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Abstract Twin-box decks are prone to vortex-
induced vibration (VIV) at moderate wind speeds, 
and previous studies have shown a complex inter-
play between the flow and the two parallel box gird-
ers. OpenFOAM is used to model the aerodynamic 
and aeroelastic responses of the twin-box deck of 
the Stonecutters Bridge by means of 3D LES simu-
lations. Two cases are thoroughly analysed under 
smooth incoming flow: (i) static deck and ii) heave 
peak amplitude response at VIV excitation. The com-
putational data provided by the CFD simulations 
have been exploited aiming at better understanding 
the complex aerodynamic and aeroelastic phenom-
ena taking place. First, spanwise correlation analyses 
are applied to understand the level of organisation of 
the forcing flow actions, and identify the regions of 
the deck affected by different flow structures. Sec-
ond, three different mode decomposition techniques 
(POD, SPOD and DMD) are applied to the time-
dependent pressure distributions, revealing the piv-
otal role played by the leeward box in the twin-box 
deck response under wind action. The modal analyses 
are of utmost interest in the development of Reduced 
Order Models (ROM) for the VIV response of twin-
box long-span bridges.

Keywords VIV · 3D LES · Correlations · POD · 
SPOD · DMD

1 Introduction

Fluid mechanics is present in almost every aspect of 
our daily life: from opening a water tap up to launch-
ing a rocket to deliver an earth observation satellite, 
the ability of engineers to tackle challenging flow 
problems is put to the test. Nowadays, we are wit-
nessing a time in which we can even grasp some of 
the complex features associated with environmental 
flows and the effects on the built environment. In the 
field of wind engineering applications, some chal-
lenges should be remarked: the large extension of the 
flow domain of interest, the high Reynolds number, 
the turbulent nature of the flow, the development of 
boundary and shear layers when the flow interacts 
with solid surfaces, the complexity linked to flow 
separation, reattachment, impingement and shedding 
of vortices, and eventually fluid–structure interaction 
episodes giving rise to aeroelastic phenomena that 
might eventually end in unstable structural responses. 
Only recently computational methods have been able 
to contribute to a better understanding of these phe-
nomena, complementing the traditionally established 
wind tunnel testing approach. It is therefore crucial 
to outline where computational modelling practice 
stands nowadays in order to understand the challenges 
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that computational wind engineers will be facing in 
the years to come.

From a structural design perspective, field meas-
urements are of limited interest in applied wind engi-
neering design, as the priority should be to avoid 
wind-induced damages or service problems at the 
project definition stage. Therefore, during the twen-
tieth-century, experimental methods, in particular 
wind tunnel testing at reduced geometrical scales, 
have been favoured as the standard tool to address 
wind effects on structures. However, as computa-
tional fluid mechanics gained maturity at the end of 
the past century, and computational power dramati-
cally increased, engineers acquired an additional tool 
to address fluid mechanics problems, to a large extend 
complementary to wind tunnel testing. Computa-
tional fluid dynamics (CFD) now provides, not only 
local values for flow properties, similar to experimen-
tal instrumentation, but a complete description of the 
flow in space and time. There still exist limitations 
for computational approaches, such as the associated 
computational burden, uncertainties in turbulence 
models, selection of values for numerical parameters 
and boundary conditions definition, the difficulty in 
addressing problems with Reynolds numbers similar 
to real scale applications, or the complexity of tack-
ling certain problems such as transition from laminar 
to turbulent regimes. A comprehensive review about 
the state of the art in CFD applications in wind engi-
neering can be found in Blocken [5].

Turning now the focus towards long-span bridge 
engineering applications, one should take into con-
sideration some specific features that delimitate what 
might be feasible and meaningful among the available 
CFD approaches. The fundamental characteristics 
to highlight are: (i) the extreme flexibility and low 
mechanical damping of this structural typology that 
explains the susceptibility to aeroelastic phenomena 
such as flutter; and (ii) the long length of the deck, 
which can reach several kilometres, along with the 
height of the towers, frequently of more than 100 m, 
which even prevent the development of a reduced 
scale CFD model of the full bridge. Consequently, the 
standard approach in computational fluid dynamics 
has been to replicate wind tunnel reduced scale sec-
tional model tests, with sizes and Reynolds numbers 
feasible for CFD models. These wind tunnel tests are 
the source of the experimental data used for the fun-
damental validation of the numerical results.

The work covered by this article aims at provid-
ing a glimpse of what can be done today in the field 
of wind-induced effects in long-span bridges, focus-
ing on pre-processing and post-processing capabili-
ties using the open-source solver OpenFOAM. In 
fact, at postprocessing level, in this article the focus 
is put on correlation and modal analysis of the pres-
sure distributions. The application case adopted is 
the bare deck of the Stonecutters Bridge, a twin-box 
deck cable-stayed bridge built in Hong-Kong (P.R. 
of China) in 2009. The computational approach 
reported herein is based upon a 3D LES (Large 
Eddy Simulation) model and incoming smooth flow, 
which extends previous studies conducted by the 
authors [2]. Of course, OpenFOAM has been previ-
ously adopted in CFD studies of long-span bridges, 
such as in Fransos and Bruno [10], Sarkic et  al. 
[24], or de Miranda et al. [9], to point out just a few.

As a final introductory remark, the possibilities 
that CFD simulations enable in the frame of data-
based design should be highlighted [15]. On the one 
hand, the huge amount of information available in 
computational models is a very valuable source of 
data on its own right; and on the other hand, the 
ability of running multiple CFD models in parallel, 
taking advantage of HPC (High Performance Com-
puting) technology, allows completing parametric 
studies, evaluating the samples of a surrogate model 
or providing data for AI (Artificial Intelligence) 
applications in a feasible timeframe. Open-source 
solvers such as OpenFOAM are therefore instru-
mental for data-enabled design.

The paper is organized as follows: first, a section 
introducing the formulation for calculating the cor-
relation coefficients and the different mode decom-
position approaches used in this piece of research 
is presented. In Sect. 3, the adopted computational 
model is described and the application case is 
introduced. Afterwards, two sets of computational 
results are reported and analysed, organized in 
two sections: one focusing on the correlation coef-
ficients of the force coefficients and pressure coef-
ficients over the twin-box deck surfaces (Sect.  4), 
and another presenting the mode shapes and their 
characteristics for the different mode decomposition 
techniques considered (Sect.  5). Finally, a section 
summarizing the main findings and fundamental 
remarks is included as a closure for this research.
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2  Formulation

2.1  Fundamental aerodynamic parameters and 
dynamic properties

The force coefficients represent the non-dimensional 
aerodynamic force components per unit of span 
length acting on the body under study. Sub-indexes 
d , l and m stand for the drag, lift and moment com-
ponents. They are evaluated as:

where Fd represents the drag force pers unit of span 
length, Fl is the lift force per unit of span length and 
M is the centroid-axis moment per unit of span length 
(sign conventions are provided in Fig. 1). The geom-
etry under study is the Stonecutters twin-box bridge 
deck, without considering the transversal beams con-
necting the two boxes. Additionally, in Eq. 1, C is the 
the breadth of a single box.

