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Abstract In this paper different lumped param-
eters models are presented for the stability analysis 
of rotors supported on gas bearings. The analysis is 
carried out taking into account the damping and stiff-
ness coefficients of journal bearings, calculated with 
the perturbation method. Lumped parameters models 
of different complexity are discussed for the descrip-
tion of the main rigid modes of the spindle. In case of 
symmetric systems, it is shown that the complexity of 
the model can be reduced by halving the number of 
the degrees of freedom. The analogy with the single 
mass approach is demonstrated. The considerations 
discussed in the paper are preliminary for the stability 
analysis of more complex systems, such as the ones 
with non-fixed bushes.

Keywords Aerostatic bearings · Perturbation 
method · Linearized stability

List of symbols 
A  State space matrix
C  Damping matrix
Funb  Unbalance force
G  Gyroscopic matrix
I  Transversal moment of inertia of the shaft
Ip  Polar moment of inertia of the shaft

L1, L2  Axial length of journal bearings
K  Stiffness matrix
M  Mass matrix
R  Gas constant
T  Temperature
cij  Damping coefficients of the air film in jour-

nal bearings
e  Residual static unbalance of the shaft
h  Radial air gap
kij  Stiffness coefficients of the air film in journal 

bearings
l1, l2  Axial distances between the shaft center 

of mass and the middle plane of journal 
bearings

m  Mass of shaft
ms  Mass of shaft concentrated on bearings
n  Number of degrees of freedom
p  Pressure in journal bearings
q, q′  State vectors of generalized displacements
r  Radial coordinate
xc, yc  Shaft radial displacements in correspondence 

of journal bearings
�  Eigenvalue
�  Angle of rotation in plane xy respect to axis 

x
�x,�y  Shaft rotations around axes x and y
�  Residual dynamic unbalance of the shaft
�  Dynamic viscosity of air
ν  Perturbation frequency
�  Real part of the eigenvalue (damping)
�  Damping factor
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ω  Rotational speed
�d  Damped frequency

1 Introduction

Gas bearings systems suffer from the so-called half 
speed whirl, which is a self-excited phenomenon 
which occurs at high rotational speeds [1]. It involves 
the increase of the radius of the rotor orbits until a 
possible crash of the rotor with the bearings. The 
onset of the half-speed whirl occurs when the rota-
tional speed exceeds the stability threshold. This 
phenomenon can be studied with two alternative 
approaches: the so-called orbit method and the lin-
earized coefficients method.

The first method solves the time dependent Reyn-
olds equation (RE) coupled with the equations of 
motion of the rotor [2]. It takes into account the non-
linear effects in bearings, but it is time expensive and 
it is unsuitable for creating stability maps. Explicit or 
implicit schemes can be employed to solve the time 
marching problem. A noteworthy method is the Alter-
nating Direction Implicit (ADI) scheme [3], which 
involves the solution of a tridiagonal system and is 
less costly than the implicit scheme which involves a 
penta-diagonal system.

The second method is based on the linearization 
of the bearings forces around a given operational 
point [4] and on the solution of the eigenproblem 
resulting from the rotor equations of motion [5, 6]. 
The linearized stiffness and damping coefficients are 
computed with the so-called perturbation method [7]. 
The improved version of the method, presented by 
the same author in [8], is useful for rotor-dynamics 
calculation of unbalance response and stability. The 
importance of this method was confirmed by other 
authors, which implemented it to carry out the sta-
bility analysis of gas bearings systems. In [9] it was 
employed to analyze the stability of a foil bearing and 
obtain stability maps, which typically show the stabil-
ity threshold curve on a plot where a mass parameter 
is represented vs the bearing number. The classical 
perturbation method and an extended perturbation 
procedure incorporating the foil compliance explicitly 
were developed in [10]. The linearization method was 
used in [11] to compute the gas film coefficients for a 
high speed cryogenic turboexpander and in [12] for 
a heat pump turbocompressor. An interesting analysis 

of tilting pads is given in [13]. Many other works on 
the topic can be found in literature, such as [14–17]. 
The linearized coefficients method is more conveni-
ent from the computational point of view than the 
time advancing methods as the time needed to com-
pute the linearized coefficients and evaluate the sta-
bility is much smaller than the time needed to solve 
the time dependent problem. Moreover, it is capable 
of providing a better knowledge about the underly-
ing sources of instability, if compared with the orbit 
method. Stability charts can be easily plotted to show 
quantitatively how much the system approaches the 
stability threshold [6, 7, 18–20].

