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Abstract A variational model has been devel-
oped to investigate the coupled thermo-mechanical 
response of a three-dimensional continuum. The 
linear Partial Differential Equations (PDEs) of this 
problem are already well-known in the literature. 
However, in this paper, we avoid the use of the sec-
ond principle of thermodynamics, basing the formu-
lation only on a proper definition (i) of kinematic 
descriptors (the displacement and the entropic dis-
placement), (ii) of the action functional (with kinetic, 
internal and external energy functions) and (iii) of the 
Rayleigh dissipation function. Thus, a Hamilton–Ray-
leigh variational principle is formulated, and the cited 

PDEs have been derived with a set of proper Bound-
ary Conditions (BCs). Besides, the Lagrangian varia-
tional perspective has been expanded to analyze linear 
irreversible processes by generalizing Biot’s formula-
tion, namely, including thermal inertia in the kinetic 
energy definition. Specifically, this implies Catta-
neo’s law for heat conduction, and the well-known 
Lord–Shulman model for thermo-elastic anisotropic 
bodies is then deduced. The developed variational 
framework is ideal for the perspective of analyzing 
the thermo-mechanical problems with micromor-
phic and/or higher-order gradient continuum models, 
where the deduction of a coherent system of PDEs 
and BCs is, on the one hand, not straightforward and, 
on the other hand, natural within the presented vari-
ational deduction.

Keywords Thermoelasticity · Hamilton–Rayleigh 
variational formulation · Heat conduction · Cattaneo’s 
law · Lord–Shulman model

1 Introduction

Thermoelasticity is generally treated with a thermo-
dynamic approach based on a sequence of independ-
ent postulates (see, e.g., some reviews on the subject 
[1–3]). There exist in the literature few examples 
[4–8], in which the mechanics of deformable bodies 
coupled with temperature effects is formulated using 
the setting provided by the variational principles [9]. 
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Weak formulation of thermoelasticity can be deduced 
from the strong form of the PDEs [10, 11] but inertial 
effects of the Lord–Shulman model can be confused 
with a dissipative term.

Starting from the Biot’s fundamental contributions 
[6, 7], Giorgio [12] was able to show in the 1D case 
how the thermal phenomenologies could be framed 
using the same synthetic approach that is also suc-
cessfully adopted for mechanical phenomena. In this 
paper, we extend to the more complex 3D case the 
same approach exploited in [12] for the 1D case con-
sidering both the general anisotropic and the simpler 
isotropic cases.

The mentioned synthetic viewpoint is exploited 
by introducing ab  initio, as fundamental kinematic 
descriptors, the displacement and the entropic dis-
placement fields, being the first the standard one and 
the second related to temperature in a way that will 
be specified in Eq.  (12). Besides, some generalized 
Action functional has been defined as well as a dissi-
pation Rayleigh function [13–15]. Finally, a general-
ized Rayleigh–Hamilton principle has been assumed 
in order to derive a system of PDEs and BCs. On 
the one hand, it is the generalized Rayleigh–Hamil-
ton principle that gives the irreversibility to the sys-
tem of the derived equations. On the other hand, in 
the standard thermodynamic approach, the irrevers-
ible nature of the thermal phenomena is dealt with 
by using the Clausius–Duhem inequality [16, 17]. 
Finally, it is demonstrated also in the 3D case that the 
classical thermoelastic problem and the well-known 
generalization due to Lord and Shulman [18], a finite 
velocity of propagation for thermal waves is deduced 
[19, 20].

The use of a variational principle is a highly effec-
tive and safe conceptual tool for developing complex 
theories regarding generalized continua [21–28], 
or approximate theories of structural components, 
alongside natural boundary conditions [29]. Addition-
ally, it may serve as a preparatory step towards the 
establishment of a comprehensive thermo-mechanical 
formulation, a synthetic viewpoint to facilitate the 
proof of many mathematical theorems, and the the-
oretical basis for the application of modern numeri-
cal techniques like, for instance, the finite element 
method [30–38]. Variational principles are a widely 
accepted method of organizing information about 
dynamic systems and developing their evolution 
equations [7, 39–46]. By utilizing a singular quantity, 

such as the Lagrangian or Hamiltonian functional, 
one can deduce all aspects of a system, including its 
equations of motion, symmetries, and conservation 
laws. As a result, contemporary methods of modeling 
dynamical systems take the variational principle as a 
fundamental concept and initiate the process by con-
structing the Lagrangian or the Hamiltonian. Opting 
for the Lagrangian approach, one can prove that it 
is advantageous for various practical purposes. The 
Lagrangian formalism is, for example, a synthetic 
and comprehensive way to describe a system. For this 
reason, it becomes a mathematically elegant unify-
ing picture that seems to tell us something profound 
about our physical universe. It enables straightfor-
wardly stating underlying physical laws in arbitrary 
curvilinear coordinates. Therefore, it makes it possi-
ble to use generalized coordinates that permit the rep-
resentation of the unique characteristics of any given 
system aptly and accurately. Besides, constraining 
forces do not exert work when constraints are bilat-
eral and perfect; hence, there is no need to calculate 
them in an analysis involving energy and work. In the 
Lagrangian formulation, internal constraining stresses 
or reaction forces can be ignored completely. The 
Lagrangian approach naturally accounts for energy 
transfer between components of a system, making it a 
universal choice for physical systems.

With its remarkable features and capabilities, the 
proposed novel variational formulation proves to be 
an invaluable asset in tackling even the most complex 
thermo-elastic problems. Its unmatched versatility 
make it an ideal solution for a wide range of appli-
cations in engineering and beyond. By leveraging the 
unique advantages of this formulation, engineers and 
researchers can develop innovative and practical solu-
tions to some of the most challenging problems in 
their respective fields. Overall, the novel formulation 
is a highly recommended tool that can help to drive 
progress and innovation in many areas of research and 
development, especially in the field of generalized 
continua. For example, to conceive models capable 
of describing fiber-reinforced thermo-elastic media 
[47], porous continua with thermal effects [48], and 
generalized thermoelasticity with couple-stress solids 
based on Lord–Shulman thermoelastic theory [49], to 
name a few.