The Strouhal number, which is a non-dimen-
sional parameter related with the frequency of the 
periodic aerodynamic excitation due to vortex shed-
ding, is defined as:

being f  the dominant frequency in the lift force spec-
trum and D is the height of the deck (Fig. 1).

The pressure coefficient at any location over the 
surface of the body is evaluated as follows, where 
p is the time-dependent pressure at the considered 
location:

(1)Cd =
Fd

1

2
�U2C

,Cl =
Fl

1

2
�U2C

,Cm =
M

1

2
�U2C2

,

(2)St =
fD

U
,

The free decaying simulations were conducted 
for the heave degree of freedom (y axis in Fig. 1). 
Those simulations are characterized by the natural 
frequency and damping factor of the one degree of 
freedom dynamical system. The damping is given in 
its non-dimensional form, Scruton number, whose 
equation is presented hereunder:

where m is the mass of the system, � is the relative 
damping of the system and L is the spanwise length.

2.2  Spanwise correlation

The correlation coefficient is a statistical parameter 
that provides values between − 1 and 1, aiming at 
quantifying the strength of the interdependency 
between two variables. The value of zero means 
that the two variables are uncorrelated, and for the 
case of linear and Gaussian stochastic processes 
this also indicates independence. Moreover, the cor-
relation coefficient provides information about the 
phase lag between the two variables under study: 
when two variables with pure sinusoidal time-his-
tories are considered, the correlation coefficient is 
equal to cos� , being � the phase lag between the 
two time-histories. For a generic time-history, con-
taining multiple frequencies, the correlation coeffi-
cient is the summation of the cosines of the phase 
lags of the different frequency components. Corre-
lation also has a physical meaning in fluid–structure 
interaction phenomena since, according to Ricciar-
delli [21], the lower the correlation, “the greater 
the reduction of the fluctuating loads and dynamic 
response”.

The spanwise correlation is calculated using the 
expression in Eq. (5):

where S is the time-history of the variable for which 
the correlation is being calculated, z is the coordinate 

(3)Cp =
p

1

2
�U2

.

(4)Sc =
4�m�

�LD
,

(5)RCi
(Δz∕D) =

cov
(
Sz∕D, S(z+Δz)∕D

)

�
(
Sz∕D

)
�
(
S(z+Δz)∕D

) ,

Fig. 1  Sign convention (B stands for the overall width of the 
deck, C is the width of a single box, G is the gap distance 
between boxes, O is the reference point for the forces and 
moments)
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in the spanwise dimension where the time-history is 
obtained, cov refers to the covariance of two variables 
and � represents its standard deviation.

2.3  Modal decomposition

According to Taira et al. [28], modal decomposition is 
a set of general mathematical techniques that allow to 
extract energetically and dynamically important fea-
tures in fluid flows. Based on this analysis, spatial mode 
shapes and characteristic values are obtained, the lat-
ter ones representing either the energy content levels, 
or growth rates and frequencies. These modes can be 
obtained from the flow field data or from the govern-
ing equations, which are also referred as data-based 
techniques and operated-based techniques [28]. In this 
manuscript only data-based techniques are applied 
to the pressure fields over the surface of the studied 
bluff bodies. In the following, the range of different 
modal decomposition techniques used in this work are 
reviewed.

2.3.1  Data matrix construction

Consider the n-dimensional vector field, at a given 
time, defined in Eq. (6):

where�i , �j and �k are the spatial coordinates, 
withi = 1,… , n� , j = 1,… , n� and k = 1,… , n� , the 
number of point coordinates in each direction. The 
data row vector is formed by stacking each compo-
nent of the data as illustrated in Eq. (7):

hence the column vector is x =
(
xT
)T . This column 

vector is generated for every temporal snapshot in the 
simulations or experiment. Therefore the final data 
matrix is:

(6)
qijk =

(
u1
ijk
,… , un

ijk

)
=
(
u1
(
�i, �j,�k

)
,… , un

(
�i, �j,�k

))
,

(7)
xT =

[
u1
111

,… , u1
ijk
,… , u1

n�n�n�
, u2

111
,… , u2

ijk
,… ,

u2
n�n�n�

,… , un
111

,… , un
ijk
,… , un

n�n�n�

]
,

(8)X =
[
x
(
t1
)
, x
(
t2
)
,… , x

(
tn
)]
.

2.3.2  Proper orthogonal decomposition

The proper orthogonal decomposition (POD) provides 
a way to express the random field in a series of mutu-
ally uncorrelated structures that are optimal for express-
ing the total variance [26]. This technique enables for 
example the identification of coherent structures from 
turbulent flow-fields by extracting modes based on 
the “optimisation of the mean square of the field vari‑
able under study” [28]. In the present study, the time-
dependent pressure distribution on the bluff body sur-
face is adopted as the field variable of interest, so that 
the pressure distribution might be reconstructed from 
the minimal number of modes, containing as much 
energy as possible.

The algorithm for calculating POD modes starts by 
subtracting from a vector field q(�, t) its mean field q(�) 
and assuming that the fluctuating component of the 
vector field can be decomposed as follows:

where �j(�) are the spatial modes and aj(t) are the 
expansion coefficients.

The spatial data are allocated in a column vector 
x
(
ti
)
 for every temporal snapshot, stacked as described 

in Sect. 2.2.1, yielding matrix X.

where n is the number of spatial locations and m is 
the number of time steps.

The covariance matrix R is calculated from the data 
matrix as shown in Eq. (11):

The modes �i are calculated by solving the eigen-
value problem in Eq.  (12), which are the eigenvectors 
of the problem, and they are orthonormal among them.

The eigenvalues �j represent the energy content 
of each mode, allowing its sorting as well as provid-
ing an indication about how many modes are needed 

(9)x(t) = q(�, t) − q(�) =
∑

j

aj(t)�j(�),

(10)X =
[
x
(
t1
)
, x
(
t2
)
,… , x

(
tm
)]

∈ ℝ
n×m,

(11)R =

m∑

i=1

x
(
ti
)
xT
(
ti
)

m − 1
=

XXT

m − 1
∈ ℝ

n×n.