The stability evaluation is in most of cases carried 
out considering the so-called single-mass approach 
[21–23], which simplifies the complexity of the full 
rotor-bearings model and gives a first approximation 
of the stability threshold. Anyway, it is not evident in 
which cases this approach is more convenient and in 
which cases the full rotor model is to be preferred. To 
clarify this aspect, this paper shows the equivalence 
of the single mass approach with the simplified rotor 
models with 2 degrees of freedom (DOFS) and put 
in evidence in which conditions these models are no 
more accurate in predicting the stability threshold 
of the rotor-bearings system. In particular, it dem-
onstrates that in case the bearings are not symmetri-
cal with respect to the rotor center of mass, the sin-
gle mass approach gives just a first estimation of the 
instability threshold. The error in the estimation of 
the onset speed increases the more unsymmetrical is 
the system.

In the introduction the linearized coefficients 
method to evaluate the stability of rotors supported on 
gas bearings is discussed in this paper. The full rotor 
model with four degrees-of-freedom (4 DOFs) system 
is presented, showing in which cases it is possible to 
reduce the number of DOFs and consider separately 
the cylindrical and the conical whirl motions. The 
2 DOFs models are also compared with the single 
point-mass approach and the analogy between the two 
is demonstrated. Such considerations are preliminary 
for the stability analysis of more complex systems, 
such as the ones with non-fixed bushes.

1.1  The lumped parameters models

The dynamic equations of motion of the spindle con-
sidered rigid are considered in case of fixed bushings. 
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The bearings forces are linearized around the central 
shaft positions and the coefficients of stiffness and 
damping are collected in matrixes [K] and [C]. The 
system dynamics is described by Eq. (1)

where [M] and [G] are the stiffness and the gyro-
scopic matrixes respectively, q is the state vector of 
the generalized displacements and Funb is the vector 
of the actions due to the residual unbalance of the 
shaft.

Matrixes [K] and [C] depend on the linearized 
coefficients of the radial air films in journal bearings, 
which are frequency dependent.

1.2  Rigid rotor with 4 DOFs

The rigid rotor model with 4 DOFs involves all the 
radial degrees of freedom of the shaft. The axial 
degree of freedom is not considered as the axial mode 
and the radial modes can be considered decoupled in 
a first approximation; the thrust bearing is supposed 
to have a little influence on the whirl stability of the 
electro-spindle due to its small radius compared with 
the axial distance of the journal bearings. It is pos-
sible to consider two alternative versions of the gen-
eralized displacements vector: vector q involves both 
the radial displacement of the center of mass of the 

(1)[M]q̈ + ([G] + [C])q̇ + [K]q = Funb

shaft and the rotations of the shaft axis around axes 
x and y:

Vector q′ involves the radial displacements of the 
shaft measured in the middle radial plane of the jour-
nal bearings:

The following kinematic relationship is valid

where l1 and l2 are the axial distances between the 
shaft center of mass and the middle plane of journal 
bearings, see Fig.  1. Notice that in general the sys-
tem is not symmetric and distances l1 and l2 do not 
coincide.

In case q is used, the system is described by 
Eq. (1), while in case q’ is used, by Eq. (3)

The expressions of the matrixes and of the unbal-
ance vector are reported in Appendix A1. It is worth 
noticing that in Eq.  (1) the mass matrix is diagonal, 

q =
[
xC yC �y −�x

]�

q� =
[
xC1 yC1 xC2 yC2

]�

(2)q� =

⎡⎢⎢⎢⎣

1 0

0 1

l1 0

0 l1
1 0

0 1

−l2 0

0 −l2

⎤⎥⎥⎥⎦
q

(3)
[
M�

]
q̈� +

([
G�

]
+
[
C�
])
q̇� +

[
K�

]
q� = Funb

Fig. 1  Sketch of the system’s geometry
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while stiffness and damping matrixes are full. This 
means that in general the four equations are cou-
pled. Similarly for system (2), in which also the mass 
matrix is not diagonal.

