ e = H,

ℌ̇ℌℌ = Ḟ11H + F11Ḣ ≃ Ḣ, �̇�𝔐𝔐 ≃ Ṁe.

(37)−(𝜇0M + 𝜌𝜕ℌ𝜙)Ḣ − 𝜌𝜕𝔐𝜙Ṁ = 𝜁 |Ḣ|.

Ṁ

Ḣ
=

dM

dH
,

(38)dM

dH
= −

𝜇0𝔐 + 𝜌𝜕ℌ𝜙

𝜌𝜕𝔐𝜙
−

𝜁

𝜌𝜕𝔐𝜙
sgn Ḣ.

for the analysis of constitutive properties in contin-
uum physics. Though the application is meant in the 
sense of Coleman–Noll procedure [2], some gener-
alizations are established. First, the use of the repre-
sentation formula (18) allows us to solve equations of 
the form (19) which are customary when dealing with 
vectors and tensors.

Secondly, the Clausius–Duhem inequality may 
lead to the suitable selection of variables as is the 
case of the restrictions for magnetic solids,

subject to the balance equation

The Lagrangian variable ℌℌℌ = FTH proves to satisfy 
(39) and in addition is invariant under Euclidean 
transformations.

Thirdly, letting the entropy production � be a 
constitutive function per se allows the modelling of 
hysteresis. As a remarkable example, in ferromag-
netism we let the constitutive functions depend also 
on ℌ̇ℌℌ ≃ Ḣ and the dependence of � on ℌ̇ℌℌ allows us to 
select a non-negative function 𝜁 |Ḣ| which, upon divi-
sion by Ḣ , eventually distinguishes the susceptibility 
dM/dH in magnetizing and demagnetizing processes. 
In relation to other approaches in the literature, the 
analogue dependence on Ḃirr is obtained by using a 
Legendre transformation thus establishing the model 
with two different sets of variables.
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