The current discussion involves an exploration of 
the interplay between the thermal and elastic behav-
iors of a continuous body. The resultant equations 
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are hyperbolic in nature and address the paradox of 
the infinite velocity of propagation intrinsic in the 
classical theory of thermo-elasticity.

2  Modeling linear elastic problems with thermal 
conductivity

2.1  Kinematic descriptors

Herein, we apply the generalized continuum theory 
to model 3D linear thermo-elasticity. Within the 
classical elasticity framework, a continuum medium 
is a continuous distribution of material particles 
represented geometrically in the reference configu-
ration by a point x of a three-dimensional Euclid-
ian space which is characterized kinematically by 
a vector field representing its position or displace-
ment. In a generalized continuum theory, each par-
ticle is still represented by a point x from the mac-
roscopic point of view, which is the point of view 
of any continuum theory, but its kinematical prop-
erties are defined more comprehensively. Therefore, 
in this generalized context, to develop a theory able 
to describe the mechanical and thermal response of 
the body, we can assume that the macroscopic kin-
ematical description of the considered continuum 
is defined entirely through two fields on a domain 
B and over the time t: the usual displacement field, 
denoted here by u(x, t) , and a further field, namely, 
the entropy (or heat) displacement, s(x, t) , capable 
of describing the thermal behavior of the material 
particle, in particular, related to heat conduction, 
in the absence of any process of mass transfer [6, 
7]. The proposed choice of entropy displacement, 
which is a vector field, seems to be more compre-
hensive than the alternative formulation adopting 
the temperature as a kinematical descriptor (see, 
e.g., [50]) on the grounds that the temperature is a 
scalar quantity and, therefore, has limited capabil-
ity to describe the phenomenon. In the following, 
we will connect time and space derivative of the 
entropy displacement with the well-known concepts 
of the heat flux q and of the entropy increment � . 
Thus, the entropy displacement can be defined as 
the time integral of the heat flux or thermal flux, q , 
divided by a reference temperature Tr ; therefore, the 
expression

is valid in the linear context. The increment of 
entropy per unit volume is the opposite of the diver-
gence of the entropy displacement,

where the summation convention is employed for the 
expression in terms of components, namely the index 
i that appears twice is implicitly summed over; such 
an index is called a dummy index. The unit of meas-
ure of s is accordingly [s] = J m −2 K −1.

2.2  The extended variational principle

The variational approach has been proven to be the 
most effective in ensuring the accurate and efficient 
development of generalized elasticity; thus, we use it 
to frame a thermo-elastic formulation in a linear con-
text accurately and consistently. In order to obtain the 
governing equations representing the Euler–Lagrange 
conditions, we use an extended variational principle 
adapted for the current scenario. Therefore, for every 
admissible variation of the kinematic descriptors, �u 
and �s , the following variational equality holds

where � is the operator that provides the first vari-
ation. Therefore, we can introduce a Lagrangian 
density:

which is utilized in the definition of the action 
functional

in terms of a thermo-elastic potential V  and kinetic 
energy K  and evaluated between two time instants t0 
and tf  . Thus, the first term of Eq. (3) is the first varia-
tion of the action functional, i.e., �A .

The second term of Eq.  (3) stands for the signifi-
cant dissipative phenomena and can be associated 
to the virtual work linked to these effects. Herein, 

(1)
�s

�t
(x, t) ∶=

1

Tr
q(x, t)

(2)�(x, t) = −∇ ⋅ s = −
�si

�xi

(3)∫
tf

t0

(𝛿V − 𝛿K)dt + ∫
tf

t0

𝛿D dt = ∫
tf

t0

𝛿W
ext dt

(4)L = V −K

(5)A = ∫
tf

t0

Ldt
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we define a Rayleigh functional D  to describe such 
phenomena. Since this contribution is not evaluated 
as the first variation of D  , we use a different symbol, 
i.e., 𝛿 , to take into account the dissipation as usually 
done in a variational framework through the Rayleigh 
extension of Lagrangian formalism [51, 52].

Finally, the last term of Eq. (3) represents the vir-
tual work related to external generalized forces.

2.3  The thermoelastic potential

By assuming the divergence of the entropy displace-
ment as a measure of thermal ‘deformation’, that is, a 
perturbation from a reference state, in a given inertial 
reference frame, we can postulate in a straightforward 
way the following thermo-elastic potential:

where the stiffness tensor ℂ(�)

ijmn
 stands for adiabatic 

elastic moduli, which furnish the mechanical behav-
ior when no heat exchange is involved in the process, 
the quadratic term involving the square of the diver-
gence of s is associated with the heat exchanged for 
conduction, and the last term represents a coupling 
between the mechanical deformation, E , and the heat 
exchange at the reference temperature Tr given by the 
divergence of s (see, Eq.  (2)). The linearized stain 
tensor E can be defined by components with the clas-
sical expression:

for small deformation. The coefficients kE
h
 and Γij are 

material parameters. They can be identified as

in which c is the specific heat per unit volume at zero 
strain, Tr is the reference temperature with respect to 
which we linearize the problem, and � is the thermal 
dilatation tensor assumed to be symmetric. Based 
on this identification, we can rewrite the generalized 
potential energy as

(6)

V[u(⋅), s(⋅)] =∫
B

[
1

2
ℂ

(�)

ijmn
EijEmn

+
1

2
kE
h

(
�si

�xi

)2

+ ΓijEij

�sk

�xk

]
dx

(7)Eij =
1

2

(
�ui

�xj
+

�uj

�xi

)

(8)kE
h
=

Tr

c
, Γij =

Tr

c
�ij

Therefore, the energy density per unit volume can be 
defined as follows

As in the classical approach, the stress tensor is eval-
uated as the derivative of � with respect to E,

