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Abstract Starting from a classical thermodynamic

approach, we derive rate-type equations to describe the

behavior of heat flow in deformable media. Constitu-

tive equations are defined in the material (Lagrangian)

description where the standard time derivative satisfies

the principle of objectivity. The statement of the

Second Law is formulated in the classical form and the

thermodynamic restrictions are then developed fol-

lowing a variant of the Coleman-Noll procedure where

the entropy production too is given by a non-negative

constitutive equation. Both the free energy and the

entropy production are assumed to depend on a

common set of independent variables involving, in

addition to temperature, both temperature gradient and

heat-flux vector together with their time derivatives.

This approach results in rate-type constitutive function

for the heat flux that are intrinsically consistentwith the

Second Law and easily amenable to analysis. In

addition to providing already known models (e.g.,

Maxwell-Cattaneo-Vernotte’s and Jeffreys-like heat

conductors), this scheme allows the formulation of new

models of heat transport that are likely to apply also in

nanosystems. This is consistent with the fact that

higher-order time derivatives of the heat flux are in

order when high-rate regimes occur.

Keywords Heat conduction � Rate-type equations �
Thermodynamics � Higher-order temperature

equations

Mathematics Subject Classification 80A17 �
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1 Introduction

A huge class of heat conduction models beyond Fourier

havebeen recently developed to account for relaxational

and nonlocal effects, fast phenomena or wave propaga-

tion, such as being typical for biological systems,

nanomaterials or nanosystems. Non-Fourier models

mainly differ for their various thermodynamic back-

grounds (thermodynamics of irreversible processes,

extended irreversible thermodynamics, etc., see for

instance [1–3]). In connection with wave propagation
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properties many models of heat conduction are pre-

sented and discussed in [4]. Properties concerning their

possible practical applications in light of experiments

are debated in a recent review [5]. Despite the various

approaches and procedures developed in the literature

(see, e.g., [6–9] and references therein), the topic

deserves further attention. A challenging question is

their possible compatibility with the Second Law. This

article aims to discuss their deduction in the context of

classical Continuum Thermodynamics and possible

compatibility with the Second Law stated therein. The

question is of applicative interest, as constitutive

equations must not only be consistent with the exper-

imental data but must also be in agreement with the

fundamental laws of thermodynamics.

According to [10], we develop a new approach to

heat conduction theories that is inherently thermody-

namic, as it originates directly from the Clausius-

Duhem inequality. The specific production of entropy c
enters as a non-negative constitutive function with the

requirement that the second law be automatically

satisfied. The set of independent variables involve

only macroscopically observable fields and their space

and time derivatives; differential equations character-

izing the material are used as constitutive equations

with the heat flux q usually being one of the variables.

Although other approaches treat both the heat flux and

the temperature gradient as independent variables (see,

e.g., [11, 12] and references therein) our scheme has

several advantages: the rigidity assumption is not

necessary, a material description is adopted in order to

avoid the problem of the objectivity of time derivatives

[13] and consistency with thermodynamics is much

easier to prove than in theories where heat conduction

involves histories [14] or summed histories [15].

The analysis of thermodynamic consistency is

based on the Clausius-Duhem inequality as in the

Coleman-Noll procedure [16] though with some

conceptual variants. First, possible rates such as time

derivatives of q are assumed to be given by constitu-

tive equations as it happens for materials with internal

variables [17–19]. Accordingly, the time derivatives

are not allowed to be free but merely related through a

constitutive equation in the form of a differential

equation. Secondly, the entropy production is viewed

as given by a constitutive function as was suggested in

[20] and developed e.g. in [21–23]. This allows a

wider set of admissible thermodynamic processes. The

flexibility of this approach is emphasized by the non-

uniqueness of the pair of free energy and entropy

production associated with rate-type models.

In addition to providing already known models

(e.g., Maxwell-Cattaneo-Vernotte’s and Jeffreys-like

heat conductors), this strategy, initially proposed in

[10], allows us to build new and more complex non-

Fourier models of heat transport that have applications

in describing the thermal behavior of materials where

many different relaxation times occur. In particular in

Sect. 4 a class of rate-type linear constitutive equations

of the second order for the heat flux is discussed in

detail. The thermodynamic consistency of the model

(originally presented in [24] and here referred to as

Linear Second Order model) is proved here for the first

time. In addition, some features of the corresponding

temperature equation are highlighted.

As a comment on the physical motivation of higher-

order rate-type equations we observe that often they arise

from the superposition of different elementary models of

heat conduction, as are those by Fourier and Maxwell-

Cattaneo-Vernotte. In addition, the interest in constitutive

equations of higher-order rate-type is due to the feature

that, while Fourier theory fails to describe phenomena in

which temperature oscillates at high frequencies, for such

regimes higher-order time derivatives of the heat flux and

temperature gradient become important [25].

2 Balance laws and the thermodynamic principles

We consider a body occupying a three-dimensional

time-dependent region X. We let R be a chosen

reference configuration,X the vector position inR of a

material point and vðX; tÞ its motion where t 2 R is the

time. Formally, X ¼ vðR; tÞ. The velocity v is given

by the time derivative otvðX; tÞ. A superposed dot

denotes the material time derivative,r is the gradient

operator and then, for any f ðx; tÞ, we have
_f ¼ otf þ v � rf . Instead, rR is the gradient in the

reference configuration.

Let F be the deformation gradient, FðX; tÞ ¼
rR vðX; tÞ (in suffix notation FiK ¼ oXK

vi), satisfying
the constraint J :¼ detF[ 0, while L :¼ rv is the

velocity gradient, Lij ¼ oxj vi, which is related to _F as

follows

L ¼ _FF�1: ð1Þ

Also, sym denotes the symmetric part of a tensor.
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Further, Sym denotes the set of symmetric second-

order tensors and 1 is the identity (or unit) tensor. For

any A 2 Sym, A[ 0 or A� 0 indicate that A is

positive definite or positive semi-definite, while Symþ

denotes the set of symmetric positive-definite tensors.

Let e be the internal energy density (per unit mass),

T the Cauchy stress, q the heat-flux vector, q the mass

density, r the (external) heat supply and b the

mechanical body force per unit mass. The conserva-

tion of mass is expressed in local form by the

continuity equation

_qþ qr � v ¼ 0: ð2Þ

The local form of the linear momentum and internal

energy balance equations can be written as

q _v ¼ r � Tþ qb; ð3Þ

q _e ¼ T � D�r � qþ qr; ð4Þ

where D ¼ symL is the stretching. Let g be the

specific entropy function, h the entropy-flux vector

and s the specific supply of entropy. All processes

which are compatible with Eqs. (2)-(4) must satisfy the

following entropy balance equation,

q _gþr � h ¼ qs:

The classical local form, usually named after Clausius-

Duhem, is obtained by letting

h ¼ q

h
; s ¼ r

h
þ c;

where h denotes the (positive) absolute temperature

and the quantity c is referred to as specific entropy

production [16, 26, 27];

q _gþr � q

h

� �
� qr

h
¼ qc: ð5Þ

In continuum thermodynamics the local form of the

Second Law is established by assuming

cðx; tÞ� 0: ð6Þ

along any process compatible with all balance equa-

tions. Furthermore, henceforth we assume that the

entropy production c is given as a constitutive function
of the common set of physical variables, as are the

internal energy and entropy. Conceptually our contri-

bution follows the same scheme proposed in [28], but

imposing the fundamental prescription (6) on all

admissible processes (see also [29, § 2.6]).

Upon substitution of r � q� qr from the energy

Eq. (4) into (5) and multiplication by h we obtain the

basic thermodynamic relation

�qð _wþ g _hÞ þ T � D� 1

h
q � rh ¼ qhc; ð7Þ

where w ¼ e� hg denotes the specific Helmholtz free

energy. Due to (6), Eq. (7) becomes an inequality that

must be satisfied along whatever process (see also [16,

eqn.(4.5)]). Finally, multiplying (7) by J and using the

identity qR ¼ Jq, we obtain the basic thermodynamic

inequality in the material description

�qR

�
_wþ g _h

�
þ TRR � _E� 1

h
qR � rR h ¼ qRhc� 0;

ð8Þ

where rR :¼ FTr and

TRR :¼ JF�1TF�T ; qR :¼ JF�1q:

3 A new approach to rate-type constitutive

equations

The procedure for the exploitation of the second law is

based on the following three elements;

– the set NR of admissible variables,

– the free energy density function w ¼ wðNRÞ,
– the entropy production function c ¼ cðNRÞ.