(12)R�j = �j�j,�j ∈ ℝ
n, �1 ≥ ⋯ ≥ �n ≥ 0.



Meccanica 

1 3
Vol.: (0123456789)

in order to properly represent the fluctuations in the 
flow-field data.

where r is the number of modes considered for the 
reconstruction of the field.

Finally, the temporal coefficients are calculated as 
indicated in Eq. (14):

where ⟨⟩ represents the inner product.
If the number of temporal snapshots is smaller 

than the number of locations (m < n) , it is possible to 
calculate the POD modes using the method of snap‑
shots. In the later approach, the solved eigenvalue 
problem is:

Then, the original POD modes can be calculated 
as:

According to Taira et al. [28], travelling structures 
of real-valued POD modes cannot be represented by 
a single mode. Instead, they are represented by a pair 
of stationary POD modes, similar among them, and 
shifted in the advection direction.

2.3.3  Spectral POD

Spectral POD (SPOD) is a modal decomposition 
technique which provides time-harmonic modes at 
discrete frequencies from a set of realisations of the 
temporal Fourier transform of the flow-field [28]. As 
opposed to the POD modes, whose spectrum contains 
multiple frequencies, the spectrum of each SPOD 
mode contains a single frequency.

In order to calculate the SPOD modes, first the 
time series of the considered snapshots for the flow 
variable of interest is divided in a number nb of 

(13)

∑r

j=1
�j

∑n

j=1
�j

≈ 1,

(14)aj(t) = ⟨q(�, t) − q(�),�j(�)⟩ = ⟨x(t),�j⟩,

(15)XTX� j = �j� j,� j ∈ ℝ
m.

(16)�j = X� j

1√
�j

∈ ℝ
n, j = 1, 2,… ,m.

overlapping blocks. Then, the temporal Fourier trans-
form for each block is calculated. In Eq.  (17), this 
transformation is presented for block l:

where n is the number of points times the number 
of components of the field under study, one for a 
pressure field and three for a flow velocity field for 
instance, meanwhile m states the number of frequen-
cies in which the temporal time-history was decom-
posed after the Fourier analysis.

Afterwards, all the realisations of the Fourier 
transform at a specific frequency �k are collected into 
matrix X̂�k

:

Finally, the covariance matrix is calculated, and 
the eigenvalue problem is solved for each frequency, 
yielding the SPOD modes �′

wk,j
 and their correspond-

ing modal energies ��k,j
:

For further information on the method, the inter-
ested reader can refer to the works of Taira et al. [28] 
and Schmidt et al. [26].

2.3.4  Dynamic mode decomposition

Following Taira et al. [28], the dynamic mode decom-
position (DMD) is introduced as a technique which 
enables the decomposition of time-resolved data into 
modes. These modes are characterised by having a 
single frequency and growth/decay rate. DMD com-
bines the best features of POD and the Fourier trans-
form, providing a way to bring physical insights into 
a system.

The algorithm for the DMD calculation, according 
to Tu et al. [29], starts by rearranging the data in two 
matrices as follows: 

(17)X̂
(l)
=
[
�̂
(l)

1
, �̂

(l)

2
, �̂

(l)

mFFT

]
∈ ℝ

n×mFFT ,

(18)X̂�k
=
[
x̂
(
�k

)(1)
, x̂
(
�k

)(2)
, x̂
(
�k

)(nb)]
.

(19)

X̂�k

X̂�k
X̂
T

�k

mFFT − 1
��
�k,j

,��
�k,j

∈ ℝ
nb , �wk,1

≥ ⋯ ≥ �wk,nb

≥ 0.



 Meccanica

1 3
Vol:. (1234567890)

The relationship between these two matrices is lin-
early approximated as:

In order to calculate matrix A it is needed to cal-
culate the standard value decomposition (SVD) of 
matrix X.

In the above equation � is a diagonal matrix with 
values�1 ≥ �2 ≥ ⋯ ≥ �p ≥ 0 . It is possible to trun-
cate the SVD using the first r columns of U and V, 
and the first r rows and columns of� . Hence the trun-
cated matrices Ur , Vr and �r are obtained by selecting 
the r rows and columns as stated.

Using the truncated matrices instead of calculating 
matrix A, matrix Ã is obtained:

Then, it is needed to solve the following eigen-
value problem:

with eigenvalues �j and eigenvectors �̃j . All the non-
zero �j are DMD eigenvalues.

Finally, the DMD modes are calculated as:

The growth/decay ratios of the DMD modes can 
be calculated from the real and imaginary compo-
nents of �j , which are evaluated as:

For further information about DMD decomposi-
tion, the interested reader is referred to Taira et  al. 
[28] and Tu et al. [29].

(20)
X =

[
x
(
t1
)
, x
(
t2
)
,… , x

(
tm
)]

∈ ℝ
n×m and

Y =
[
x
(
t2
)
, x
(
t3
)
,… , x

(
tm+1

)]
∈ ℝ

n×m.

(21)Y = AX.

(22)X = U�VT
.

(23)Ã = UT
r
AUr = UT

r
XVr�

−1
r

∈ ℝ
r×r.

(24)Ã�̃j = �j�̃j,

(25)�j =
1

�j

YVr�
−1
r
�̃j.

(26)�j =
1

Δt
log

(
�j

)
,Δt = tj+1 − tj.

3  Application case and computational model

The geometry under study in this piece of research 
is the one corresponding with the bare configura-
tion of the Stonecutters bridge deck (see Fig.  1 for 
a graphical representation of its cross section) with-
out considering the transversal beams connecting 
both boxes. The static simulation was conducted at 
a ReD = UD∕� = 4.48 ×104 , the same as in Kwok 
et  al. [16] adopting a 1/80 geometrical scale. In the 
case of the simulations undergoing heave oscil-
lation, the swept range of Reynolds numbers was 
ReD = 2.85 × 10

3 to ReD = 3.81 × 10
3 as in Larsen 

et al. [17], with a Sc = 32 (A. Larsen, personal com-
munication, July 3–4, 2018).

All the simulations reported here have adopted a 
3D geometry, considering a Smagorinsky LES tur-
bulence model [25], solved with the CFD software 
OpenFOAM 5.0 [12]. The diffusive terms were dis-
cretised by using the second order central difference 
scheme while the second order upwind differencing 
scheme has been applied for the convective terms. 
Advancement in time was performed by the second 
order backward scheme. Finally, the pressure–veloc-
ity coupling was solved by the PIMPLE algorithm. 
In the dynamic simulations, the Arbitrary Lagran-
gian Eulerian approach was applied to incorporate 
the movement of the mesh into the governing fluid 
equations. The deck was partially restrained, allowing 
displacements only in the heave degree of freedom, 
and its oscillation was modelled by a single-degree-
of-freedom mass-spring-damper system. The cou-
pling between the fluid, the structural system and the 
dynamic mesh was achieved by the use of the conven-
tional serial staggered scheme.