1.3  Rigid rotor with 2 DOFs, cylindrical mode

This model involves just the radial translation of the 
shaft, neglecting the tilting motions around axes x and 
y. The state vector is

The equations of motion in matrix form are

where e is the radial distance between the shaft center 
of mass and the center of journals (residual static 
unbalance), m is the mass of the shaft and kij and cij 
the linearized coefficients of the air films.

1.4  Rigid rotor with 2 DOFs, conical mode

In this case only the rotation of the shaft axis around 
x and y fixed axes are taken into account, neglecting 
the radial motion of the center of mass of the shaft. 
The state vector is

The equations of motion in matrix form are

q =
[
xC yC

]�

(4)

[

m 0
0 m

]

q̈ +
[

cxx1 + cxx2 cxy1 + cxy2
cyx1 + cyx2 cyy1 + cyy2

]

q̇

+
[

kxx1 + kxx2 kxy1 + kxy2
kyx1 + kyx2 kyy1 + kyy2

]

q = me�2
[

cos�t
sin�t

]

q =
[
�y −�x

]

where I and Ip are the transversal and the polar 
moments of inertia of the shaft and γ is the angle 
between the principal axis of inertia and the rotational 
axis of the shaft (residual dynamic unbalance).

1.5  Computation of gas film coefficients

The stiffness and damping coefficients of the air films 
are computed with the so-called perturbation method. 
Starting from the static pressure distribution p0, 
obtained solving the discretized Reynolds equation 
with finite difference technique, the dynamic pressure 
distribution Δp is obtained as a result of the sinusoi-
dal perturbation Δx imposed to the shaft. As sketched 
in Fig. 2, the coefficients are both function of the rota-
tional speed ω and the perturbation frequency ν.

The computation of such coefficients involves the 
solution of a linear system, resulting after discretiza-
tion of the Reynolds equation in perturbed form (6):

Equation  (6) represents a balance of flow in the 
perturbed condition; also the input flow through the 
supply orifices is considered in the balance, taking 

(5)

⎡

⎢

⎢

⎣

I 0

0 I

⎤

⎥

⎥

⎦

q̈ +
⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

0 Ip�

−Ip� 0

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

cxx1l21 + cxx2l22 cxy1l21 + cxy2l22
cyx1l21 + cyx2l22 cyy1l21 + cyy2l22

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

q̇

+
⎡

⎢

⎢

⎣

kxx1l21 + kxx2l22 kxy1l21 + kxy2l22
kyx1l21 + kyx2l22 kyy1l21 + kyy2l22

⎤

⎥

⎥

⎦

q = �2
⎡

⎢

⎢

⎣

(

I − Ip
)

� cos�t
(

I − Ip
)

� sin�t

⎤

⎥

⎥

⎦

(6)

1
12�RT

⎡

⎢

⎢

⎣

∮
Γ

p0h30∇⃗Δp ⋅ n⃗ dΓ+∮
Γ

h30∇⃗p0 ⋅ n⃗ΔpdΓ−∮
Γ

3h20p0Δx cos �∇⃗p0 ⋅ n⃗ dΓ
⎤

⎥

⎥

⎦

− 1
RT ∮

Γ

(

−p0Δx cos � + h0Δp
)

⎡

⎢

⎢

⎣

�r
2

0

⎤

⎥

⎥

⎦

⋅ n⃗ dΓ + G′

pΔp + G′

xΔx

=
j�
RT ∬

Σ

(

h0Δp − p0Δx cos �
)

dΣ

Fig. 2  Layout of the input and output variables involved in the static and in the perturbed problems
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into account its partial derivatives with respect to 
pressure p ( G�

p
) and x ( G�

x
).