Indeed, by computing the first variation of the poten-
tial energy Eq.  (9), the derivative of � with respect 
to E can immediately be identified as the generalized 
Lagrangian action that performs work on the virtual 
strain tensor. Besides, the derivative of � with respect 
to � is, in the same way, defined as

being the divergence �si
�xi

 expressed synthetically with 
the notation si,i , the absolute temperature T provided 
by the expression:

and � is, therefore, the increment of temperature, 
namely, the generalized Lagrangian action that does 
work on the virtual entropy density � . By introducing 
these dual quantities, we can write the thermo-elastic 
energy density in a more straightforward way; specifi-
cally, we have:

This expression enables us to analyze the meaning of 
this potential further. In fact, it can be equivalently 
reformulated in terms of temperature, as Biot did in 
[7], with the assumption:

(9)

V[u(⋅), s(⋅)] = ∫
B

[
1

2
ℂ

(�)

ijmn
EijEmn

+
1

2

Tr

c

(
�si

�xi

)2

+
Tr

c
�ijEij

�sh

�xh

]
dx

(10)

� =
1

2
ℂ

(�)

ijmn
EijEmn +

1

2

Tr

c

(
�si

�xi

)2

+
Tr

c
�ijEij

�sh

�xh
.

(11)�ij =
��

�Eij

= ℂ
(�)

ijmn
Emn +

Tr

c
�ij

�sh

�xh
.

(12)� =
��

��
= −

��

�si,i
= −

Tr

c

(
�si

�xi
+ �ijEij

)

(13)T(x, t) ∶= Tr + �(x, t)

(14)� =
1

2
�ijEij +

1

2
��

(15)� =
1

2
ℂ

(�)

ijmn
EijEmn +

1

2

c

Tr
�2
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where the last term represents a heat potential related 
to the increment of temperature � . Naturally, the 
mechanical stiffness tensor ℂ(�)

ijmn
 , in this context, must 

be specified in terms of isothermal elastic moduli. 
Therefore, using the kinematical descriptors intro-
duced precisely by Biot, namely, u and s , we have

and, hence, the stress with the new isothermal per-
spective may be evaluated as

The aim of this slightly different point of view resides 
in the fact that the entropy displacement could be, in 
the end, replaced by the more common quantity, the 
temperature, allowing for the retrieval of the classical 
thermo-elastic formulation that is already accessible.

By comparing the density of the mechanical poten-
tial energy, i.e., 1∕2�ijEij , for the two introduced 
cases, (11) and (17), we can compute the relationship 
between the adiabatic elastic moduli and the isother-
mal elastic moduli, as follows:

In this way, we can switch between the adiabatic and 
the isothermal formulation at our convenience.

2.4  The kinetic energy and the dissipative Rayleigh 
functional

The kinetic energy, in terms of the kinematical 
descriptors adopted, can be defined as

where the first contribution is the common mechani-
cal term. Then, differently from what was proposed 
by Biot in his seminal work, we also add a thermal 
contribution to the kinetic energy [12]. In the ensuing 
discussion, we aim to elucidate how the supplemen-
tary contribution is responsible for the Cattaneo cor-
rection in the heat equation. Particularly, in Eq. (19) 

(16)� =
1

2
ℂ

(�)

ijmn
EijEmn +

1

2

Tr

c

(
�si

�xi
+ �ijEij

)2

(17)
�ij =

��

�Eij

= ℂ
(�)

ijmn
Emn + �ij

Tr

c

(
�sh

�xh
+ �hkEhk

)

=ℂ
(�)

ijmn
Emn − �ij�

(18)ℂ
(�)

ijmn
= ℂ

(�)

ijmn
+

Tr

c
�ij�mn

(19)

K[u̇(⋅), ṡ(⋅)] = ∫
B

1

2

[
𝜚
𝜕ui

𝜕t

𝜕ui

𝜕t
+ 𝜏0 Tr 𝜆ij

𝜕si

𝜕t

𝜕sj

𝜕t

]
dx

the parameter � is the mass density, � is the thermal 
resistivity tensor assumed to be symmetric, and �0 is a 
thermal relaxation characteristic time.

In order to address the irreversibility of the pro-
cess, we should also consider some dissipative phe-
nomena. This can be done in a variational framework 
with a Rayleigh functional D  representing the power 
dissipated in the process. Specifically, we can assume

In Eq. (20), the first contribution, differently from the 
original approach of Biot, is due to a viscous effect 
added to generalize the nonconservative source of 
the problem specifically mechanical, while the sec-
ond contribution, according to Biot’s formulation, 
is responsible for the dissipation related to thermal 
effects. Hence, �ijmn are the components of a viscous 
tensor. In this context, we can define the Rayleigh 
potential density as

and, therefore, compute the virtual work done by dis-
sipative generalized forces as

as it is customary in the context of a variational 
framework employing the Rayleigh extension of 
Lagrangian formalism. In Eq. (22), the over-dot sym-
bol represents differentiation with respect to time.

Specifically, the virtual work linked to these dis-
sipative effects becomes

2.5  The virtual work done by external generalized 
forces

The virtual work done by the external generalized 
forces �Wext can be assumed, consistently with the 
hypotheses previously made, as follows:

(20)
D[u̇(⋅), ṡ(⋅)] =

1

2 ∫
B

�ijmn

𝜕Eij

𝜕t

𝜕Emn

𝜕t
dx

+
1

2 ∫
B

Tr 𝜆ij
𝜕si

𝜕t

𝜕sj

𝜕t
dx

(21)R =
1

2
�ijmn

�Eij

�t

�Emn

�t
+

1

2
Tr �ij

�si

�t

�sj

�t

(22)𝛿D = ∫
B

𝜕R

𝜕Ėmn

𝛿Emndx + ∫
B

𝜕R

𝜕ṡj
𝛿sj dx

(23)𝛿D = ∫
B

�ijmn

𝜕Eij

𝜕t
𝛿Emndx + ∫

B

Tr 𝜆ij
𝜕si

𝜕t
𝛿sj dx
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where we can consider two contributions in bulk per 
unit volume and as many for the boundary of the 
body B under consideration, each pair related to the 
mechanical work and the exchanged heat representing 
the external interactions for the system. Therefore, bi 
are the components of the long-range volumic force 
acting on B and fi are the components of the contact 
force per unit surface acting on the boundary �B or 
on a portion of it; �j may be interpreted as a sort of 
‘thermo-motive’ force, which in analogy with the 
electro-motive force, is defined by a heat energy den-
sity per unit volume of heat flow. The idea here is to 
consider the term �j �sj as a source of heat inside the 
body that can guide some phenomena of heat conduc-
tion. The last generalized force, in the Lagrangian 
sense, namely, Θext , is the temperature increment 
applied on the boundary or at a portion of it.