The overall fluid domain is depicted in Fig.  2a, 
and its main dimensions are reported in Table 1. The 
spanwise length considered in this study is equal to 
the width of a single box, following the criteria used 
in authors’ previous works [2, 3].

The boundary conditions imposed in the simula-
tions were Dirichlet type conditions for the velocity 
and turbulent viscosity at the inlet, meanwhile Neu-
mann conditions were imposed for the inlet pressure. 
At the outlet, Dirichlet conditions were applied to the 
pressure, and Neumann type conditions to the veloc-
ity and turbulent viscosity. For the upper, lower and 
lateral faces, symmetric boundary conditions were 
applied, as they provide physically sounder spanwise 
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correlations [3]. In all the simulations the turbu-
lence intensity at the inlet is negligible, similar to 
the experimental tests. For the twin-box deck walls, 

no-slip and no-penetration boundary conditions were 
applied [30].

The mesh of choice used for the spatial discretisa-
tion of the fluid domain was a structured quadrangular 
mesh for the boundary layer region around the boxes 
and the spanwise dimension, meanwhile for the rest 
of the XY plane an unstructured quadrangular mesh 
was adopted. As in previous works by the authors [2], 
the XY plane has been subdivided in different regions 
aiming at efficiently handle the mesh density grading. 
The fundamental outline for the finite volume mesh is 
presented in Fig. 2b. Graphical details of the mesh in 

(a) (b)

Fig. 2  a Overall fluid domain and b different zones in which the XY plane mesh is subdivided. (Not to scale)

Table 1  Overall fluid domain dimensions. B is the deck width, 
and C and D are the width and height of each individual box. 
(See Fig. 2 for the graphical definition of the flow domain vari-
ables.)

Λx Λy Dx Dy Dz

15C 15C 40C + B 30C + D C

Fig. 3  Mesh discretisation 
details of the medium mesh. 
a overall fluid domain, b 
buffer zone and wake, c 
mesh around the deck and c 
boundary layer detail
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the XY plane are shown in Fig. 3. The mesh was gen-
erated using the GMSH [11] open-source tool, yield-
ing a mesh with 3,218,112 elements.

The mean y+ values obtained for the static deck 
are always below 1.25, presenting a y+ higher than 4 
only in 4.5% of the elements, hence no wall functions 
are adopted to model the boundary layer behaviour. 
These y+ values were obtained as indicated in Bruno 
et  al. [6], although in this study it is considered the 
total height of the first element of the boundary layer 
for their calculation. Moreover, all the simulations 
have been conducted imposing a maximum Courant 
number of Co = 1.0, recording data every 4 time-
steps. The time step is not constant, as it is controlled 
by the PIMPLE algorithm for enforcing Co = 1.0.

In the CFD simulations reported next, the mesh 
has been selected based on the verification study in 
Álvarez et  al. [4], where the procedure proposed 
in Celik et  al. [8] is applied. Validation of the CFD 
data with experimental tests in Kwok et al. [16] and 
Larsen et al. [17] was reported in Álvarez et al. [1]. 
In Table 2 the integral parameters for the static twin-
box deck at 0º angle of attack are provided. In Fig. 4, 
the chart of heave amplitudes response vs. reduced 
velocity shows the ability of the 3D LES simulations 
to capture the VIV-prone region for the bridge. It is 
noticeable the accuracy in the identification of the 
peak heave oscillation at U∕

(
f0B

)
= 0.35 ( f0 is the 

natural frequency of the one dimensional dynamic 
system and B the total width of the deck), which is 
adopted in Sects. 4 and 5 as application case for cor-
relation and modal analysis.

The simulations were stopped when the conver-
gence criterion defined in Bruno et al. [6], based on 
the limitation of changes in the variables of interest 
in successive time-windows, was met. This criterion 
was used for the integral parameters in the static 
simulations and for the amplitude of oscillation in the 
VIV simulations. The VIV peak amplitude simula-
tion ( U∕

(
f0B

)
= 0.35) was extended for 2879.62 non-

dimensional time units (tU/D), requiring 7.74 s/per 
core to calculate 1 non-dimensional time unit.

In this piece of research, when referring to the 
analysis of the simulations undergoing VIV oscil-
lations in heave, it is always considered the reduced 
velocity at the VIV peak amplitude response.

4  Spanwise correlations

4.1  Spanwise force coefficients correlation

The spanwise correlation of the time-dependent force 
coefficients provides information about the organisa-
tion of the vortical structures: the higher the corre-
lation value the more organised these structures are. 
Hence, it is also giving information about the inten-
sity of the fluctuating loads acting on the structure.

In Fig.  5, these correlations depending on the 
spanwise length are graphically presented for 
both the static and the vertically free-to-oscillate 
cases [1]. The static deck simulation was con-
ducted at a ReD = 4.48 ∙ 105 meanwhile the VIV 
case corresponds with the peak oscillation ampli-
tude at a reduced velocity U∕

(
f0B

)
= 0.35, and 

ReD = 3.33 ⋅ 10
3 . The force coefficients have been 

calculated by integrating the pressures over 49 equi-
spaced strips along the deck spanwise dimension.

Table 2  Integral 
parameters: Cd Cl Cm C̃d C̃l C̃m

St

Present study 0.153 − 0.260 0.206 0.027 0.202 0.090 0.244
Kwok et al. [16] 0.140 − 0.234 0.268 – – – 0.278

Fig. 4  Amplitudes of oscillation of the vertically free-to-oscil-
late simulations at different reduced velocities
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In Fig. 5, it may be noticed how the vertically free-
to-oscillate simulation presents higher correlation val-
ues than the static one. This effect can be explained 
by the reorganisation of the flow structures and vortex 
shedding fequency at lock-in due to periodic motion, 
generating more coherent spanwise structures, almost 
becoming perfectly correlated for the lift and moment 
coefficients. The increase in the correlation coeffi-
cients has been observed also in the experiments of a 
ratio 5:1 rectangular cylinder in Ricciardelli [21].

The phase-averaged correlation coefficient vs 
non-dimensional spanwise distance curves, for the 
force coefficients, are very similar among the dif-
ferent positions along the cycle of heave oscillation. 
For brevity sake, in Fig. 6 only the results for the lift 

coefficient are presented, as it is the most important 
forcing load during heave oscillations. The lower 
correlation value is attained at P1, at the oscillation 
peak (see Fig.  6c), meanwhile the maximum cor-
relation value is obtained at P7, at midway in the 
increasing heave oscillation part of the signal, when 
the deck upward velocity is at its greatest value.