1.6  The Eigenvalue problem and the iterative 
procedure

The dynamic problem is written in the state space 
form, resulting in a linear system of size 2n, where 
n is the number of DOFs:

The stability problem is faced calculating the 
eigenvalues of the state space matrix A. Complex 
eigenvalues appear in pairs, with conjugate imagi-
nary parts:

The real part represents damping, while the 
imaginary part the damped frequency. The natural 
frequencies and the damping factors of the modes 
are computed with:

As the coefficients of the air films are frequency 
dependent, an iterative procedure is necessary to 
find the convergence between the damped frequency 
�d and the perturbation frequency ν. The following 
algorithm is thus implemented for each mode:

• Step1:  kij and  cij are evaluated at a first attempt 
frequency ν0

• Step 2: the eigenvalues of system (3) are calcu-
lated, obtaining the damped frequency ωd

• Step 3:  kij and  cij are evaluated at the new fre-
quency ν  = ωd

• Step 4: in case the new frequency coincides with 
the damped frequency the algorithm has reached 
convergence, otherwise come back to step 2.

{ẋ} = [A]{x}

(7)
{

q̇

q̈

}
=

[
0 I

−M−1K −M−1C

]{
q

q̇

}

(8)� = �r ± j�i = � ± j�d

�n =

√
�2
r
+ �2

i

(9)� =
−�r√
�2
r
+ �2

i

An example of the solution of the eigenvalue prob-
lem at different rotational speeds using this algo-
rithm is given in Fig.  3; the damped frequency and 
the damping factors of the four modes are plotted vs 
the rotational speed considering the 4 DOFs model 
with fixed bushings. The negative damping factor of 
mode 4 indicates at which rotational speed the whirl 
becomes unstable (about ωth = 130 krpm). It is suf-
ficient that one mode becomes unstable to have the 
unstable whirl.

2  Discussion

In this paragraph, it is shown how it is possible to 
simplify the 4 DOFs model if suitable conditions are 
verified. Three cases are considered:

(a) Different journal bearings (JBs) with unsymmet-
rical configuration

(b) Different JBs with symmetrical configuration
(c) Equal JBs with symmetrical configuration

It is shown that in the third case, in case the Cori-
olis terms are negligible, the equations of motion of 
translation and of rotation are uncoupled, so that it 
is possible to consider separately the cylindrical and 
the conical whirl motions in spite of considering the 
complete 4 dofs model. The bearings are supplied 
through two series of 10 supply holes of dia. 0.15 mm 
located at one fourth of the axial length. The radial 
film thickness is 20 µm. The rotor has mass m = 230 
g, transversal moment of inertia I = 453∙10–6 kg  m2 
and polar moment of inertia Ip = 14.9∙10–6 kg  m2.

2.1  Case a)

In this case, different JBs with unsymmetrical con-
figuration are considered, see Table  1. The 4 DOFs 
model results are depicted in Fig.  3. The 2 DOFs 
cylindrical whirl model results are shown in Fig.  4 
in the left, while the 2 DOFs conical whirl model 
results are shown in the right. The stability threshold 
obtained from the models are compared in Table 2.

By a comparison of the 2 DOFs models with the 4 
DOFs model, the damped frequencies and the damp-
ing ratio of the modes do not coincide. The reason is 
that in this case the cylindrical and the conical whirl 
motions are coupled and the 2 DOFs models, which 
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take into account only the pure cylindrical or the 
conical whirl, result to be inaccurate. The complete 4 
DOFs model is to be preferred as it treats the coupled 
cylindrical and conical whirl.

Fig. 3  Damped frequencies ωd and damping factors � vs rotational speed; 4 DOFs model, case a)

Table 1  geometry considered in case a)

Axial length (mm) Distance from 
center of mass 
(mm)

Front bearing L2 = 37 l2 = 23
Rear bearing L1 = 26 l1 = 64.6

Fig. 4  Damped frequencies ωd and damping factors � vs rotational speed for case a); 2 DOFs model, cylindrical whirl in the left; 2 
DOFs model, conical whirl in the right
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2.2  Case b)

In this case, different JBs with symmetrical configu-
ration are considered, see Table 3.