2.6  Exploitation of the variational principle

In order to apply the variational principle  (3) for a 
thermoelastic continuum, the equations of motion 
can be obtained by introducing admissible compari-
son motions. In the considered case, the admissible 
comparison displacements to be considered are

where � is a real parameter, while �u and �s are 
arbitrary and sufficiently smooth vector fields on 
B × [t0, tf ] subject to the requirements that they van-
ish where the corresponding kinematic descriptors u 
and s are assigned on the boundary and for the two 
time instants. Having introduced these admissible 
comparison displacements, any functional I can be 
regarded as a function of � and its first variation can 
be computed by taking its derivative with respect to � 
and setting � = 0 , as follows

Therefore, the first variation of the thermo-elastic 
potential is

(24)

�W
ext = ∫

B

[
bi �ui + �j �sj

]
dx + ∫

�B

(
fi �ui + Θextnj �sj

)
dA

(25)
ũ = u + � 𝛿u

s̃ = s + � 𝛿s

(26)𝛿I =
dI(ũ, s̃)

d𝜀

||||𝜀=0

By assuming the symmetry of the tensors ℂ(�)

ijmn
 and 

�ij , Eq. (27) can be written equivalently as

where the linearized strain tensor is substituted with 
the gradient of the displacement to simplify the sub-
sequent calculations.

In fact, the thermo-elastic contribution in the 
variational principle (3) after an integration by parts 
becomes:

that is to say

if we take into account the constitutive relationships 
for the stress � and the temperature increment �.

The inertial contribution linked to the kinetic 
energy yields:

(27)

𝛿V =
dV(ũ, s̃)

d𝜀

||||𝜀=0
= ∫

B

[
ℂ

(𝜂)

ijmn
Eij 𝛿Emn +

Tr

c

𝜕si

𝜕xi

𝜕𝛿sh

𝜕xh

+
Tr

c
𝛽ij

(
Eij

𝜕𝛿sh

𝜕xh
+

𝜕sh

𝜕xh
𝛿Eij

)]
dx

(28)
�V = ∫

B

[
ℂ

(�)

ijmn
Eij

��um

�xn
+

Tr

c

�si

�xi

��sh

�xh

+
Tr

c
�ij

(
Eij

��sh

�xh
+

�sh

�xh

��ui

�xj

)]
dx

(29)

∫
tf

t0

�Vdt = − ∫
tf

t0
∫
B

{
�

�xn

(
ℂ

(�)

ijmn
Eij +

Tr

c
�mn

�si

�xi

)
�um

+
�

�xj

[
Tr

c

(
�si

�xi
+ �ijEij

)]
�sj

}
dx dt

+ ∫
tf

t0
∫
�B

{(
ℂ

(�)

ijmn
Eij +

Tr

c
�mn

�si

�xi

)
nn �um

+

[
Tr

c

(
�si

�xi
+ �ihEih

)]
nj �sj

}
dA dt

(30)

∫
tf

t0

�Vdt = −∫
tf

t0
∫
B

(
��mn

�xn
�um −

��

�xj
�sj

)
dx dt+

−∫
tf

t0
∫
�B

(
�mnnn �um − � nj �sj

)
dA dt

(31)

−∫
tf

t0

�K dt = ∫
tf

t0
∫
B

[
�
�2ui

�t2
�ui + �0 Tr �ij

�2si

�t2
�sj

]
dx dt
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after performing an integration by parts, this time 
with respect to the temporal variable. In addition, the 
boundary conditions related to the initial and final 
time disappear because of the isochronous assump-
tion for the motions. Therefore, as usually done, ini-
tial conditions related to u , u̇ , s , and ṡ should be intro-
duced to solve the differential problem obtained.

The virtual work of dissipative phenomena can be 
evaluated as in (23) or, equivalently, as

for the symmetry of �ijmn . The dissipative contribu-
tion in the variational principle (3) can be computed 
as follows

with an integration by parts.

2.7  Derivation of the PDEs and BCs of the 
thermoelastic problem

Finally, by substituting the expressions (29), (31), 
(33), and (24) into Eq.  (3) and applying the funda-
mental lemma of the calculus of variations (see, e.g., 
[53] pag. 20), we can deduce the balance of linear 
momentum as the necessary condition related to the 
mechanical variable, namely, the displacement u , for 
the adiabatic representation, as follows

together with the mechanical natural boundary 
condition

on the portion of the boundary �Bf  where the force 
per unit area f  is applied, or the mechanical essential 

(32)𝛿D = ∫
B

�ijmn

𝜕Eij

𝜕t

𝜕𝛿um

𝜕xn
dx + ∫

B

Tr 𝜆ij
𝜕si

𝜕t
𝛿sj dx

(33)

∫
tf

t0

𝛿D dt = −∫
tf

t0
∫
B

𝜕

𝜕xn

(
�ijmn

𝜕Eij

𝜕t

)
𝛿umdx dt+

∫
tf

t0
∫
𝜕B

(
�ijmn

𝜕Eij

𝜕t

)
nn𝛿umdA dt + ∫

tf

t0
∫
B

Tr 𝜆ij
𝜕si

𝜕t
𝛿sj dx dt

(34)
�
�2ui

�t2
−

�

�xj

(
ℂ

(�)

ijmn
Emn +

Tr

c
�ij

�si

�xi

)

−
�

�xj

(
𝔻ijmn

�Emn

�t

)
= bi

(35)

�ijnj +

(
�ijmn

�Emn

�t

)
nj = fi ∀x ∈ �Bf and ∀t ∈ [t0, tf ]

boundary conditions in which we impose the dis-
placement field u

It is worth noting that from this formulation appears a 
further stress term �v

ij
 , namely,

which represents the contribution of the viscous inner 
actions introduced here with the viscous part of the 
Rayleigh functional (20).