In Table 3, the integral of the area under the cor-
relation coefficient curve for drag, lift and moment 
coefficients at different positions along the cycle of 
heave oscillation, relative to the perfect correlation 
case, are presented.

(a) (b)

(c)

Fig. 5  Spanwise force coefficient correlations, a drag, b lift and c moment
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4.2  Spanwise pressure correlation

The spanwise correlations of the force coefficients 
provide limited information about the general organi-
zation of the flow, falling to address the complex 
three-dimensional features associated with flow sepa-
ration, reattachment and the impinging vortices on the 
downstream deck. Conversely, the analysis of how the 
pressure coefficient correlations are distributed over 
the deck surfaces enables the deciphering of the com-
plex flow structures interacting with the twin-boxes. 
First, in Fig. 7, the convention adopted to identify the 
upper and lower surfaces in the deck, the magnitude 

convention for the curvilinear coordinate S, and the 
corner naming are depicted. These are used hereun-
der to report and discuss the pressure correlations and 
pressure modes. Note that charts correspond to the 
flow moving from left to right at 0º angle of attack.

In order to record the pressures acting on the deck 
surfaces over time, two different approaches are avail-
able in OpenFOAM: (i) defining probes location 
coordinates and (ii) saving the data associated with 
the nodes of the corresponding wall patches. The 
approach based on probes generates a single very 
large file and needs to update the probe coordinates 
when the studied object is moving. This update needs 

(a) (b)

(c)

Fig. 6  Phase-averaged spanwise lift coefficient correlations over the cycle of heave oscillation, a lift P1 to P4, b lift P5 to P8 and c 
phase-averaged oscillation cycle

Table 3  Values of the integral over the spanwise length of the phase-averaged correlation coefficient distributions with respect per-
fect correlation, at eight positions over the cycle of heave oscillation.)

Position P1 P2 P3 P4 P5 P6 P7 P8

∫ RCd

(
Δz∕D

)
d
(
Δz∕D

)
∕ ∫ 1d

(
Δz∕D

)
0.735 0.726 0.723 0.700 0.764 0.785 0.790 0.753

∫ RCl

(
Δz∕D

)
d
(
Δz∕D

)
∕ ∫ 1d

(
Δz∕D

)
0.914 0.923 0.928 0.924 0.927 0.931 0.937 0.926

∫ RCm

(
Δz∕D

)
d
(
Δz∕D

)
∕ ∫ 1d

(
Δz∕D

)
0.908 0.908 0.896 0.886 0.878 0.888 0.903 0.908
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to be done by means of an in-house script when the 
simulation has to be restarted. On the other hand, 
the approach based on the patches, needs no updat-
ing, but it generates a single file for every time-step 

stored. Therefore, in order to obtain the complete 
time-history, the data coming from multiple files has 
to be put together. HPC facilities usually have clock 
time constraints for single runs, along with limits in 

(a) Upper surfaces.

(b) Lower surfaces.

Fig. 7  Identification of the surfaces over which pressure correlation and pressure modes will be represented. (S is the curvilinear 
coordinate)

(a) Upper surfaces.

(b) Lower surfaces.

Fig. 8  Spanwise pressure correlation surface for the static deck case
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storage capacity and number of saved files. Aware-
ness about these limitations is required in order to 
choose the right approach, considering that eventu-
ally the simulation should be restarted to obtain com-
plete time-histories for the analysis of the addressed 
problem.

In Figs.  8 and 9, the spanwise pressure correla-
tion coefficient distributions are presented for the 
same cases as in Sect.  3.1, that is the static deck 
and the heave VIV case at U∕

(
f0B

)
= 0.35 (peak 

oscillation). It is to note that the values of the cor-
relation coefficients are higher over all the deck sur-
faces when the deck is undergoing vortex induced 
vibration (VIV) oscillations at U∕

(
f0B

)
= 0.35, in 

agreement with the higher correlation obtained for 
the force coefficients at VIV in Sect.  4.1 (Fig.  5). 

As reported in Álvarez et al. [2], the alternation of 
regions presenting high and low correlation coeffi-
cient values, are related with different flow regions 
based on the flow topology: separation, recircula-
tion and reattachment.

Focusing on the static case (see Fig.  8a), on the 
windward box upper surfaces, the first half accord-
ing to the curvilinear abscissa S, showing high pres-
sure coefficient correlation values, is related with 
the recirculation region. Moving downwind, the 
flow reattaches and keeps attached along the remain-
ing upwind box upper panel length, although with 
decreasing spatial coherence. The subsequent incre-
ment in the correlation coefficient values approach-
ing the vicinity of the upwind box upper trailing edge 
can be explained due to the reorganisation in the flow 

(a) Upper surfaces.

(b) Lower surfaces.

Fig. 9  Spanwise pressure correlation surface for the vertically free-to-oscillate simulation at U∕
(
f0B

)
= 0.35
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linked to the built up of vortices, previous to their 
shedding in the gap. On the other hand, a very dif-
ferent correlation distribution is appreciated over the 
upwind upper surfaces in Fig.  9a for the VIV peak 
oscillation case, where very high correlation coeffi-
cient values are found over the entire surface, mean-
ing that single flow structures develop over the whole 
deck span due to the organizing effect of the lock-in.

Shifting the attention to the upper panels of the 
downwind box, a similar disposition of regions, 
alternating high and low correlation coefficient val-
ues, is presented in the two cases studied, although 
with higher values for the one undertaking VIV. This 
means that similar flow structures are developing in 
both cases, although with higher coherence and bet-
ter organised structures in the spanwise dimension 
for the heave-excited deck at lock-in. The lower cor-
relation coefficient values in the vertical panel fac-
ing the gap are due to the impingement of the highly 
three dimensional vortices shed from the upper trail-
ing edge of the upwind box. Downwind from corner 
C7, after a strip of high correlation values linked to 
flow separation at C7 and the subsequent recircula-
tion bubble, a low correlation coefficient value region 
is found, which is associated with the time-dependent 
flow reattachment position. Downwind this reattach-
ment strip, the flow remains attached over the rest of 
the upper panel. The succession of high, low and high 
correlation coefficient values, downwind reattach-
ment, may be interpreted respectively as the effect 
caused by:

• the drifting vortices shed from the separation bub-
ble,

• their gradual dissipation,
• and the built up of vortices responsible for the 

weak vortex shedding in the wake of the down-
wind box.