The 4 DOFs model results are depicted in Fig. 5. 
The 2 DOFs cylindrical whirl model results are 
shown in Fig. 6 (left), while the 2 DOFs conical whirl 
model results are shown in the right. The stability 

threshold obtained from the models are compared in 
Table 4.

In this case the curves representing the damped 
frequency of the modes and the curves of the damp-
ing factor are more similar if the 4 DOFs model 
is compared with the 2 DOFs models. Due to the 
increased symmetry of the system, the 2 DOFs model 
give a better approximation of the 4 DOFs model 
with respect to case a). Anyway, the results do not yet 
coincide.

2.3  Case c)

In this case, equal JBs with symmetrical configura-
tion are considered, see Table 5.

The 4 DOFs model results are depicted in Fig. 7. 
The 2 DOFs cylindrical whirl model results are 
shown in Fig. 8 in the left, while the 2 DOFs conical 
whirl model results are shown in the right.

The stability threshold obtained from the mod-
els are compared in Table  6, while Table  7 com-
pares the stiffness and damping matrixes in the 
three cases. Stiffness coefficients are expressed in 
N/m, while damping coefficients in Ns/m. The table 
shows how matrixes [K] and [C] become band diag-
onal the more symmetrical the geometry becomes.

Table 2  comparison of the stability threshold according to the 
considered models; case a)

Model Stability threshold (krpm)

2 DOFs cylindrical whirl model 16,420 rad/s≈157 krpm
2 DOFs conical whirl model 17,800 rad/s≈170 krpm
4 DOFs model 13,614 rad/s≈130 krpm

Table 3  geometry considered in case b)

Axial length (mm) Distance from center of 
mass (mm)

Front bearing L2 = 37 l1 = l2 = 43.8
Rear bearing L1 = 26

Fig. 5  Damped frequencies ωd and damping factors � vs rotational speed; 4 DOFs model, case b)
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In this case, due to the complete symmetry of 
the journal bearings with respect to the center of 
mass of the shaft, the results of the 2 DOFs mod-
els perfectly match with the results of the 4 DOFs 
model. The curves representing the damped fre-
quencies and the damping factors coincide.

The cylindrical and the conical motions are 
uncoupled in case the Coriolis terms are neglected 
and the system’s geometry satisfies condition (10) 
or condition (11). In the first case there is perfect 
symmetry: distances l1 and l2 must coincide and 
the journal bearings must have the same geometry 

and the same radial film thickness (same air film 
coefficients):

Condition (11) is more general, as the center 
of mass of the shaft could be not in the middle of 
bearings.

This is evident from the stiffness and damp-
ing matrixes of the 4dofs model (see appendix 
A1) which reduce to band diagonal matrixes. For 
instance, in condition (10) [K] is reduced into this 
form:

It is thus demonstrated in which cases the 
full rotor model can be reduced: in case of com-
plete symmetry (condition 10) or more in general 
according to condition (11). Of course, in case the 
system does not exactly satisfy such conditions but 
the asymmetry is small or condition (11) is almost 

(10)

⎧⎪⎨⎪⎩

l1 = l2
kij,1 = kij,2
cij,1 = cij,2

(11)
{

kij,1l1 = kij,2l2
cij,1l1 = cij,2l2

(12)

⎡⎢⎢⎢⎣

2kxx 2kxy 0 0

2kyx 2kyy 0 0

0 0 2kxxl
2
2kxyl

2

0 0 2kyxl
2
2kyyl

2

⎤⎥⎥⎥⎦

Fig. 6  Damped frequencies ωd and damping factors � vs rotational speed for case b); 2 DOFs model, cylindrical whirl in the left; 2 
DOFs model, conical whirl in the right

Table 4  comparison of the stability threshold according to the 
considered models; case b)

Model Stability threshold (krpm)

2 DOFs cylindrical whirl model 16,430 rad/s≈157 krpm
2 DOFs conical whirl model 16,800 rad/s≈160 krpm
4 DOFs model 15,700 rad/s≈150 krpm

Table 5  geometry considered in case c)

Axial length (mm) Distance from center of 
mass (mm)

Front bearing L1 = L2 = 32 l1 = l2 = 43.8
Rear bearing
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satisfied, the two modes can be still studied sepa-
rately, being the out-of-diagonal elements negligi-
ble. In the other cases, the full model is to be pre-
ferred as it better estimates the stability threshold.