The strategy can be illustrated first in the case of

elastic materials with heat conduction and viscosity.

We consider the set of admissible variables,

NR ¼ ðh;E;rR h; _EÞ

and assume that both w and c are (sufficiently smooth)

functions of these variables. Upon evaluation of _w and

substitution in (8) we obtain

qRðohwþ gÞ _hþ ðqRoEw� TRRÞ � _Eþ qRorR hw � rR
_h

þ qRo _Ew � €Eþ 1

h
qR � rR h ¼ �qRhc:

Neither w nor c depend on _h,rR
_h, €E, and therefore the

linearity and arbitrariness of these variables imply
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w ¼ wðh;EÞ; g ¼ �ohw: ð9Þ

As a consequence, RR ¼ ðh;EÞ can be viewed as the

set of state variables. If c is independent of _E, that is, if

the material is not viscous, then the linearity and

arbitrariness of _E also implies

TRR ¼ qRoEw: ð10Þ

Otherwise, the Clausius-Duhem relation for materials

with heat conduction and viscosity reads

ðqRoEw� TRRÞ � _Eþ 1

h
qR � rR h ¼ �qRhc:

Now, we have to specify the functions wðh;EÞ and

cðh;E;rR h; _EÞ to satisfy this equation and the funda-

mental requirement c� 0. For any choice of w, the
simple quadratic function

c ¼ C1ðh;EÞ _E � _Eþ C2ðh;EÞrR h � rR h;

where C1;C2 are positive semi-definite tensor-valued

functions, satisfies c� 0 and implies

ðqRoEwþC1
_E�TRRÞ� _Eþ

�1
h
qRþC2rRh

�
�rRh¼0:

This equation holds identically if

TRR ¼ qRoEwþ C1
_E; qR ¼ �hC2rR h;

which represent constitutive equations for a Kelvin-

Voigt viscoelastic material with Fourier heat conduc-

tion. The choice of wðh;EÞ uniquely determines the

elastic component of the stress.

To describe this new approach in the case of

materials of the rate type, we expand the basic set of

Euclidean invariant variables by adding some quan-

tities that are usually considered as constitutive

functions; mainly, qR and its time derivatives. First,

we let

NR :¼ ðh;E; qR;rR h; _EÞ ð11Þ

be the set of admissible variables and assume that w, g,
c are scalar-valued functions of NR. In view of the

introduction of rate-type constitutive equations, we

look for a scheme where _qR and rR h are regarded as

mutually dependent variables.

3.1 Rate-type models of heat conduction

By mimicking the procedure adopted in [10], we

assume that w is continuously differentiable and g is

continuous with respect to their arguments (11). Upon

evaluation of _w and substitution in (8) we obtain

qRðohwþ gÞ _hþ ðqRoEw� TRRÞ � _Eþ qRoqRw � _qR

þ qRorR hw � rR
_hþ qRo _Ew � €Eþ 1

h
qR � rR h ¼ �qRhc:

The linearity and arbitrariness of _h, €E,rR
_h, imply that

w ¼ wðh;E; qRÞ; g ¼ �ohw: ð12Þ

The functional dependence of w suggests that we

define the set of state variables as

RR ¼ ðh;E; qRÞ:

Accordingly, the thermodynamic inequality reduces to

ðqRoEw� TRRÞ � _Eþ qRoqRw � _qR þ
qR

h
� rR h ¼ �qRhc� 0:

ð13Þ

Since w is independent of _qR;rR h, then letting _qR ¼
rR h ¼ 0 we can write (13) in the form

ðqRoEw� TRRÞ � _E ¼ �qRhc
ET � 0; ð14Þ

where cET is the entropy production density c when

_qR ¼ rR h ¼ 0. Likewise,

qRoqRw � _qR þ qR � rR ðln hÞ ¼ �qRhc
q � 0; ð15Þ

where cq is the entropy production density when
_E ¼ 0. Furthermore, we let

c ¼ cET þ cq:

The entropy productions cET and cq, as well as c, are
nonnegative constitutive functions to be determined

according to the constitutive model.

To establish rate-type models of heat conduction

we limit our attention to (15). A given rate-type model

of heat conduction involving a set of variables NR is

said to be consistent with thermodynamics if there

exists at least a pair of functions wðNRÞ; cqðNRÞ that

satisfy the inequality (15). For instance, the Maxwell-

Cattaneo-Vernotte (MCV) model (see [30, 31])

s _qR þ qR ¼ �jrR h; j 2 Sym; ð16Þ

is proved to be consistent with thermodynamics by

letting (see [10, § 4.2])
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qRw ¼ qRw0ðhÞ þ
s
2h

qR � j�1qR; qRc
q ¼ 1

h2
qR � j�1qR;

where j must be positive-definite in order to have

cq � 0. The sign of s is not prescribed by thermody-

namic arguments. However, the common assumption

s[ 0 implies that w has a minimum at qR ¼ 0; s is

called relaxation time and the Fourier law is recovered

as s ! 0þ.

3.2 First order rate-type models

Following the scheme devised in [10], hereafter we

neglect all variables involving stress and strain, but we

expand the previously considered set of admissible

variables by adding first-order time derivatives of qR

and rR h. Hence we let

NR :¼ ðh;E; _E; qR; _qR;rR h;rR
_hÞ:

Moreover, let w; g; c be dependent on NR. Assuming w

continuously differentiable, evaluation of _w and

substitution in (8) we obtain

qRðohwþ gÞ _hþ ðqRoEw� TRRÞ � _Eþ qRo _Ew � €E

þ qRoqRw � _qR

þ qRo _qRw � €qR þ qRorR hw � rR
_hþ qRorR

_hw � rR
€h

þ 1

h
qR � rR h ¼ �qRhc:

The linearity and arbitrariness of _h, €E and rR
€h imply

w ¼ wðh;E; qR; _qR;rR hÞ; g ¼ �ohw;

so that the set of state variables turns out to be

RR :¼ ðh;E; qR; _qR;rR hÞ

By carrying out the same splitting that led to the

inequalities (14) and (15), we obtain (14) again,

whereas (15) modifies as follow

qRoqRw � _qR þ qRo _qRw � €qR þ qRorR hw � rR
_h

þ qR

h
� rR h ¼ �qRhc� 0;

ð17Þ

where c stands for cq, the entropy production density

occurring when _E ¼ 0. In view of the rate-type models

considered below, for any value assigned to the state

variables in RR, the derivatives €qR and rR
_h must be

regarded as mutually dependent. This in turn implies

that _qR and rR h are implicitly dependent, just as it

happens in anholonomic systems described by a set of

parameters subject to differential constraints that

make their rates mutually dependent.

Exploiting this procedure, in [10] the thermody-

namic consistency of some rate-type heat conduction

models was demonstrated. For completeness, the

results obtained therein are summarized below. Two

classes of models are distinguished; those in which the

derivative €q does not appear and those in which it does

appear. In the first case the free energy w depends on q

but not on _q, therefore the rate-type constitutive

equation describes the evolution of the state (or

internal) variable q. In the second, however, w
depends on both q and _q, so the model governs the

time evolution of this pair and then must involve €q. As
a simple physical motivation of higher-order rate-type

equations we observe that often they arise from the

superposition of different elementary models of heat

conduction, as are those by Fourier and MCV (see,

e.g., Sects. 3.2.1 and 3.2.2).

First, we derive a simple model where the depen-

dence of w on _qR is neglected.