Further discussions can be found in Álvarez 
et  al. [2] for the static twin-box deck, noting that in 
the aforementioned reference a different geomet-
ric scale was adopted, along with a different spatial 

discretisation in the CFD model, as well as different 
time lengths for the calculation of the correlations.

For the static simulation, as the vortices shed from 
the downwind box are much weaker than the ones 
detaching from the upwind one, the general increment 
observed in the correlation coefficient values prior to 
reaching corner C8 is also smaller than in the vicinity 
of the upwind corner C3.

Focusing now on the analysis of the lower panels 
(Figs. 8b and 9b), it can be noted that both simulations 
present very similar pressure correlation coefficient dis-
tributions; although with slightly higher values for the 
VIV at lock-in case. The correlation coefficient starts 
to decrease near corner C5, and remarkably over the 
inclined panel facing the gap due to flow separation at 
C5. On the other hand, on the windward inclined panel 
of the downwind box, the correlation coefficient values 
increase from corner C6 towards corner C10, reaching 
a maximum near C10. The reduced values in the cor-
relation coefficients in the vicinity of C6 are due to the 
impingement of the three-dimensional vortices shed 
from the upwind box, which then roll over the panel as 
the flow progresses downwind, building up near C10 
before being shed again at that same corner. Finally, 
over the lower curved panel of the downwind box, a 
flow separation bubble forms, extending downwind and 
reaching the region of low correlation values. In this 
zone, the flow is recirculating, and between this point 
and the next correlation relative maximum, reattached 
flow is taking place. Downwind, the flow separates 
from the leeward box.

4.3  Phase averaged pressure correlation

As for the force coefficients, the phase averaged pres-
sure correlation coefficients have been calculated for 
the same 8 instants along one period of oscillation, 
observing how they evolve through-out this cycle. 
In Figs.  10 and 11, the pressure correlation coef-
ficient distributions for points P1 and P7, where the 
lift coefficient presents its minimum and maximum 
correlation respectively, are shown. It can be seen in 
the figures that the distributions corresponding with 
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P1 present lower values in the correlation coefficient 
than the ones in P7. The main difference between P1 
and P7 is that in P7 the upwind box shows a larger 
surface with correlation values in the range (0.9, 1.0), 
in both the upper and lower surfaces. This helps to 

understand the important role played by the upwind 
box in the VIV response at the oscillation peak, as the 
differences in the phase-averaged correlation values 
over the down-wind box do not show distinctive fea-
tures over the oscillation cycle.

(a) Upper surfaces.

(b) Lower surfaces.

Fig. 10  Phase averaged spanwise pressure correlation surface for the vertically free-to-oscillate simulation at P1
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5  Modal decomposition of the time‑dependent 
pressure distributions

In this section, three different modal decomposi-
tion techniques, previously introduced in Sect. 2, are 
applied to shed additional light on the main features 
of the fluctuating pressure field over the surfaces of 
the deck. These decomposition methods provide tools 

for identifying the pressure footprints caused by the 
main flow structures, and each one addresses the limi-
tations of the others, so they provide a more complete 
vision of the aerodynamic or aeroelastic phenomena 
taking place. Furthermore, the modal decomposi-
tion of the pressure distributions is instrumental for 
the subsequent application in Reduced Order Models 
(ROM) for VIV risk assessment [20, 22].

(a) Upper surfaces.

(b) Lower surfaces.

Fig. 11  Phase averaged spanwise pressure correlation surface for the vertically free-to-oscillate simulation at P7
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(a) (b)

Fig. 12  Energy contribution of each mode, a cumulative and b individual

5.1  POD modal analysis

5.1.1  POD eigenvalues

POD analysis of the time-dependent pressure distri-
butions around the deck permits the identification of 
coherent structures [13], based on the regularity of 
mode shapes. In the studied case, the contribution of 
each mode to the total energy is presented in Fig. 12, 

for both the static and the VIV cases at peak oscil-
lation for comparison. It can be appreciated how the 
first mode of the peak VIV simulation contains more 
than half of the total energy of the process, which is 
nearly a 10% higher than the contribution of the first 
mode in the static case. In general, for both the static 
and peak VIV cases, the successive modes show a 
similar individual energy contribution in the process, 
as it may be perused in Fig. 12b.
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5.1.2  POD modes for the static twin‑box deck

In Figs.  13 and 14, the graphical representation of 
the first three POD modes of the pressure distribu-
tion around the static deck are presented for each box. 
The first mode (Fig.  13) contains the 44.12% of the 
total energy, meanwhile the second and third modes 
(Fig.  14) contain the 8.41% and 5.09%. According 
to Oberleithner et  al. [19], coupled modes typically 

show a similar amount of energy and pair in the POD 
spectrum; moreover, according to Taira et  al. [28], 
real-valued POD modes cannot represent travelling 
flow structures as a single mode, so they are usually 
represented by a pair of stationary POD modes, which 
are similar, but appear shifted in the advection direc-
tion, that is they are almost symmetrical with respect 
to the flow direction. For these reasons, the second 
and third modes are presented in Fig. 14, as they are 

Fig. 13  First POD mode of the static simulation. (The blue lines represent the position of the deck corners)
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Fig. 14  POD modes of the static simulation corresponding with the second POD mode (left column), and with the third POD mode 
(right column). (The blue lines represent the position of the deck corners)

(a) Upper surfaces of the upwind box.

(b) Upper surfaces of the downwind box.

(c) Lower surfaces of the upwind box.

(d) Lower surfaces of the downwind box.
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coupled, and represent the effects of the fundamental 
travelling flow structure associated with vortex shed-
ding in the pressures over the deck. It is to note that 
the amplitude of modes 1, 2 and 3 at the downwind 
box are roughly one order of magnitude higher than 
for the upwind box, showing that the most important 
processes related with the pressure field over the deck 
are taking place on the downwind box.

In Fig. 15, the spectra of the first three POD modes 
are reported, containing a broad range of frequencies. 

Although the three modes show a main peak at the 
frequency corresponding with vortex shedding, two 
superharmonic frequency peaks can be identified. As 
expected, the spectra of the second and third modes 
are very similar among them, corresponding to cou-
pled modes. It can be noticed that, as the energy con-
tent of the mode decreases, the magnitude of the peak 
frequencies in the spectra also decrease. These decre-
ments in the energy values are due to less coherent 
structures that are present in lower energy modes.