In addition, making use of the relationships  (18) 
and (12), the balance of linear momentum can also be 
expressed for the isothermal representation, as below:

Once more, by substituting the expressions (29), (31), 
(33), and (24) into Eq.  (3) and applying the funda-
mental lemma of the calculus of variations, the neces-
sary condition related to the thermal variable, namely, 
the entropy displacement s provides the Cattaneo law 
in the following form:

alongside the thermal natural boundary conditions

related to the portion of the boundary where the tem-
perature is applied �B� , and, similarly to the mechani-
cal displacement, we can also give the entropy dis-
placement as a thermal essential boundary condition

Equation  (35) is significant since it tells us that the 
dual of the displacement, i.e., fi , defined in  (24), is 
connected not only with the stress tensor, as in the 
non-dissipative case, but also to the viscous tensor 
D  and the strain rate. Equation  (24) defines also the 
dual of the entropy displacement Θextn , that is not 
only assumed to be parallel to the boundary normal 

(36)ui(x, t) = gi(x, t) ∀x ∈ �Bu and ∀t ∈ [t0, tf ]

(37)�v
ij
=

(
�ijmn

�Emn

�t

)

(38)
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(40)−� = Θext ∀x ∈ �B� and ∀t ∈ [t0, tf ]

(41)si(x, t) = hi(x, t) ∀x ∈ �Bs and ∀t ∈ [t0, tf ] .
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but connected directly with the temperature � with 
Eq. (40).

In order to better exploit the fact that the temperature 
increment is the normal component of the dual of the 
entropy displacement, we premultiply Eq.  (39) by the 
thermal conductivity � , substitute the constitutive rela-
tion (12) for � as well as the expression (1) into Eq. (39) 
to obtain

being the tensor � = �−1.
Finally, we remark that with some manipulations 

of Eq. (39) and making its divergence, we can obtain 
the Lord–Shulman model for thermo-elastic aniso-
tropic bodies, completing the thermal field equation

with the elastic mechanical Eq. (38).

3  A notable case: Isotropic linear 
thermo‑visco‑elasticity

In the context of thermoelastic solids that exhibit isot-
ropy, the above-mentioned material tensors are char-
acterized by a specific structure. Specifically, they 
take the form:

where �(�) and �(�) are the Lamé moduli under an adi-
abatic deformation, � is a thermal dilatation coeffi-
cient, � is the thermal conductivity together with its 
inverse � , namely, the thermal resistivity; finally, �v 
and �v are the shear and bulk viscosity, respectively. 
To determine the isothermal Lamé parameters, one 

(42)�ij
��

�xj
+

(
�0

�qi

�t
+ qi

)
= �ij�j

(43)

�

�xi

(
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��

�xj

)
− c

(
��

�t
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�2�
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− Tr�ij

(
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�t
+ �0

�2Eij
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)
=

�
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(
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)

(44)ℂ
(�,�)

ijmn
= �(�,�)�ij�mn + �(�,�)

(
�im�jn + �in�jm

)

(45)�ij = ��ij

(46)�ij = � �ij = �−1 �ij

(47)�ijmn =
(
�v −

2

3
�v
)
�ij�mn + �v

(
�im�jn + �in�jm

)

may refer to Eq. (18) and (44) and utilize the subse-
quent relationships

or, alternatively, express them in terms of isothermal 
Young’s modulus, Y, and isothermal Poisson’s coef-
ficient, � , as follows

For both representations, namely, adiabatic and 
isotermal, the number of parameters to be identified 
are, hence: 1) �(�,�) ; 2) �(�,�) ; 3) �v ; 4) �v ; 5) � ; 6) c; 
7) � ; and 8) �0 . Identifying all these parameters could 
be a daunting task because of the complexity of the 
thermo-mechanical responses to consider. It is worth 
noting that specific techniques that have been utilized 
for complex generalized materials, such as digital 
image correlation (DIC), energy methods, and neural 
networks, might be deemed applicable in this context 
(see, e.g., [54–58]).

Using the isotropic material symmetry in (44–47), 
therefore, the constitutive relations for the adiabatic 
elastic stress in  (11) and the temperature increment 
in (12) are specified by

By substituting the relations  (44) in Eq.  (34) and 
Eq.  (39), the PDEs with the adiabatic constants 
become

and

(48)�(�) = �(�) +
Tr

c
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Y

2(1 + �)

(50)�ij =

(
�(�)Enn +

Tr

c
�
�sh

�xh

)
�ij + 2�(�)Eij

(51)� = −
Tr

c

(
�si

�xi
+ �Ehh

)
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In order to fully solve the set of equations  (52) 
and  (53), it is necessary to incorporate specific 
boundary conditions, which can be essential, if they 
involve Dirichlet-like boundary conditions in terms of 
the displacement u and the entropic displacement s , 
or natural if they are Neumann-like boundary condi-
tions in terms of the dual of displacement or entropy 
displacement. In formulae, we have:

where �Bu , �Bf  , �Bs , and �B� are arbitrary subsets 
of the entire boundary �B where each condition has 
been specified.

Furthermore, we must prescribe the necessary initial 
conditions on the considered domain B to obtain the 
desired solution. Specifically, we set:

where u0 and v0 are the initial displacement and 
velocity, respectively. Besides, s0 is the initial entropy 
displacement and r0 is the initial rate of it. From 
Eq. (1) r0 is proportional to the initial heat flux. From 
Eq.  (12) s0 , in particular its divergence, is related to 
the initial temperature increment.