3.2.1 Heat conductors of the Jeffreys type

The constitutive equation of a heat conductor of the

Jeffreys type is given by

s _qR þ qR ¼ �jrR h� sfrR
_h; j; f 2 Sym:

ð18Þ

The Fourier law is recovered as s ! 0þ. The Jeffreys
type conductor can be obtained as a combination of

two different models. Let q
ð1Þ
R , q

ð2Þ
R be heat fluxes

governed by the Fourier law and the MCV law,

respectively,

qð1Þ
R

¼ �j1rR h; sqð2Þ
R

þ qð2Þ
R

¼ �j2rR h;

where s[ 0 and j1;j2 are positive-semidefinite

second-order tensors. Hence _q
ð1Þ
R ¼ �j1rR

_h. It fol-
lows that

s
�
_qð1Þ
R

þ _qð2Þ
R

�
þ qð1Þ

R
þ qð2Þ

R
¼ �ðj1 þ j2ÞrR h� sj1rR

_h;

Consequently, the flux qR ¼ q
ð1Þ
R þ q

ð2Þ
R satisfies (18)

with j ¼ j1 þ j2 and f ¼ j1.
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As proved in [10, § 5.1], different choices of w and

c allow the model to be consistent with thermody-

namics. For instance, either

qRw1 ¼ qRw0ðhÞ þ
s
2h

½qR þ frR h� � ðjþ fÞ�1½qR þ frR h�;

qRc1 ¼
1

h2
qR � ðjþ fÞ�1qR þ

1

h2
rR h � fðjþ fÞ�1

jrR h:

or

qRw2 ¼ qRw0ðhÞ þ
s
2h

½qR þ frR h� � ðj� fÞ�1½qR þ frR h�;

qRc2 ¼
1

h2
ðqR þ frR h

�
� ðj� fÞ�1ðqR þ frR h

�

þ 1

h2
rR h � frR h:

In the former case, the thermodynamic consistency,

c1 � 0, is ensured if and only if j 2 Symþ and f ¼ bj,
b� 0. In the latter, c2 � 0 is ensured if and only if

j[ f� 0.

Below, a higher-order model of heat conduction,

where w depends on _qR, is shown to be thermody-

namically consistent.

3.2.2 Heat conductors of the Burgers type

To our knowledge, Burgers-type heat conductors were

first proposed in [10]. They are characterized by the

rate-type equation

k€qR þ s _qR þ qR ¼ �jrR h� sfrR
_h: ð19Þ

By analogy with the rheological model of the Burgers

fluid, this equation can be obtained by considering the

contribution of two components, each characterized

by a conduction mechanism described by the MCV

equation (16). Let qR ¼ q
ð1Þ
R þ q

ð2Þ
R and q

ð1Þ
R , q

ð2Þ
R be

heat fluxes governed by

s1 _q
ð1Þ
R

þ qð1Þ
R

¼ �j1rR h; s2 _q
ð2Þ
R

þ qð2Þ
R

¼ �j2rR h;

ð20Þ

where s1; s2 [ 0 and j1; j2 are positive-semidefinite

second-order tensors. Consequently

s1s2 _q
ð1Þ
R

þs2q
ð1Þ
R

¼�s2j1rRh; s1s2 _q
ð2Þ
R

þs1q
ð2Þ
R

¼�s1j2rRh:

After doing the sum and obtaining its time derivative

we obtain

s2 _q
ð1Þ
R

þ s1 _q
ð2Þ
R

þ k€qR ¼ �smrR
_h;

where s ¼ s1 þ s2, k ¼ s1s2, m ¼ 1
s ðs1jð2Þ þ s2jð1ÞÞ.

Notice that

s2 _q
ð1Þ
R

þ s1 _q
ð2Þ
R

¼ s _qR � ðs1 _qð1ÞR
þ s2 _q

ð1Þ
R
Þ:

Hence substituting s1 _q
ð1Þ
R and s2 _q

ð2Þ
R from (20) and

letting l ¼ jð1Þ þ jð2Þ, we find the differential equa-

tion (19).

The Burgers-like model with k; s[ 0 is thermody-

namically consistent if and only if one of the following

hypotheses occurs (see [10, § 5.4])

(i) j ¼ 0, f 2 Symþ;

(ii) j 2 Symþ, s2f� kj.

Due to the linearity of the model equation (19), both w
and c are quadratic functions of the state variables

qR; _qR;rR h (see [10, eqns. (47) and (60)]). It can also

be shown that these functions are not unique.

As to the propagation of thermal waves, we

consider a rigid unidimensional body. If the specific

heat supply r vanishes, the resulting system

qRcv
_hþ oXqR ¼ 0; k€qR þ s _qR þ qR ¼ �joXh� sfoX

_h:

leads to the Joseph-Preziosi temperature equation

[32],

kh
...

þ s€hþ _h ¼ 1

qRcv
jo2

X
hþ sfo2

X
_h

� �
: ð21Þ

If the addendum _h is ignored in the r.h.s. of eq. (21),

we obtain a linear version of the well-known Moore-

Gibson-Thompson equation [33].

4 Higher-order rate-type models of heat

conduction

From now on, for simplicity, we limit ourselves to

considering rigid conductors. To describe some new

heat-conduction models of the rate-type we include

the higher-order time derivatives of the heat-flux

vector and temperature gradient in the set of admis-

sible variables, namely

NR :¼ ðh; qR; _qR; €qR;rR h;rR
_h;rR

€hÞ:

Letting w; g; c be dependent on NR, upon evaluation of
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_w and substitution in (8), we obtain

qRðohwþ gÞ _hþ qRoqRw � _qR þ qRo _qRw � €qR

þ qRo €qRw � qR

...

þ qRorR hw � rR
_hþ qRorR

_hw � rR
€hþ qRorR

€hw � rR h
...

þ 1

h
qR � rR h ¼ �qRhc:

Hence, the linearity and arbitrariness of _h, rR h
...

imply

that

w ¼ wðh; qR; _qR; €qR;rR h;rR
_hÞ; g ¼ �ohw;

and the entropy inequality reduces to

qRoqRw � _qR þ qRo _qRw � €qR þ qRo €qRw � qR

...

þ qRorR hw � rR
_hþ qRorR

_hw � rR
€hþ qR

h
� rR h ¼ �qRhc� 0:

ð22Þ

Let RR ¼ ðh; qR; _qR; €qR;rR h;rR
_hÞ be the set of state

variables. As previously remarked, for any value

assigned to the state variables, the derivatives qR

...
and

rR
€h must be regarded as mutually dependent. This in

turn implies that €qR andrR
_h, as well as _qR andrR h, are

implicitly dependent. However, constitutive models in

which the free energy is independent of some variables

of RR can also be considered.

In particular, we are interested here to some special

models where the dependence of w on €qR is neglected.

If this is the case, inequality (22) becomes

qRoqRw � _qR þ qRo _qRw � €qR þ qRorR hw � rR
_h

þ qRorR
_hw � rR

€hþ qR

h
� rR h ¼ �qRhc� 0:

ð23Þ

4.1 A linear second-order model (LSO)

A model of heat conductor is considered in the form

(see [24])

k€qR þ s _qR þ qR ¼ �lrR h� smrR
_h� kjrR

€h: ð24Þ

This model represents an extension of the Burgers-

type conductor to which it reduces when j ¼ 0. On the

other hand, when k ¼ 0 it reduces to the Jeffreys

model.

The LSO model can be obtained, by considering a

mixture of three different substances and assuming

that the resulting heat-flux vector is given by the sum

qR ¼ q
ð1Þ
R þ q

ð2Þ
R þ q

ð3Þ
R . In the first component the heat

conduction follows the Fourier law, whereas the

second and third components are characterized by a

conduction mechanism described by the MCV equa-

tion (16), namely

qð1Þ
R

¼ �jð1ÞrR h; s2 _q
ð2Þ
R

þ qð2Þ
R

¼ �jð2ÞrR h;

s3 _q
ð3Þ
R

þ qð3Þ
R

¼ �jð3ÞrR h:

We recover (24) after some manipulations by letting

s ¼ s2 þ s3; k ¼ s2s3;

l ¼ jð1Þ þ jð2Þ þ jð3Þ; m ¼ jð1Þ þ 1

s

�
s3j

ð2Þ

þ s2j
ð3Þ
�
; j ¼ jð1Þ:

In order to investigate the consistency of the LSO

constitutive equation (24) with inequality (23), we

restrict our attention to the isotropic case where

l ¼ l1, m ¼ m1 and j ¼ j1. Moreover, we assume

k; j 6¼ 0

to exclude the Jeffreys and Burgers conductors.