(a) (b) (c)

Fig. 15  Energy spectra from the POD modes of the static simulations: a first mode, b second mode and c third mode. ( fvs is the vor-
tex shedding frequency. D is the height of the deck and U is the wind speed)
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Fig. 16  First POD mode of the VIV simulation. (The blue lines represent the position of the deck corners)

5.1.3  POD modes at VIV peak response

The POD analysis has also been applied to the time-
dependent deck pressure fields for the free heave 
oscillation case at U∕

(
f0B

)
= 0.35. The first three 

mode shapes are depicted in Figs.  16 and 17. The 
first mode contains the 55.55% of the total energy in 
the pressure field, meanwhile the second and third 
modes present 7.37% and 6.29% respectively. Since 
the flow is better organised at lock-in, the amount of 
energy contained in the first mode is larger than in the 
static case. The geometry of the mode shape of the 

first VIV mode resembles the one of the static case, 
although the upper surface of the upwind box pre-
sents a smaller amplitude. On the other hand, the sec-
ond and third modes present a higher coherence in the 
spanwise direction when compared with their static 
counterparts. As for the static simulations, the second 
and third mode of the VIV simulations are coupled, 
and represent the effect of travelling flow structure on 
the pressure distributions over the deck. Similarly to 
the static deck case, the amplitude of modes 1, 2 and 
3 for the downwind box are significantly higher than 
for the upwind box.
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Fig. 17  POD modes of the VIV simulations corresponding with the second POD mode (left column), and with the third POD mode 
(right column). (The blue lines represent the position of the deck corners)
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In Fig. 18, the spectra of the first three modes of 
the pressure coefficient distribution undergoing VIV 
at the lock-in response are presented. It is interesting 
to note that the main frequency for mode one is the 
one corresponding with vortex shedding; meanwhile 
for modes 2 and 3, the frequency peak corresponds 
with the natural frequency of the dynamic system. 
These results are in full agreement with the study 
of the spectra of the heave oscillation and lift coeffi-
cient in the Álvarez et al. [1]. Similarly to the spectra 
obtained for the static deck case, two additional peaks 
associated with super-harmonics of the vortex shed-
ding frequency can be identified.

5.2  SPOD modal analysis

Differently form the POD approach that provides 
modes containing multiple frequency contributions, 
the SPOD analysis provides modes associated with a 
single frequency content [26]. Although their identi-
fication requires a higher computational burden with 
respect the POD analysis, they provide data for the 
whole spectra of the field under study.

In Fig. 19, the spectra of the pressure field for the 
static and VIV simulations are presented. The total 
spectra is the red line, which for each frequency is the 

(a) (b) (c)

Fig. 18  Energy spectra from the POD modes of the VIV simulations: a first mode, b second mode and c third mode. ( f0 is the natu-
ral frequency of the heave system, fvs is the vortex shedding frequency. D is the height of the deck and U is the wind speed)

Fig. 19  Energy spectra from the SPOD modes (a) static sim-
ulation and (b) VIV simulation. ( �i is the eigenvalue of the 
i mode for each frequency. i increases in the direction of the 

arrow) ( f0 is the natural frequency of the heave system, fvs is 
the vortex shedding frequency. D is the height of the deck and 
U is the wind speed)
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summation of the contribution of all the modes asso-
ciated with that frequency. The difference between 
the first and second mode in the spectra is shaded in 
orange in the figure.

It can be appreciated that the overall SPOD spec-
trum for the static simulation presents a single main 
peak corresponding with the vortex shedding fre-
quency (Fig.  19a). However, for the VIV two peaks 
are present (Fig. 19b), corresponding with the vortex 
shedding frequency, and the natural frequency of the 
system. Moreover, two super-harmonics related with 
the vortex shedding frequency are also identified, 
in agreement with the results obtained for the POD 
modes in Sect. 5.1.

According to Schmidt et  al. [26], if the eigenval-
ues of the modes for a specific frequency are well 

separated among them, the travelling structures in the 
flow may be represented by the first mode associated 
to each particular frequency. In this application case, 
the first mode associated to a certain frequency, rep-
resents the pressure footprint of the travelling struc-
tures just mentioned.

In Fig. 20, the SPOD mode associated to the first 
eigenvalue at the frequency of vortex shedding for the 
static twin-box deck is depicted. It presents similari-
ties with the first POD mode of the static simulation, 
as the main flow energy content is associated with 
vortex shedding.

For the VIV case, the modes of the two main fre-
quency peaks in the spectra associated to the first 
eigenvalue at each frequency are reported in Fig. 21. 
The one corresponding with the vortex shedding 

Fig. 20  First SPOD mode of the static simulation corresponding with the vortex shedding frequency. (The blue lines represent the 
position of the deck corners)
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Fig. 21  SPOD modes of the VIV simulations corresponding with the main peak of the spectra (left column) and with the secondary 
one (right column). (The blue lines represent the position of the deck corners)
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frequency ( fD∕U = 0.236) resembles the first POD 
mode of the VIV case (see Fig.  16), for which the 
main frequency is the one of the vortex shedding. On 
the other hand, the SPOD mode corresponding with 
the natural frequency of the system ( fD∕U = 0.190) 
does not compare in a straightforward manner as in 
the previous cases, presenting a combination of the 
features of both the second and third modes of the 
POD analysis.

Interestingly, for both the static and VIV cases, the 
SPOD mode shapes at the frequency of vortex shed-
ding show amplitudes at the downwind box roughly 
one order of magnitude higher than at the upwind 
box. On the other hand the amplitudes are similar at 
the two boxes for the SPOD mode shape at the natural 
frequency of the system. This highlights the impor-
tance of the interactions between the vortices shed 
from the upwind box and the downwind box, both in 
the static and peak VIV response cases.

5.2.1  Analysis of each individual box based 
on SPOD analysis

In the previous section, the SPOD approach has been 
applied to analyse the pressure coefficient distribu-
tions over the two deck boxes, which enables the 

)b()a(

Fig. 22  Energy spectra from the SPOD modes of the static 
simulation: a upwind box and b downwind box. ( �i is the 
eigenvalue of the i mode for each frequency. i increases in the 

direction of the arrow) ( fvs is the vortex shedding frequency. D 
is the height of the deck and U is the wind speed)

study of the general flow features around the deck. 
However, the aerodynamic response might be very 
different for each individual box, remarkably since 
the downwind box is fully immersed in the wake of 
the upwind box. To further analyse the flow aerody-
namics over the deck, the SPOD analysis has been 
applied to the time-dependent pressure distribution 
acting on each individual box. The spectra obtained 
for the static simulation are presented in Fig.  22, 
meanwhile the results for the case undergoing heave 
oscillations at U∕

(
f0B

)
= 0.35 are reported in Fig. 23. 

It can be seen how the peak frequencies are the same 
as in the global deck analysis.