Fig. 7  Damped frequencies ωd and damping factors � vs rotational speed; 4 DOFs model, case c)

Fig. 8  Damped frequencies ωd and damping factors � vs rotational speed for case c); 2 DOFs model, cylindrical whirl in the left; 2 
DOFs model, conical whirl in the right

Table 6  comparison of the stability threshold according to the 
considered models, case c)

Model Stability threshold (krpm)

2 DOFs cylindrical whirl model 16,400 rad/s≈156.7 krpm
2 DOFs conical whirl model 16,780 rad/s≈160 krpm
4 DOFs model 16,400 rad/s≈156.7 krpm
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2.4  The single mass approach

In literature the so-called single mass approach is 
known, which allows a quick estimation of the sta-
bility of rotor-bearings systems. As explained in 
[23, 24], the approach is quite common to perform 
the stability analysis of a rotor-journal bearings sys-
tems. According to this approach, the shaft mass is 
distributed in correspondence of the journal bear-
ings considering a cylindrical motion or a conical 
motion. The masses ms1 and ms2 change in case the 
cylindrical or the conical whirl are considered, see 
Fig. 9.

Such expressions are compared with the masses 
that appear in [M’] in case a pure cylindrical or a 
pure conical motion are considered, see Appendix A2 
for the detailed passages. It is thus demonstrated the 
analogy of the single mass approach with the simpli-
fied 2 DOFs models, in case of proper symmetry of 
the system.

3  Conclusions

This paper illustrates in details the linearized stabil-
ity analysis of rotor-gas bearings systems. It shows 
in which cases a 4dofs rotor-bearings model can be 
simplified in a 2dofs model considering alternatively 
the cylindrical whirl or the conical whirl. In these 
cases the stability analysis can be carried out on each 

separate bearing concentrating on it a fraction of the 
shaft mass. The analogy of the reduced models with 
the so-called single mass approach is demonstrated. 
The models can be further extended to the stabil-
ity analysis of gas bearings systems with non-fixed 
bushings.
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Appendix A1: 4 DOFS MODEL

The matrixes of the 4 DOFs model of the rigid shaft 
are here explicitated. In case the generalized dis-
placement vector q is used, the following expressions 
result:

Table 7  comparison of matrixes [K] and [C] in cases a), b) and c)

The coefficients are calculated with the perturbation method supposing ω = 200 krpm and ν = 9000 rad/s

case a) case b) case c)

Fig. 9  Lumped masses in correspondence of journal bearings
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In case the generalized displacement vector q’ is 
used, the following expressions result:

(13)

[M] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

m 0

0 m

0 0

0 0

0 0

0 0

I 0

0 I

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

[K] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

kxx1 + kxx2 kxy1 + kxy2

kyx1 + kyx2 kyy1 + kyy2

kxx1l1 − kxx2l2 kxy1l1 − kxy2l2

kyx1l1 − kyx2l2 kyy1l1 − kyy2l2

kxx1l1 − kxx2l2 kxy1l1 − kxy2l2

kyx1l1 − kyx2l2 kyy1l1 − kyy2l2

kxx1l21 + kxx2l22 kxy1l21 + kxy2l22
kyx1l21 + kyx2l22 kyy1l21 + kyy2l22

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

[G] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0

0 0

0 0

0 0

0 0

0 0

0 Ip�

−Ip� 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

[C] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

cxx1 + cxx2 cxy1 + cxy2

cyx1 + cyx2 cyy1 + cyy2

cxx1l1 − cxx2l2 cxy1l1 − cxy2l2

cyx1l1 − cyx2l2 cyy1l1 − cyy2l2

cxx1l1 − cxx2l2 cxy1l1 − cxy2l2

cyx1l1 − cyx2l2 cyy1l1 − cyy2l2

cxx1l21 + cxx2l22 cxy1l21 + cxy2l22
cyx1l21 + cyx2l22 cyy1l21 + cyy2l22

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Funb = �2

⎡
⎢⎢⎢⎣

mecos�t

mesin�t�
I − Ip

�
�cos

�
�t + �1

�
�
I − Ip

�
�sin

�
�t + �1

�

⎤⎥⎥⎥⎦

(14)