Accordingly we can consider €qR as a linear function

of qR; _qR;rR h;rR
_h and rR

€h, namely

€qR ¼ � s
k
_qR �

1

k
qR �

l
k
rR h�

sm
k
rR

_h� jrR
€h:

ð25Þ

Upon substitution for €qR from (25) into (23), we have

qR

�
oqRw� s

k
o _qRw

�
� _qR � qR

1

k
o _qRw � qR

þ
� qR

h
� qR

l
k
o _qRw

�
� rR h

þ qR

�
orR hw� sm

k
o _qRw

�
� rR

_h

þ qR

�
orR

_hw� jo _qRw
�
� rR

€h ¼ �qRhc� 0:

Since w is independent ofrR
€h, assuming that c is also

independent, the linearity and arbitrariness of rR
€h

imply

orR
_hw ¼ jo _qRw: ð26Þ

Otherwise, we can assume the constraint (26) and in
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turn obtain that c is independent ofrR
€h. Anyway, (23)

reduces to

qR

�
oqRw� s

k
o _qRw

�
� _qR � qR

1

k
o _qRw � qR

þ
� qR

h
� l

k
qRo _qRw

�
� rR hþ qR

�
orR hw

� sm
k
o _qRw

�
� rR

_h ¼ �qRhc� 0:

ð27Þ

As suggested by the linearity of the model, the free

energy w is assumed to have the following quadratic

expression,

qRw ¼ qRw0ðhÞ þ
a1
2
jqRj2 þ

a2
2
j _qRj2 þ

a3
2
jrR hj2

þ a4
2
jrR

_hj2 þ b1qR � _qR

þ b2qR � rR hþ b3 _qR � rR hþ b4qR � rR
_h

þ b5 _qR � rR
_hþ b6rR h � rR

_h;

ð28Þ

whence

qRoqRw ¼ a1qR þ b1 _qR þ b2rR hþ b4rR
_h;

qRo _qRw ¼ b1qR þ a2 _qR þ b3rR hþ b5rR
_h;

qRorR hw ¼ b2qR þ b3 _qR þ a3rR hþ b6rR
_h;

qRorR
_hw ¼ b4qR þ b5 _qR þ b6rR hþ a4rR

_h:

Upon substitution into (26) we obtain

b4 ¼ jb1; b5 ¼ ja2; b6 ¼ jb3; a4 ¼ jb5:

ð29Þ

Likewise, from (27) and (29) it follows

A11jqRj2 þ A22j _qRj2 þ A33jrR hj2 þ A44jrR
_hj2

þ 2A12qR � _qR þ 2A13qR � rR h

þ 2A14qR � rR
_hþ 2A23 _qR � rR hþ 2A24 _qR � rR

_h

þ 2A34rR h � rR
_h ¼ qRhc� 0;

ð30Þ

where

A11¼
b1
k
;A22¼

sa2�kb1
k

;

A33¼
lb3
k

;A44¼
smja2
k

�jb3

A12¼
a2þsb1�ka1

2k
;A13¼

b1lhþb3h�k
2kh

;

A14¼
b1msþja2�kb2

2k
;

A23¼
la2þsb3�kb2

2k
;A24¼

sðjþmÞa2�kðjb1þb3Þ
2k

;

A34¼
jla2þmsb3�ka3

2k
:

So overall matrix A is characterized by 6 unknowns,

ai; bi, i ¼ 1; 2; 3, 5 real material parameters,

k; s; l; m; j and h. To ensure thermodynamic consis-

tency, we look for the conditions on these material

parameters so that the symmetric 4-by-4 matrix A is

positive semidefinite, i.e. all principal minors of A are

nonnegative (see, for instance [34, § 7.6]). Naturally,

there may be different values of the unknowns that are

compatible with these conditions. This is related to the

fact that there can exist different free energy functions

that are consistent with thermodynamics.

The discussion of the thermodynamic consistency

of the model is too cumbersome to be included in the

body of the paper. We therefore postpone it to the

Appendix.

4.2 LSO temperature equation

Let us look briefly at properties of the solutions of the

temperature equation corresponding to the LSO

model. For simplicity, let us consider a rigid body.

Without an external energy supply, the energy balance

gives

qRcv
_h ¼ �rR � qR: ð31Þ

After combining this equation with (24) and assuming

the body to be isotropic, we get

qRcv kh
...

þ s€hþ _h
� �

¼ lr2
R
hþ smr2

R
_hþ kjr2

R
€h:

ð32Þ

Letting hðx; tÞ ¼ TðtÞYðXÞ, we obtain
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qRcv kT
...
þ s €T þ _T

� �
Y ¼ lT þ sm _T þ kj €T

� �
r2

R
Y

ð33Þ

Equation (33) can be separated: the spatial variable Y

solves the Helmholtz equation

r2
R
Y ¼ �KY

where K is a constant. Once the domain and boundary

conditions have been fixed, the Helmholtz equation

possesses non-trivial solutions only if K assumes

specific values (the eigenvalues). It is well-known that

under the most common boundary conditions the

differential operator �r2
R
is strictly positive selfad-

joint with discrete spectrum. Hence, its eigenvalues

are non-negative, countably infinite and not bounded

by any constant value. So, let us denote their set with

fKngn2N, ordered in an ascending sequence, i.e.

Kn\Knþ1. Equation (33) for T(t) then reads

kT
...
þ ðsþ ~KnkjÞ €T þ ð1þ ~KnsmÞ _T þ ~KnlT ¼ 0;

ð34Þ

where we set ~Kn :¼ Kn=qRcv. If TðtÞ / ewt, then w is a

root of the cubic equation

kw3 þ ðsþ ~KnkjÞw2 þ ð1þ ~KnsmÞwþ ~Knl ¼ 0:

ð35Þ

To avoid solutions diverging at infinity, we consider

only decaying or oscillating solutions to equation (34).

Therefore, we look for necessary and sufficient

conditions under which all roots of (35) have negative

real parts. According to the Routh-Hurwitz criterion,

all the coefficients must have the same sign and the

product of the coefficients of w and w2 minus the

product of the coefficients of w3 and w0 must be

positive. For simplicity, we assume the positivity of k
and s, a condition that could be deduced from the

physical assumptions we made to build the model. The

application of the Routh-Hurwitz criterion to (35)

yields

k; s[ 0; sþ ~Knkj[ 0; 1þ ~Knsm[ 0; l[ 0;

ðsþ ~KnkjÞð1þ ~KnsmÞ � ~Knkl[ 0;

ð36Þ

for any n 2 N. By exploiting the unboundedness of
~Kn, the second and third inequalities give j� 0 and
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m� 0, respectively. So all material parameters must be

non negative; in particular

k; s; l[ 0; j; m� 0:

The last inequality is quadratic with respect to ~Kn and

reads

kjsm ~K2
n þ ðs2mþ kðj� lÞÞ ~Kn þ s[ 0: ð37Þ

If j; m[ 0, then the coefficient of ~K2
n is positive. Since

all the values of ~Kn are non negative, the previous

relation is satisfied either if all the coefficients of the

corresponding quadratic equation are positive (in this

case any real roots are negative), or if the discriminant

of the corresponding quadratic equation is negative (in

this case (37) is satisfied for any real value of ~Kn). In

the first case s2mþ kðj� lÞ[ 0 is required, i.e.

l\jþ s2m
k

: ð38Þ

In the second case we let

s2mþ kðj� lÞð Þ2�4s2mkj\0, which implies

l 2 1

k

ffiffiffiffiffiffi
kj

p
�

ffiffiffiffiffiffiffi
s2m

p� �2
;

ffiffiffiffiffiffi
kj

p
þ

ffiffiffiffiffiffiffi
s2m

p� �2� �
: ð39Þ

From the combination of (38) and (39) follows that

(37) is satisfied when

l\

ffiffiffiffiffiffi
kj

p
þ

ffiffiffiffiffiffiffi
s2m

p� �2

k
:

ð40Þ

If j ¼ 0; m[ 0, then

ðs2m� klÞ ~Kn þ s[ 0 ð41Þ

and the unboundedness of ~Kn yields s2m� kl.
If j[ 0; m ¼ 0, then

kðj� lÞ ~Kn þ s[ 0: ð42Þ

and the unboundedness of ~Kn yields j� l.
Let us consider now the limit case l ¼ 0. If l ¼ 0,

we see that one of the roots of (35) is zero, the other

two being given by the equation

kw2 þ ðsþ ~KnkjÞwþ ð1þ ~KnsmÞ ¼ 0: ð43Þ

The roots of (43) must be negative, meaning that all

the coefficients in (43) must have the same sign. This

implies

k[ 0; ðsþ ~KnkjÞ[ 0; ð1þ ~KnsmÞ[ 0: ð44Þ

As we have seen, the conditions on the coefficient of w

and on the coefficient of w0 imply j[ 0 and m[ 0. So

we have that all the parameters k, s, j, m must be

positive and l ¼ 0.

Finally, we notice that a special behavior occurs

when (37) holds as an equality for some �n 2 N, i.e.

kjsm ~K2
�n þ ðs2mþ kðj� lÞÞ ~K �n þ s ¼ 0; ð45Þ

and inequalities (36) still hold. In this case, equation

(35) has a negative real solution and a couple of purely

imaginary solutions,

w1 ¼ �
~K �nkjþ s

k
; w� ¼ �ix ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~K �nsmþ 1

k

s
:

ð46Þ

To fix ideas, we consider a rigid body in an environ-

ment with a given constant temperature h0. Then

solutions of the Cauchy problem (32) can be written

as:

hðx; tÞ ¼ h0 þ
X1
n¼1

X3
i¼1

cine
wi
ntYnðXÞ; ð47Þ

where the constants cin are fixed by the initial

conditions. Notice that the boundary conditions

YnðXÞjoX¼ 0, where oX are the boundaries of the

body, fix the values of the eigenvalues Kn. In the limit

t ! 1 only the terms proportional to ew�t survive and

we get

lim
t!1

hðx; tÞ ¼ h0 þ a �n sinðxtÞ þ b �n cosðxtÞð ÞY �nðXÞ

ð48Þ

for two suitable constants a �n and b �n. Notice that the

condition (45) is very peculiar, since it is equivalent to

say that it exists a value of ~K �n such that l can be

expressed as

l ¼

ffiffiffiffiffiffi
kj

p
þ

ffiffiffiffiffiffiffi
s2m

p� �2

k
þ

~K �n

ffiffiffiffiffiffiffiffiffiffi
jkms

p
�

ffiffiffi
s

p� �2

~K �nk
: ð49Þ
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5 Conclusion

This paper is devoted mainly to models of heat

transport and is developed by following a variant of

the Coleman-Noll procedure. The approach is based

on the selection of three properties: the set of

variables, the free energy, and the entropy production.

Indeed, the entropy production is given by a non-

negative constitutive function. Rate-type models of

heat conduction (Jeffreys and Burgers type) are shown

to be connected to free energy and entropy production

though this connection is possibly non-unique. Fur-

ther, higher-order rate equations prove to arise as a

combination of more elementary models (Fourier,

MCV).

Next we have examined the thermodynamic and

dynamic consistency of the LSO model. i.e. under

which conditions the LSO model has a nonnegative

entropy production (see Appendix A) and the evolu-

tion of the temperature equation is described by

bounded functions eventually approaching the equi-

librium steady state (see Sect. 4.2).

Now we ask for which values of material param-

eters the simultaneous validity of the two requirements

holds. First, let us consider the case l[ 0. By

comparing the items in Table 1 with the results given

in Sect. 4.2, we see that items 10 and 12–16 can be

excluded, since in all these cases k\0, contrary to the

hypotheses (36). Also, items 4–7 must be excluded if,

according to (36), l[ 0. Moreover, it is worth noting

that items 9 and 11 are very specific: the possible

values of the parameter l are described by the

intersection of three different intervals and this

intersection must satisfy also (40): if the intersection

of the three intervals is empty and/or the condition (40)

is not satisfied the model would be inconsistent.

Finally, we observe that items 1–3 and 8 are instead all

consistent with (36) and (40); hence we conclude that

these choices of the material parameters are consistent

both from a thermodynamic and dynamic point of

view.

Particular attention should be paid to the case

l ¼ 0. This is compatible only with items 4–7 in

Table 1. However, items 6 and 7 must be excluded

since k\0, contrary to the hypotheses (44). On the

contrary, the remaining cases 4 and 5 agree with

condition (44) and are therefore consistent both from a

thermodynamic and dynamic point of view.
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Appendix A: conditions for the thermodynamic

consistency of the LSO model

For further convenience, we adopt the following

notations. The 3-by-3 principal submatrices of A are

obtained by deleting just the h-th row and column of

the matrix. Their determinants, called 3-by-3 principal

minors, are referred to as dh, h ¼ 1; 2; 3. Accordingly,

the 2-by-2 principal submatrices of A are obtained by

deleting the h-th and k-th rows and columns and their

determinants are denoted by dh;k, h 6¼ k. The 1-by-1

principal submatrices of A coincide with the elements

of its principal diagonal.

We start by looking at the 2-by-2 principal minor
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d1;3 :¼det
A22 A24

A24 A44

� �
¼� kðb3�jb1Þþðj�mÞsa2½ �2

4k2

ð50Þ

If the numerator does not vanish, d1;3 takes a negative

value; therefore, we are forced to impose d1;3¼0. We

use this condition together with (50) to fix the value of

b3, namely

b3 ¼ jb1 þ sa2
m� j
k

: ð51Þ

Taking into account this value of b3, we consider the
3-by-3 principal minors d1 and d3 where the element

A22 can be factored out,

d3 :¼ det

A11 A12 A14

A12 A22 A24

A14 A24 A44

0
B@

1
CA ¼

� A22

kb2 � jka1 þ ðj� mÞsb1ð Þ2

4k2

ð52Þ

d1 :¼ det

A22 A23 A24

A23 A33 A34

A24 A34 A44

0
B@

1
CA ¼

� A22

k2ða3 � jb2Þ þ jkb1ðj� mÞs� a2ðj� mÞ2s2
� �2

4k4
:

ð53Þ

Notice that A22 is itself a 1-by-1 minor, so it must be

non-negative. As a consequence, either A22 ¼ 0, or

A22 6¼ 0 and the numerators of d3 and d1 must vanish.

A22 ¼ 0

Condition A22 ¼ 0 leads to

b1 ¼
s
k
a2: ð54Þ

From (51) and (54) it follows

b3 ¼ j
sa2
k

þ sa2
m� j
k

¼ sm
k
a2;

and A24 ¼ A44 ¼ 0. So we consider the following 2-

by-2 minors

d2;3 :¼ det
A11 A14

A14 A44

� �
¼ �A2

14; d1;2 :¼ det
A33 A34

A34 A44

� �
¼ �A2

34:

ð55Þ

The elements A14 and A34 then must vanish, so

yielding

b2 ¼
ms2 þ jk

k2
a2; a3 ¼

kjlþ s2m2

k2
a2:

As a consequence of (54), Ai4 ¼ A4i ¼ 0, i ¼ 1; . . .; 4,
and the entropy production (30) reduces to a 3-by-3

matrix as in the Burger’s model.