Similarly, we can deduce the stress by the insertion 
of Eq. (51) into Eq. (50) and use of Eq. (48),

making use of the isothermal moduli.
Consequently, the field equations, with the iso-

thermal parameters, are Eq.  (52) with the insertion of 
Eq. (48) and Eq. (51),

(54)

⎧
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si(x, t) = hi(x, t) ∀x ∈ �Bs

−� = Θext ∀x ∈ �B�

(55)

⎧⎪⎪⎨⎪⎪⎩

ui(x, 0) = u0
i
(x)

�ui

�t
(x, 0) = v0

i
(x)

si(x, 0) = s0
i
(x)

�si

�t
(x, 0) = r0

i
(x)

(56)�ij =
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together with Eq.  (53), which remains unchanged, 
and we repeat here, for the sake of convenience:

The differential problem, of course, is completed with 
the boundary conditions  (54) and the initials condi-
tions (55) as well.

The set of equations  (57) and  (58) are equivalent 
to the generalized dynamical thermo-elasticity theory 
developed by H. W. Lord and Y. Shulman [18]. In fact, 
Eq. (58) can be reformulated, substituting the depend-
ence on the entropy displacement s with the tempera-
ture increment � through Eq.  (51). This modification 
results in a diffusion equation for � , once one premulti-
plies by � and takes the divergence as follows,

which is hyperbolic, and hence it permits fixing the 
paradox of an infinite velocity of propagation as 
intended by Lord and Shulman. It is worth to note 
that the hyperbolicity of the thermal PDE can be rec-
ognized also via the original Eq. (53).

The new differential set of Eqs.  (57) and  (59) 
should be complemented with the corresponding 
boundary conditions

and initial conditions

updated with the newly adopted variables to ensure 
the uniqueness of the solution. Since we do not have 
any more access to the variable s , we remark that 
small differences naturally occur in the formulation 
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in terms of � instead of s as it appears from the third 
condition of (60), which is a standard Neumann con-
dition for � , while the third condition of (54), which 
is a standard Dirichlet condition for s . Besides, the 
last two equations of (61) are due to the second order 
time-differentiation of the thermal diffusion Eq. (59) 
and are connected with  (55)3,4 by divergence opera-
tion. These two approaches are very similar, but slight 
differences can still be found. We remark that the 
boundary condition (54)3 is vectorial in nature and, 
therefore, gives us the possibility to provide more 
information about the system on the boundary, while 
the (60)3 is of scalar type. For the same reasons, the 
initial conditions  (55)3,4 appear more comprehensive 
than the standard (61)3,4 being scalars.

Finally, to summarize the two possibilities that 
come from the proposed formulation, in Table 1, we 
give a synoptic picture of the main variables, the gov-
erning equations, and the expressions involved in the 
boundary conditions for the sake of comparing the 
novel formulation in terms of entropy displacement 
and the one, already available, in terms of tempera-
ture increment.

4  Conclusion

In the paper, we discuss with a variational formulation 
the development of a mathematical model that com-
bines mechanical and thermal aspects to study how 
a three-dimensional continuum medium responds to 
external forces and temperature changes. The model 
extends existing theories, incorporates concepts like 
thermal inertia associated with Cattaneo’s law for 
heat conduction, and ultimately leads to the deriva-
tion of a specific version of the Lord–Shulman model. 
Our starting point is Biot’s theory, which explains the 
behavior of classical thermoelastic linear materials; 
namely, heat conduction is based on Fourier’s law. 

Biot’s approach uses a Lagrangian variational per-
spective to take into account both the mechanical and 
thermal behavior of the material and simultaneously 
the irreversibility of the chosen processes. Herein, 
we extend the model of Biot, including the effects 
of thermal inertia, which means considering that the 
heat conduction is based on Cattaneo’s law instead. 
We remark that Cattaneo’s law is straightforwardly 
derived as a consequence of the hypotheses assumed 
from the adopted variational principle in terms of a 
generalization of the form of the kinetic energy. With 
this improvement, we are able to obtain a descrip-
tion involving a finite propagation speed for heat. In 
this variational framework, therefore, we deduce the 
Lord–Shulman model for the general case of thermo-
elastic anisotropic materials. The isotropic case is also 
discussed in detail, together with the boundary and 
initial conditions needed to complete the differential 
problem. The primary contribution of the paper lies 
in its use of the variational formulation. Our aim is to 
showcase that the well-known Lord-Shulman model 
can be derived directly from this new approach, thus 
allowing for the straightforward generalization of the 
thermo-mechanical problem with the most advanced 
models that are otherwise challenging to obtain using 
the standard approach. This new approach elimi-
nates the need for a plethora of potentially incoher-
ent hypotheses, which must be justified a posteriori, 
thus providing a more efficient way of addressing this 
problem. Additionally, it can be argued that the vari-
ational viewpoint presents a better physical ground 
compared to the conventional approach. It is notewor-
thy that Cattaneo’s correction can be interpreted as an 
inertial contribution here, as it appears as a conserva-
tive term in the Hamiltonian formulation rather than 
a dissipative phenomenon simply because it is related 
to the rate of the heat flux.

Table 1  Summary table 
of the two formulations 
in terms of entropy 
displacement s and 
increment of temperature � . 
The operator ‘ tr ’ stands for 
the trace of a tensor

Variables Equations Expressions 
assigned in 
BCs

u , s 𝜚ü − ∇ ⋅ (�(u, s) + �v) = b u , (� + �v)n

−∇(T
r
∕c∇ ⋅ s + 𝛽 trE) + T

r
𝜆(ṡ + 𝜏

0
s̈) = � s , �

u , � 𝜚ü − ∇ ⋅ (�(u, 𝜃) + �v) = b u , (� + �v)n

∇ ⋅ (𝜅∇𝜃) − c (�̇� + 𝜏
0
�̈�) − T

r
𝛽 (trĖ + 𝜏

0
trË) = ∇ ⋅ (𝜅�) � , ∇� ⋅ n



Meccanica 

1 3
Vol.: (0123456789)

Funding Open access funding provided by Università degli 
Studi dell’Aquila within the CRUI-CARE Agreement.