[

M′] = 1
l1+l2

⎡

⎢

⎢

⎢

⎣

ml2 0
0 ml2

ml1 0
0 ml1

I 0
0 I

−I 0
0 −I

⎤

⎥

⎥

⎥

⎦

[

K′] =

⎡

⎢

⎢

⎢

⎣

kxx1 kxy1
kyx1 kyy1

kxx2 kxy2
kyx2 kyy2

kxx1l1 kxy1l1
kyx1l1 kyy1l1

−kxx2l2 −kxy2l2
−kyx2l2 −kyy2l2

⎤

⎥

⎥

⎥

⎦

[

G′] = 1
l1+l2

⎡

⎢

⎢

⎢

⎣

0 0
0 0

0 0
0 0

0 Ip�
−Ip� 0

0 −Ip�
Ip� 0

⎤

⎥

⎥

⎥

⎦

[

C′] =

⎡

⎢

⎢

⎢

⎣

cxx1 cxy1
cyx1 cyy1

cxx2 cxy2
cyx2 cyy2

cxx1l1 cxy1l1
cyx1l1 cyy1l1

−cxx2l2 −cxy2l2
−cyx2l2 −cyy2l2

⎤

⎥

⎥

⎥

⎦

Appendix A2: analogy with the single‑mass 
approach

Cylindrical whirl

Starting from system (3) and imposing the cylindrical 
whirl it is.

The system becomes

where for brevity the damping matrix is not indicated 
as it has a structure similar to the stiffness matrix. In 
case of symmetry ( kij1 ≈ kij2 and l1 ≈ l2 , or more gen-
erally kij1l1 ≈ kij2l2 ) the last two lines are zeroed and 
the system becomes

where ms1 and ms2 are the masses in correspondence 
of bearings, see Table 8, and e1 and e2 their unbal-
ance. It must be

xC1 = xC2 = xC;yC1 = yC2 = yC;� = 0

(15)

1
l1 + l2

⎡

⎢

⎢

⎢

⎣

ml2 + ml1 0
0 ml2 + ml1

0 0
0 0

⎤

⎥

⎥

⎥

⎦

[

ẍC
ÿC

]

+

⎡

⎢

⎢

⎢

⎣

kxx1 + kxx2 kxy1 + kxy2
kyx1 + kyx2 kyy1 + kyy2

kxx1l1 − kxx2l2 kxy1l1 − kxy2l2
kyx1l1 − kyx2l2 kyy1l1 − kyy2l2

⎤

⎥

⎥

⎥

⎦

[

xC
yC

]

= �2

⎡

⎢

⎢

⎢

⎣

mecos�t
mesin�t

0
0

⎤

⎥

⎥

⎥

⎦

(16)

[

ms1 + ms2 0
0 ms1 + ms2

][

ẍC
ÿC

]

+
[

kxx1 + kxx2 kxy1 + kxy2
kyx1 + kyx2 kyy1 + kyy2

][

xC
yC

]

= �2
[ (

ms1e1 + ms2e2
)

cos�t
(

ms1e1 + ms2e2
)

sin�t

]

Table 8  expressions of the masses concentrated in corre-
spondence to the journal bearings

ms1 ms2

Cylindrical whirl m
l
2

l
1
+l

2

m
l
1

l
1
+l

2

Conical whirl I

l
1

1

l
1
+l

2

I

l
2

1

l
1
+l

2
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This is the equilibrium of forces considering the two 
masses together. It is equivalent to the force equilib-
rium of the masses taken singularly, as no radial force is 
transmitted by the shaft; in this case, the inertia force of 
the single mass is supported by the correspondent bear-
ing. The advantage of considering the mass concen-
trated in correspondence of bearings is that the stability 
of the single bearing can be evaluated separately, with a 
reduced number of DOFs.