Applying (54) and (51) and deleting the fourth row

and column of the matrix A, we obtain

A11 ¼
s

k2
a2; A22 ¼ 0; A33 ¼

lsm

k2
a2;

A12 ¼
ðkþ s2Þa2 � k2a1

2k2
; A13 ¼

shðlþ mÞa2 � k2

2k2h
;

A23 ¼
l� j
2k

a2:

ð56Þ

If s ¼ 0 then d2;4 ¼ �1=ð2hÞ2\0 and A cannot be

positive semidefinite. Accordingly we let s 6¼ 0 and

consider

d3;4 :¼ det
A11 A12

A12 A22

� �
¼ �A2

12

which yields A12 ¼ 0 so that

a1 ¼
kþ s2

k2
a2:

Then we consider

d1;4 :¼ det
A22 A23

A23 A33

� �
¼ �A2

23 ¼ �ðl� jÞ2

4k2
a22:

Hence, either l� j ¼ 0 or a2 ¼ 0. Since

d2;4 :¼ det
A11 A13

A13 A33

� �
¼ A11A33

� A2
13 ¼

ls2m

k4
a22 �

shðlþ mÞa2 � k2

2k2h

	 
2

we infer that d2;4\0 when a2 ¼ 0, so we are forced to

assume a2 6¼ 0 and
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l ¼ j:

This gives

d2;4 ¼
js2m

k4
a22 �

shðjþ mÞa2 � k2

2k2h

	 
2

from which it follows that d2;4 � 0 if and only if

0� s2h2ðj� mÞ2a22 � 2k2shðjþ mÞa2 þ k4: ð57Þ

which is a quadratic inequality involving the unknown

a2.
First we discuss the case m ¼ l ¼ j 6¼ 0 so that (57)

reduces to

jsa2 � k2=4h:

In this case, A11 and A33 are positive provided that

j[ 0. Accordingly, thermodynamic consistency is

achieved if l ¼ m ¼ j[ 0 and s 6¼ 0.

Otherwise let m 6¼ j and

D ¼ k4s2h2½ðjþ mÞ2 � ðj� mÞ2� ¼ 4jmk4s2h2:

When D\0 the inequality (57) is false for any value of

a2. Accordingly, we assume jm� 0. Recalling that

j 6¼ 0, we discuss two items: m ¼ 0 and jm[ 0.

• l ¼ j 6¼ 0, s 6¼ 0 and m ¼ 0: thenD ¼ 0 and (57) is

satisfied provided that a2 ¼ k2=shj. As a conse-

quence A13 ¼ 0 and A11 ¼ 1=hj is the only non

null term of the matrix. Accordingly, thermody-

namic consistency is achieved if j[ 0.

• l ¼ j 6¼ 0, s 6¼ 0, m 6¼ j and jm[ 0: then D[ 0.

In particular either j; m[ 0 or j; m\0.

– If j; m[ 0 then (57) is satisfied provided that

a2 2 ða�2 ; aþ2 Þ where

a�2 ¼ k2
ð
ffiffiffi
j

p
�

ffiffiffi
m

p
Þ2

shðj� mÞ2
:

Hence, sa2 [ 0 and then A11 ¼ s
k2
a2 [ 0,

A33 ¼ jm
k2
sa2 [ 0. In addition A12 ¼ A22 ¼

A23 ¼ 0 and d1;4 ¼ d3;4 ¼ d4 ¼ 0, d2;4 � 0 so

that A turns out to be positive semidefinite and

thermodynamic consistency is achieved.

– If j; m\0 (57) is satisfied provided that a2 2
ða�2 ; aþ2 Þ where

a�2 ¼ �k2
ð
ffiffiffiffiffiffi
jjj

p
�

ffiffiffiffiffi
jmj

p
Þ2

shðj� mÞ2
:

Hence, sa2\0 and then thermodynamic

consistency cannot be achieved.

Summarizing this item, the LSO model is thermody-

namically consistent if

l ¼ j[ 0; s 6¼ 0; m� 0 :

A2;2 6¼ 0

In the following the combination m� j will appear

frequently, so for ease in writing we define

x ¼ m� j

and we replace the parameter m with m ¼ xþ j. Since
k 6¼ 0, equalities d1 ¼ 0 and d3 ¼ 0 can be used to

determine the values of a3 and b2, respectively. So we
set

a3 ¼
x2s2a2 þ 2xjkb1sþ j2k2a1

k2
; b2 ¼ ja1 þ

xsb1
k

:

Taking into account these values, we now consider the

following 2-by-2 minor

d2;4 :¼ det
A11 A13

A13 A33

 !
¼

¼ � b1
2k

� �2

l2 þ b1l

2k3h
hðjkb1 þ xsa2Þ þ k2
� �

�
hðjkb1 þ xsa2Þ � k2
� �2

4k4h2

ð58Þ

LetD2;4 denotes the discriminant of d2;4 with respect to

l. We find

D2;4 ¼
b21
k4h

kjb1 þ xsa2ð Þ ð59Þ

Looking at (58), if lb1 ¼ 0 we are forced to set

d2;4 ¼ 0. Otherwise, if b1l 6¼ 0 the sign of the

quadratic polynomial in l depends on D2;4. So we

consider two main subcases: i) lb1 ¼ 0 and ii)

lb1 6¼ 0.
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i) lb1 ¼ 0. This case has three subitems: i1) l 6¼ 0 and

b1 ¼ 0, i2) l ¼ 0 and b1 ¼ 0 and i3) l ¼ 0 and

b1 6¼ 0.

i.1)l 6¼ 0 and b1 ¼ 0. In this case we are forced to set

k2 � xsa2h ¼ 0; otherwise d2;4 is negative.

Accordingly, xs and a2 must be different from zero

since k 6¼ 0. From b1 ¼ 0 it follows A11 ¼ 0 which in

turn implies d3;4 ¼ �A2
12 and d2;3 ¼ �A2

14. So we are

forced to set A12 ¼ A14 ¼ 0. These conditions give the

values of a1 and a2 in terms of the other parameters

and temperature as

a1 ¼
k
xsh

; a2 ¼
k2

xsh
:

At this point all the elements A1i, i ¼ 1; :::; 4, and all

the 3-by-3 minors are equal to zero. The diagonal

elements Aii, i ¼ 1; 2; 3, are non-negative provided

that

xk[ 0; l[ 0:

The 2-by-2 minors different from zero are d1;2 and

d1;4 ¼ j2d1;2, so we require d1;4 � 0, namely

d1;4 ¼ � 1

4x2s2h2
k2l2 � 2kðkjþ xs2Þlþ ðkj� xs2Þ2
� �

� 0:

ð60Þ

The numerator of d1;4 is a second order polynomial in

lwhose discriminant is given by 16jxs2k3. In order to
satisfy (60), this discriminant must be non-negative, a

condition which implies j� 0. The interval of admis-

sible values is given by l 2 ½l�1 ; lþ1 �, with

l�1 ¼
ffiffiffi
j

p
� jsj

ffiffiffi
x

k

r� �2

:

i.2)l ¼ 0 and b1 ¼ 0. In this case both A11 and A33 are

equal to zero. Then

d3;4 ¼ �ða2 � ka1Þ2

4k2
; d2;4 ¼ �ðxsa2h� k2Þ2

4k4h2
;

d1;4 ¼ �ðxs2a2 � jk2a1Þ2

4k4
:

As before, we assume xs and a2 different from zero

otherwise d2;4\0. Moreover we must have d3;4 ¼ 0,

d2;4 ¼ 0, d1;4 ¼ 0 from which it follows

j ¼ xs2

k
; a1 ¼

k
xsh

; a2 ¼
k2

xsh
:

Recalling that x ¼ m� j, the first equality yields

m ¼ jðkþ s2Þ
s2

; x ¼ jk
s2

:

By inserting these values in the matrix A, only four

elements do not vanish, namely

A22 ¼
s2

jh
; A24 ¼ A42 ¼

s2

h
; A44 ¼

js2

h
;

and the matrix A is positive semi-definite iff

j[ 0.i.3)l ¼ 0 and b1 6¼ 0. In this case the element

A33 vanishes. Since d2;4 ¼ �A2
13, d1;4 ¼ �A2

23,

d1;2 ¼ �A2
34 ¼ �j2A2

23, we must set A13 ¼ 0 and

A23 ¼ 0. These two equations can be written explicitly

as

ðjkb1 þ xsa2Þh� k2 ¼ 0; xs2a2 þ b1ðj� xÞsk
� ja1k

2 ¼ 0:

We use these relations to fix the values of a1 and b1 in
terms of the other variables,

a1 ¼
s x2sa2hþ k2ðj� xÞ
� �

j2k2h
; b1 ¼

k2 � xsa2h
jkh

:

The matrix elements different from zero are given by:

A11 ¼
k2 � xsa2h

jk2h
; A12 ¼

a2
2k

� xs
2jk

A22; A14 ¼ jA12;

A22 ¼
sðjþ xÞa2h� k2

jkh
; A24 ¼ jA22; A44 ¼ j2A22:

The 1-by-1 minors must be non negative. The

remaining minors different from zero are d3;4 and

d2;3 ¼ j2d3;4; d3;4 is given by

d3;4 ¼ � xs2ðjþ xÞ þ kj2ð Þ2

4k4j4
a22

þ s x2s2ðjþ xÞ þ kj2ð2jþ 3xÞð Þ
2k2j4h

a2

� x2s2 þ 4kj2

4j4h2

a) First we analyze the possibility

xs2ðjþ xÞ þ kj2 6¼ 0. In this case the discriminant
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of d3;4 with respect to a2 must be non negative in order

to have a non negative value for d3;4. So we get

D3;4 ¼
s2ðjþ xÞ � kj

j3k2h
� 0:

After replacing x ¼ m� j this condition is equivalent

to

k� s2m
j

:

Admissible values of a2 are fixed by inequality

d3;4 � 0, i.e. a2 2 Ia2 ¼ ½a�2 ; aþ2 �,

a�2 ¼

k2 x2s3ðjþ xÞ þ kj2sð2jþ 3xÞ � 2j2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk2ðs2ðjþ xÞ � kjÞ

q� �

h xs2ðjþ xÞ þ kj2ð Þ2

If a2 belongs to the interval Ia2 then A11 and A22 are

non negative provided j[ 0. Indeed we have

A11 ¼
k2 � xsa�2 h

k2jh
¼

kj2 � xs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j s2ðjþ xÞ � kjð Þ

p� �2

xs2ðjþ xÞ þ kj2ð Þ2jh
;

A22 ¼
sðjþ xÞa�2 h� k2

kjh

¼
jk2 ðxþ kÞs�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j s2ðjþ xÞ � kjð Þ

p� �2

xs2ðjþ xÞ þ kj2ð Þ2h
:

b) The analysis of the sub-case ii.3) is completed by

considering the possibility

k ¼ � xðjþ xÞs2
j2

:

Notice that xðjþ xÞs 6¼ 0 since k 6¼ 0. Now, the

relation d3;4 � 0 becomes

� a2
xsh

þ xs2ð4jþ 3xÞ
4j4h2

� 0:

– If xs[ 0 then we have

a2 �
x2s3ð4jþ 3xÞ

4j4h
: ð61Þ

The corresponding values of A11 and A22 are positive

only if j[ 0. Indeed, according to (61), let us assume

a2 ¼
x2s3ð4jþ 3xÞ

4j4h
� N;

where N is a suitable non-negative quantity. Then we

have

A11 ¼
ðxþ 2jÞ2

4hjðxþ jÞ2
þ sxN

jk2
; A22 ¼

jN
sx

þ x2s2

4j3h
;

showing that A11 and A22 are non-negative iff j[ 0. –

If xs\0 one has

a2 �
x2s3ð4jþ 3xÞ

4j4h2

and again A11 and A22 are non-negative provided that

ii) b1 6¼ 0 and l 6¼ 0. If the discriminant (59) is

negative, then the minor d2;4 is negative and the matrix

A cannot be positive semidefinite. Hence we have to

assume D2;4 ¼ 0 or D2;4 [ 0.

ii.1)D2;4 ¼ 0. Since b1 6¼ 0 and k; j 6¼ 0, from (59) we

get

b1 ¼ � xs
jk

a2:

As a consequence A33 ¼ 0 and d1;2 ¼ �A2
34, d1;4 ¼

�A2
23 and d2;4 ¼ �A2

13 so that all the elements A13, A23

and A43 must vanish. These conditions in turn imply

jk2 ¼ �xsla2h;

j2k2a1 ¼ a2 x2s2 þ jðxþ jÞk
� �

:

Since jk 6¼ 0 and then xsla2 6¼ 0, these equations fix

the values of a1 and a2 as follows

a1 ¼ � x2s2 þ jkl
xjlsh

; a2 ¼ � jk2

xlsh
:

At this point all the terms Ai3, i ¼ 1; :::; 4 are equal to

zero. The remaining elements are given by

A11 ¼
1

lh
; A12 ¼

xðxþ jÞs2 þ jkðl� jÞ
2xjlsh

;

A14 ¼ jA12;

A22 ¼ �ðxþ jÞk
xlh

; A24 ¼ jA22; A44 ¼ j2A22:

Notice that from Aii � 0, i ¼ 1; :::; 4, we get
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l[ 0; xðxþ jÞk� 0: ð62Þ

The 3-by-3minors are all zero and the non zero 2-by-2

minors are just d3;4 and d2;3 ¼ k2d3;4. Since

d3;4 ¼

� j2k2l2 þ 2jkðxðxþ jÞs2 � j2kÞlþ ðxðxþ jÞs2 þ j2kÞ2

4x2s2h2j2l2
:

the necessary and sufficient condition in order to have

a positive semidefinite matrix is the following

j2k2l2 þ 2jkðxðxþ jÞs2 � j2kÞl
þ ðxðxþ jÞs2 þ j2kÞ2 � 0:

ð63Þ

By virtue of (62) its discriminant with respect to l, say
D3;4, is always non-negative,

D3;4 ¼ �16xðxþ jÞj4k3s2 � 0:

Therefore, the quadratic inequality (63) is satisfied iff

l 2 ½l�2 ; lþ2 �, where

l�2 ¼
jsj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�kxðxþ jÞ

p
� jkjj

� �2
jk2

: ð64Þ

Notice that l�2 [ 0 provided that j[ 0. Moreover,

the interval collapse to a point when either m ¼ 0 or

m ¼ j, so that it follows l ¼ j. Summarizing, ifD2;4 ¼
0 thermodynamic consistency is ensured if

kmðm� jÞ� 0, j[ 0, ðm� jÞsl 6¼ 0 and

l 2 ½l�2 ; lþ2 �, where l�2 are given by (64).ii.2)

D2;4 [ 0. Since D2;4 [ 0, b1 6¼ 0 and the diagonal

terms of the matrix A (1-by-1 minors) must be non-

negative, the following inequalities hold:

kb1[0; l�0; kjb1þxsa2[0; kðsa2�kb1Þ�0:

ð65Þ

Applying these inequalities, the 2-by-2 minor d2;4
given by (58) is non-negative if l belongs to the real

positive interval l2½l�3 ;lþ3 �, where

l�3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðjkb1 þ xsa2Þ

p
� jkj

� �2
kb1h

:

We need to check the other minors. The 2-by-2minors

different from zero are d1;4, d3;4 and d2;3 ¼ k2d3;4,

d1;2 ¼ k2d1;4; the 3-by-3 minors different from zero

are d4 and d2 ¼ j2d4. For future convenience, we

introduce the parameter / as

/ ¼ a1a2 � b21
k

:

Minors d1;4 and d4 are quadratic polynomials in l,
whereas d3;4 does not contain l. First, let us consider

d1;4 ¼ � 1

4k4

�
k2a22l

2 � 2k

k3j/þ ðsa2 � kb1Þðjkb1 þ sxa2Þ
� �

lþ

þ jkðsb1 � ka1Þ þ xsðsa2 � kb1Þð Þ2
�
:

ð66Þ

The discriminant of d1;4 with respect to l is given by

D1;4 ¼
j/ðsa2 � kb1Þðjkb1 þ xsa2Þ

k3
:

D1;4 must be non-negative, otherwise the minor d1;4
would be negative. By virtue of inequalities (65),