Declarations 

Conflict of interest The authors declare that they have no 
conflict of interest.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any 
medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Crea-
tive Commons licence, and indicate if changes were made. The 
images or other third party material in this article are included 
in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your 
intended use is not permitted by statutory regulation or exceeds 
the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit 
http://creativecommons.org/licenses/by/4.0/.

References

 1. Chandrasekharaiah DS (1986) Thermoelasticity with sec-
ond sound: a review. Appl Mech Rev 39(3):355–376

 2. Pitarresi G, Patterson EA (2003) A review of the general 
theory of thermoelastic stress analysis. J Strain Anal Eng 
Design 38(5):405–417

 3. Shakeriaski F, Ghodrat M, Escobedo-Diaz J, Behnia M 
(2021) Recent advances in generalized thermoelastic-
ity theory and the modified models: a review. J Comput 
Design Eng 8(1):15–35

 4. Hellinger E (1907) Die Allgemeinen Ansätze der 
Mechanik der Kontinua. Springer, Wiesbaden

 5. Herrmann G (1960) Energy methods for the analysis of 
temperature distributions and thermal stresses in struc-
tures. In: Sixth Congress, Intern. Assoc. Bridge and Struc-
tural Eng., Leemann, Zurich

 6. Biot MA (1956) Thermoelasticity and irreversible ther-
modynamics. J Appl Phys 27(3):240–253

 7. Biot MA (1958) Linear thermodynamics and the mechan-
ics of solids. Cornell Aeronautical Lab. Inc, Buffalo, 
Technical report

 8. Biot MA (1970) Variational principles in heat transfer: 
a unified lagrangian analysis of dissipative phenomena. 
Clarendon Press, Oxford, New York

 9. Del Piero G (2020) A mechanical model for heat conduc-
tion. Continuum Mech Thermodyn 32(4):1159–1172

 10. Hetnarski RB, Eslami MR, Gladwell GML (2009) Ther-
mal stresses: advanced theory and applications, vol 41. 
Springer, New York

 11. Aouadi M (2009) Theory of generalized micropolar ther-
moelastic diffusion under Lord-Shulman model. J Therm 
Stresses 32(9):923–942

 12. Giorgio I (2022) A variational formulation for one-dimen-
sional linear thermoviscoelasticity. Math Mech Compl 
Syst 9(4):397–412

 13. Rayleigh JWSB (1877) The Theory of Sound. Dover pub-
lications, New York

 14. dell’Isola F, Madeo A, Seppecher P (2009) Boundary con-
ditions at fluid-permeable interfaces in porous media: a 
variational approach. Int J Solids Struct 46(17):3150–3164

 15. Barchiesi E, dell’Isola F, Hild F, Seppecher P (2020) Two-
dimensional continua capable of large elastic extension in 
two independent directions: asymptotic homogenization, 
numerical simulations and experimental evidence. Mech 
Res Commun 103:103466

 16. dell’Isola F, Romano A (1987) A phenomenological 
approach to phase transition in classical field theory. Int J 
Eng Sci 25(11–12):1469–1475

 17. Barchiesi E, Hamila N (2022) Maximum mechano-dam-
age power release-based phase-field modeling of mass 
diffusion in damaging deformable solids. Z Angew Math 
Phys 73(1):35

 18. Lord HW, Shulman Y (1967) A generalized dynami-
cal theory of thermoelasticity. J Mech Phys Solids 
15(5):299–309

 19. Maugin GA (2013) The principle of virtual power: from 
eliminating metaphysical forces to providing an efficient 
modelling tool. In memory of Paul Germain (1920–
2009). Continuum Mech Thermodyn 25:127–146

 20. dell’Isola F, Placidi L (2011) Variational principles are 
a powerful tool also for formulating field theories. Vari-
ational models and methods in solid and fluid mechan-
ics, CISM International Centre for Mechanical Sciences. 
Springer, Wien

 21. Abali BE, Müller WH, dell’Isola F (2017) Theory and 
computation of higher gradient elasticity theories based 
on action principles. Arch Appl Mech 87(9):1495–1510

 22. Auffray N, dell’Isola F, Eremeyev VA, Madeo A, Rosi G 
(2015) Analytical continuum mechanics à la Hamilton-
Piola least action principle for second gradient continua 
and capillary fluids. Math Mech Solids 20(4):375–417

 23. Javili A, dell’Isola F, Steinmann P (2013) Geometri-
cally nonlinear higher-gradient elasticity with energetic 
boundaries. J Mech Phys Solids 61(12):2381–2401

 24. dell’Isola F, Guarascio M, Hutter K (2000) A variational 
approach for the deformation of a saturated porous solid. 
A second-gradient theory extending Terzaghi’s effective 
stress principle. Arch Appl Mech 70:323–337

 25. Alibert J-J, Seppecher P, dell’Isola F (2003) Truss 
modular beams with deformation energy depending 
on higher displacement gradients. Math Mech Solids 
8(1):51–73

 26. Casalotti A, D’annibale F, Rosi G (2020) Multi-scale 
design of an architected composite structure with opti-
mized graded properties. Compos Struct 252:112608

 27. La Valle G (2022) A new deformation measure for the 
nonlinear micropolar continuum. Z Angew Math Phys 
73(2):78

 28. dell’Isola F, Misra A (2023) Principle of virtual work 
as foundational framework for metamaterial discov-
ery and rational design. Comptes Rendus. Mécanique 
351(S3):1–25

http://creativecommons.org/licenses/by/4.0/


 Meccanica

1 3
Vol:. (1234567890)

 29. Nejadsadeghi N, Hild F, Misra A (2022) Parametric 
experimentation to evaluate chiral bars representative of 
granular motif. Int J Mech Sci 221:107184

 30. Turco E, Misra A, Pawlikowski M, dell’Isola F, Hild 
F (2018) Enhanced Piola-Hencky discrete models for 
pantographic sheets with pivots without deformation 
energy: numerics and experiments. Int J Solids Struct 
147:94–109

 31. Cuomo M, Contrafatto L, Greco L (2014) A variational 
model based on isogeometric interpolation for the analysis 
of cracked bodies. Int J Eng Sci 80:173–188