Conical whirl

Starting from system (3) and imposing the conical 
whirl it is.

xC1 = �yl1;yC1 = −�xl1;xC2 = −�yl2;xC2
= −�yl2;yC2 = �xl2;e = 0

As xC1
l1

= −
xC2

l2
 some elements in the mass matrix are 

zeroed:

In case of symmetry ( kij1 ≈ kij2 and l1 ≈ l2 , or more 
generally kij1l1 ≈ kij2l2 ) the first two lines are zeroed 

(17)ms1e1 + ms2e2 = me

(18)

[
msi 0

0 msi

][
ẍC
ÿC

]
+

[
kxxi kxyi
kyxi kyyi

][
xC
yC

]
= 𝜔2msiei

[
cos𝜔t

sin𝜔t

]

(19)

1
l1 + l2

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0

0 0

0 0

0 0

I 0

0 I

−I 0

0 −I

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ẍC1
ÿC1
ẍC2
ÿC2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+ 1
l1 + l2

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0

0 0

0 0

0 0

0 Ip�

−Ip� 0

0 −Ip�

Ip� 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ẋC1
ẏC1
ẋC2
ẏC2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

kxx1 kxy1
kyx1 kyy1

kxx2 kxy2
kyx2 kyy2

kxx1l1 kxy1l1
kyx1l1 kyy1l1

−kxx2l2 −kxy2l2
−kyx2l2 −kyy2l2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

xC1
yC1
xC2
yC2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= �2

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0

0
(

I − Ip
)

�cos
(

�t + �1
)

(

I − Ip
)

�sin
(

�t + �1
)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

and the system can be further simplified neglecting 
the Coriolis terms:

Substituting the expressions of masses ms1 and ms2 
from Table 8 for conical whirl we obtain

where it is

Equations  21 represent to the equilibrium of 
moments of the masses concentrated in correspond-
ence of bearings. As before, the equilibrium can be 
written for the single mass taken separately as no 
radial force is transmitted by the shaft and the inertia 
force of each mass is balanced by the corresponding 
bearing. Dividing by the arm li, the moment equilib-
rium simplifies into a force equilibrium.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any 

(20)

1
l1 + l2

[

I 0
0 I

−I 0
0 −I

]

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ẍC1
ÿC1
ẍC2
ÿC2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+

[

kxx1l1 kxy1l1
kyx1l1 kyy1l1

−kxx2l2 −kxy2l2
−kyx2l2 −kyy2l2

]

⎡

⎢

⎢

⎢

⎢

⎢

⎣

xC1
yC1
xC2
yC2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= �2(I − Ip
)

�

[

cos
(

�t + �1
)

sin
(

�t + �1
)

]

(21)

⎡

⎢

⎢

⎣

ms1l1 0

0 ms1l1

−ms2l2 0

0 −ms2l2

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ẍC1
ÿC1
ẍC2
ÿC2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

kxx1l1 kxy1l1
kyx1l1 kyy1l1

−kxx2l2 −kxy2l2
−kyx2l2 −kyy2l2

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

xC1
yC1
xC2
yC2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=
(

ms1e1l1 − ms2e2l2
)

⎡

⎢

⎢

⎣

cos
(

�t + �1
)

sin
(

�t + �1
)

⎤

⎥

⎥

⎦

(22)
(
I − Ip

)
� =

(
ms1e1l1 − ms2e2l2

)

(23)

[

msili 0
0 msili

][

ẍCi
ÿCi

]

+
[

kxxili kxyili
kyxili kyyili

][

xCi
yCi

]

= ms1e1li

[

cos
(

�t + �1
)

sin
(

�t + �1
)

]
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medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Crea-
tive Commons licence, and indicate if changes were made. The 
images or other third party material in this article are included 
in the article’s Creative Commons licence, unless indicated 
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included in the article’s Creative Commons licence and your 
intended use is not permitted by statutory regulation or exceeds 
the permitted use, you will need to obtain permission directly 
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