D1;4 � 0 implies

j/� 0: ð67Þ

We consider now two sub-cases: a) a2 6¼ 0 and b)

a2 ¼ 0. a) Let us assume a2 6¼ 0. In this case equation

(66) implies that lmust belong to the interval ½l�4 ; lþ4 �
(which can collapse into a single point ifD1;4 ¼ 0) where

l�4 ¼

ffiffiffiffiffiffiffiffiffiffiffi
k2j/

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsa2 � kb1Þðkjb1 þ xsa2Þ

k

r !2

a22
:

Let us now consider the minor

d4 ¼ � b1/
4k

l2 þ 2Pl� Q;

where P and Q are polynomials of the parameters and

the temperature,

P ¼ /

8k2h
xhb1s

2 þ xshða2 � ka1Þ þ kðkþ 2jb1hÞ
� �

þ b1ðsa2 � kb1Þ � a22
8k2h

;

Q ¼
b1 a2xs2 þ b1ðk � xÞks� k2jb1
� �2

4k5

þ
ðsa2 � kb1Þ ðkjb1 þ xsa2Þh� k2

� �2
4k5h2

� ððkjb1 þ xsa2Þh� k2Þða2 � ka1 þ sb1Þða2xs2 þ b1ðk � xÞks� k2jb1Þ
4k5h

:

ð68Þ
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The discriminant of d4 with respect to l can be written

as

D4 ¼
d3;4

4k2h2

�
4jkb1/h� ða2 � xs/hÞ2

�
: ð69Þ

where the minor d3;4 takes the following form,

d3;4 ¼ /� ka1 � sb1 þ a2ð Þ2

4k2
:

This expression excludes the possibility /\0. The

equality / ¼ 0 must also be excluded. Indeed, the

vanishing of / imply a1a2 � b21 ¼ 0 (by its definition)

and gives

d3;4 ¼ �ðka21 � sa1b1 þ b21Þ
2

4k2a21
:

The numerator is forced to vanish and this yields

s ¼ ka21 þ b21
a1b1

:

After replacing this expression for s and / ¼ 0, we

obtain d4 ¼ �b31=4ka
2
1h

2 and A11 ¼ b1=k; since

b1 6¼ 0, the requirements d4 � 0 and A11 � 0 are not

compatible. We then conclude that /must be positive.

Consequently, because of (65)1, the coefficient of l2 in
the expression of d4 is negative. Then the discriminant

D4 must be non-negative, otherwise the minor d4
would be negative. – If d3;4 [ 0, the factor in round

brackets on the right side of (69) must be non-

negative, namely

j� ða2 � xs/hÞ2

4kb1/h
: ð70Þ

Notice that the right hand side of this inequality is non

negative due to the constraints on the parameters (65),

(67) and /[ 0. Also, if (70) is verified, it is easy to

show that inequality (65)3 holds. Indeed we have

kjb1 þ xsa2 [
ða2 þ xs/hÞ2

4/h
: ð71Þ

Inequality (70) involves x ¼ m� j, so it results in a

restriction of the admissible values either of m, if s 6¼ 0,

or of j, if s ¼ 0. When s 6¼ 0 we get

m 2 I2m ¼ ½m�; mþ�; m� ¼ jþ a2 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkb1/h

p
s/h

:

ð72Þ

If s ¼ 0 we get j� a22=4kb1/h: The inequality

d3;4 [ 0 can be viewed as a relation determining a

range for the admissible values of / (or, alternatively,

of a1, since we are now considering the case a2 6¼ 0).

Indeed, by making explicit the dependence on /, we
have

d3;4 ¼ � 1

4a22
k2/2 þ 2 b1ðsa2 � kb1Þ þ a22

� �
/

�

�
b1ðsa2 � kb1Þ � a22
� �2

k2

!

The discriminant of d3;4 with respect to / is non

negative, again due to the constraints (65). Indeed we

have

D3;4 ¼
b1ðsa2 � kb1Þ

a22
:

From d3;4 [ 0 then it follows that / must be in the

interval ð/�
1 ;/

þ
1 Þ where

/�
1 ¼

a2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1ðsa2 � kb1Þ

p� �2
k2

ð73Þ

Notice that this range is compatible with /[ 0. In

terms of a1, we get

a1 2 Ia1 ¼ ½a�1 ; aþ1 �; a�1 ¼ sb1 þ a2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1ðsa2 � kb1Þ

p
k

ð74Þ

If (74) and (70) are satisfied, then d4 � 0 implies

l 2 I5l ¼ 4k
P�

ffiffiffiffiffiffi
D4

p

b1/
; 4k

Pþ
ffiffiffiffiffiffi
D4

p

b1/

	 


– It remains to consider the possibility d3;4 ¼ 0. If this

is the case, the discriminant (69) vanishes and the

interval I5l collapses to a single point

l ¼ 4kðP�
ffiffiffiffiffiffi
D4

p
Þ=b1/, where you must enter the

value of / that solves d3;4 ¼ 0, i.e.

/ ¼ ka1 � sb1 þ a2ð Þ2

4k2
: ð75Þ

By replacing / in terms of the other variables, i.e.
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/ ¼ ða1a2 � b21Þ=k, equation (75) can be written as a

quadratic equation to determine a1,

a21 � 2
sb1 þ a2

k
a1 þ

4kb21 þ ðsb1 � a2Þ2

k2
¼ 0:

Notice that this equation has always at least a real

solution, since its discriminant is non negative. In

particular, a1 ¼ 0 is a solution provided that

4kb21 þ ðsb1 � a2Þ2 ¼ 0:

Since the discriminant D4 given by (69) vanishes,

condition (70) on j does not apply and inequality (65)3
is no more automatically verified, but can be seen as a

relation identifying the possible values of x, i.e. of m.
All the other conditions remain unchanged as in the

previous case d3;4 [ 0. b) Finally, to complete the

analysis, we must go back to equation (66) for d1;4 and

consider the case a2 ¼ 0. From the 1-by-1 minors we

get the inequalities

b1\0; k\0; j[ 0: ð76Þ

Also, l must be in the positive set Il3 . The minor d1;4
gives another interval for l, i.e. l 2 Il6 ¼ ½l6;1Þ,
where

l6 ¼ � jðka1 � sb1Þ þ xsb1ð Þ2

4jkb21

The only minors to consider are now d4 and d3;4. The

minor d4 is given by

d4 ¼
b31
4k2

l2 þ 2P̂l� Q̂ ð77Þ

where P̂ and Q̂ are P and Q as given in (68) evaluated

at a2 ¼ 0. By (76)1 the coefficient of l2 in (77) is

negative. Hence d4 � 0 provided that its discriminant

D4 ¼ � d3;4b
3
1

4k4h

�
s2x2b1hþ 4jk2

�
: ð78Þ

is non negative. If d3;4 [ 0, then (78) requires

s2x2b1hþ 4jk2 � 0;

so that mmust belong to the interval I2m as given by (72)

and evaluated in a2 ¼ 0 if s 6¼ 0, whereas it is

automatically satisfied if s ¼ 0. If a2 ¼ 0 from (73)

it follows / ¼ �b21=k. Actually, after replacing this

expression for / and a2 ¼ 0, d3;4 can be represented as

a polynomial in a1,

d3;4 ¼ � a21
4
þ sb1a1

2k
� ðs2 þ 4kÞb21

4k2
: ð79Þ

If a1 6¼ 0, d3;4 [ 0 yields an interval for a1, i.e.

a1 2 Ia11 ¼ ða�1 ; aþ1 Þ, where

a�1 ¼ ðs� 2
ffiffiffiffiffiffi
jkj

p
Þb1=k:

If a1 ¼ 0, d3;4 [ 0 gives k\� s2=4. In both cases,

the relation d4 � 0 defines an interval for l, corre-
sponding to the interval Il5 evaluated at a2 ¼ 0. If

d3;4 ¼ 0, (78) implies that D4 vanishes and

l ¼ �4k2ðP̂�
ffiffiffiffiffiffi
D4

p
Þ=b31, where we have to replace

a1 with a solution of (79). In particular, a1 ¼ 0 is a

solution provided that k ¼ �s2=4. Otherwise equation
(79) has always at least one non trivial solution, since

its discriminant is non negative.

The following tables summarize the results of all

items.
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