 32. Greco L, Cuomo M, Contrafatto L (2018) A reconstructed 
local B formulation for isogeometric Kirchhoff-Love 
shells. Comput Methods Appl Mech Eng 332:462–487

 33. Greco L, Cuomo M, Contrafatto L (2019) Two new trian-
gular G1-conforming finite elements with cubic edge rota-
tion for the analysis of Kirchhoff plates. Comput Methods 
Appl Mech Eng 356:354–386

 34. Abali BE, Zohdi TI (2020) Multiphysics computation of 
thermal tissue damage as a consequence of electric power 
absorption. Comput Mech 65(1):149–158

 35. Bednarczyk E, Lekszycki T (2022) Evolution of bone tis-
sue based on angiogenesis as a crucial factor: new math-
ematical attempt. Math Mech Solids 27(6):976–988

 36. Casalotti A, D’Annibale F (2022) A rod-like piezoelec-
tric controller for the improvement of the visco-elastic 
Beck’s beam linear stability. Struct Control Health Monit 
29(2):2865

 37. Vazic B, Abali BE, Newell P (2023) Generalized thermo-
mechanical framework for heterogeneous materials 
through asymptotic homogenization. Continuum Mech 
Thermodyn 35(1):159–181

 38. Yakovlev M, Konovalov D (2023) Multiscale geome-
chanical modeling under finite strains using finite element 
method. Continuum Mech Thermodyn 35(4):1223–1234

 39. Carcaterra A, dell’Isola F, Esposito R, Pulvirenti M 
(2015) Macroscopic description of microscopically 
strongly inhomogenous systems: a mathematical basis 
for the synthesis of higher gradients metamaterials. Arch 
Ration Mech Anal 218:1239–1262

 40. Eugster SR (2022) Numerical analysis of nonlinear wave 
propagation in a pantographic sheet. Math Mech Complex 
Syst 9(3):293–310

 41. Turco E, Barchiesi E, Ciallella A, dell’Isola F (2022) 
Nonlinear waves in pantographic beams induced by trans-
verse impulses. Wave Motion 115:103064

 42. De Angelis F (2000) An internal variable variational for-
mulation of viscoplasticity. Comput Methods Appl Mech 
Eng 190(1–2):35–54

 43. Bersani AM, Caressa P, Ciallella A (2022) Numerical 
evidence for the approximation of dissipative systems 
by gyroscopically coupled oscillator chains. Math Mech 
Complex Syst 10(3):265–278

 44. Spagnuolo M, Andreaus U (2019) A targeted review on 
large deformations of planar elastic beams: extensibility, 
distributed loads, buckling and post-buckling. Math Mech 
Solids 24(1):258–280

 45. Laudato M, Barchiesi E (2019) Non-linear dynamics of 
pantographic fabrics: modelling and numerical study. 
Wave Dynamics, Mechanics and Physics of Microstruc-
tured Metamaterials: Theoretical and Experimental Meth-
ods, pp 241–254

 46. Eremeyev VA, Turco E (2020) Enriched buckling 
for beam-lattice metamaterials. Mech Res Commun 
103:103458

 47. Deswal S, Sheokand SK, Kalkal KK (2019) Thermo-
diffusive interactions in a fiber-reinforced elastic medium 
with gravity and initial stress. J Braz Soc Mech Sci Eng 
41:1–11

 48. Alshaikh F (2023) Effects of thermal relaxation times and 
porosity in a Lord-Shulman and refined multi-phase lags 
model of generalized thermoelasticity. Mech Based Des 
Struct Mach 51(1):438–449

 49. Li Y, Li L, Wei P, Wang C (2018) Reflection and refrac-
tion of thermoelastic waves at an interface of two couple-
stress solids based on Lord-Shulman thermoelastic theory. 
Appl Math Model 55:536–550

 50. Nowacki W (2013) Thermoelasticity. Elsevier, Warsaw
 51. Bersani AM, Caressa P (2021) Lagrangian descrip-

tions of dissipative systems: a review. Math Mech Solids 
26(6):785–803

 52. Bersani AM, Bersani E, Caressa P (2022) Lagrange for-
mal calculus as applied to Lagrange mechanics: an exer-
cise in anachronism. Math Mech Solids 27(10):2017–2033

 53. Bolza O (1904) Lectures on the Calculus of Variations, 
vol 14. University of Chicago Press, Chicago

 54. Fedele R, Maier G, Miller B (2005) Identification of 
elastic stiffness and local stresses in concrete dams by 
in  situ tests and neural networks. Struct Infrastruct Eng 
1(3):165–180

 55. Florentin E, Lubineau G (2010) Identification of the 
parameters of an elastic material model using the constitu-
tive equation gap method. Comput Mech 46:521–531

 56. Fedele R, Sessa S, Valoroso N (2012) Image correlation-
based identification of fracture parameters for struc-
tural adhesives. Technische Mechanik-Eur J Eng Mech 
32(2–5):195–204

 57. Abali BE, Wu C-C, Müller WH (2016) An energy-based 
method to determine material constants in nonlinear rhe-
ology with applications. Continuum Mech Thermodyn 
28:1221–1246

 58. Ciallella A, La Valle G, Vintache A, Smaniotto B, Hild 
F (2023) Deformation mode in 3-point flexure on panto-
graphic block. Int J Solids Struct 265:112129

Publisher’s Note Springer Nature remains neutral with regard 
to jurisdictional claims in published maps and institutional 
affiliations.


	A variational formulation for three-dimensional linear thermoelasticity with ‘thermal inertia’
	Abstract 
	1 Introduction
	2 Modeling linear elastic problems with thermal conductivity
	2.1 Kinematic descriptors
	2.2 The extended variational principle
	2.3 The thermoelastic potential
	2.4 The kinetic energy and the dissipative Rayleigh functional
	2.5 The virtual work done by external generalized forces
	2.6 Exploitation of the variational principle
	2.7 Derivation of the PDEs and BCs of the thermoelastic problem

	3 A notable case: Isotropic linear thermo-visco-elasticity
	4 Conclusion
	References