For the static case, it can be noticed that the 
upwind box does not present a second super-harmonic 
vortex shedding peak (see Fig. 22a), meanwhile this 
second super-harmonic is clearly present in the down-
wind box (Fig. 22b), which shows the potential of the 
SPOD approach to deliver a better description of the 
complex flow features in this deck arrangement.

Moving now to the heave VIV excitation case, the 
second super-harmonic might be identified in both 
boxes, although this peak is very small at the upwind 
box (Fig.  23a). Moreover, it must be highlighted 
that the main frequency in the SPOD analysis of the 
upwind box is the one related with the natural heave 
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frequency (Fig. 23a), in contrast with the main peak 
at vortex shedding frequency identified for the over-
all deck and the downwind box. Moreover, in Fig. 23, 
the spectrum peaks related with the natural frequency 
of the dynamical system are almost identical for each 
individual box, but the spectrum peak corresponding 
with vortex shedding is two orders of magnitude big-
ger relative to the upwind box, and one order of mag-
nitude bigger than the natural frequency peak of the 
downwind box. Therefore, far more energy is trans-
ferred to the heave oscillation from the downwind 
box than from the upwind one, hence the oscillation 
is controlled by the downwind box. Furthermore, it is 
noticeable that the SPOD spectra for the downwind 
box (Figs. 22b and 23b) almost perfectly resemble the 
overall SPOD-based spectra for the complete deck in 
Fig. 19.

5.3  DMD modal analysis

Although the SPOD approach enables a deeper under-
standing about the frequency and energy content in 
the time-dependent pressure distributions acting on 
the deck, no information might be retrieved about 
their time evolution of the flow action on the deck. 
The DMD decomposition, provides modes containing 
a single frequency component, but also the damping 
associated with each mode [29], and enables, there-
fore, the study of the spatio-temporal evolution of 

the field under study [18]. In Fig. 24, the eigenvalues 
obtained for each mode are presented for the static 
and VIV cases. The dashed line represents a circum-
ference of unitary radius (note the different scale in 
the coordinate axes in Fig.  24 causing the elliptical 
appearance), signalling the limit between decaying 
and diverging modes. According to Jovanovi et  al. 
[14], the points inside the circumference are strongly 
damped, so these modes will only be important at the 
early stages of the time dependent process. It can be 
noticed how no points are located outside the dashed 
line, as the VIV phenomenon is a self-limited process 
[27] and no divergence of the heave oscillation will 
take place as time passes by. The DMD decomposi-
tion makes possible obtaining a spectrum that identi-
fies the modes at the initial stages and the ones in the 
long term, after the flow has evolved over time.

In Fig. 25, the energy spectra of the static and VIV 
simulations for both the early and long-term stages 
are presented. It can be noticed how at the early 
stages multiple frequencies are present in the pres-
sure field, with the maximum located at the vortex 
shedding frequency (Fig. 25a, c). On the other hand, 
when the modes have been damped, the range of 
frequencies contained in the pressure field has dras-
tically decreased. For the static case, it is restricted 
only to the vortex shedding frequency. Nevertheless, 
for the peak VIV case, the mode corresponding with 
the natural frequency of the system has not vanished, 

)b()a(

Fig. 23  Energy spectra from the SPOD modes of the VIV 
simulation: a upwind box and b downwind box. ( �i is the 
eigenvalue of the i mode for each frequency. i increases in the 

direction of the arrow) ( f0 is the natural frequency of the heave 
system, fvs is the vortex shedding frequency. D is the height of 
the deck and U is the wind speed)
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along with the vortex shedding frequency and the 
first of its super-harmonics. The amplitudes pre-
sented in Fig. 25 follow the definition given by Rosa 
Domingos [23], in which ai is the projection of the 
mode �i with respect the first snapshot of the pres-
sure field under study.

The main DMD mode of the static simulation, 
corresponding with the vortex shedding frequency 
is presented in Fig. 26. This mode resembles the first 
mode obtained from the POD analysis (Fig. 13), but 
in this case it has a single frequency component as 
in the SPOD method (see Fig.  20 for asserting the 
resemblance among modes). It may be noticed how 
the upper surfaces of the boxes are the ones showing 
higher oscillation in amplitude in the modes in the 
advection direction, associated with vortex build up 
and vortex detachment. This phenomenon can also be 
appreciated, but at a smaller scale, on the lower sur-
faces of the downwind box, associated with the weak 
vortex detached from them.

The DMD modes associated with the vortex shed-
ding frequency and the natural frequency of the 

dynamic system for the peak VIV case are presented 
in Fig.  27. The mode amplitude at the vortex shed-
ding frequency is reduced with respect to the mode 
of the static simulation, transferring this energy to 
the mode associated with the natural frequency of the 
heave oscillation system.

According to Luo et al. [18], the DMD modes, as 
the ones obtained in this study, would be represent-
ative of the macro-scale flow action on the deck, 
because they possess a high spatial coherence and 
contain a substantial part of the energy contained 
in the spectrum. In this case, we are seeing the 
effect of these flow structures over the pressure field 
around the deck. These macro-scale DMD modes 
are associated with large scale flow features, and 
hence they are related with the energy transferred 
by the flow approaching the deck, representing its 
spatio-temporal features [7] in vortex shedding and 
VIV.

The DMD approach also provides modal ampli-
tudes roughly one order of magnitude higher over 
the downwind box relative to the upwind one for the 

(a) (b)

Fig. 24  Modes eigenvalues, the darker the colour of the circles, the higher the value of the energy spectra at the initial stage. a Static 
simulation and b VIV simulation
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(a) (b)

)d()c(

Fig. 25  Energy spectra from the DMD modes, for the static 
simulations: a initial stages and b evolved stages; and the VIV 
simulations: c initial stages and d evolved stages. ( f0 is the nat-

ural frequency of the heave system, fvs is the vortex shedding 
frequency. D is the height of the deck and U is the wind speed)
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Fig. 26  DMD mode of the static simulation corresponding with the vortex shedding frequency. (The blue lines represent the posi-
tion of the deck corners)
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Fig. 27  DMD modes of the VIV simulations, related with the vortex shedding frequency (left column) and with the natural fre-
quency of the system (right column). (The blue lines represent the position of the deck corners)
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vortex shedding frequency. However for the natural 
frequency of the system in the VIV case, the ampli-
tudes of the mode are similar. This is in agreement 
with the features described for the SPOD approach.

6  Conclusions

Twin box decks show complex flow features due 
to the interplay between the flow and the parallel 
boxes, being the gap distance between them a key 
parameter. This deck typology is prone to VIV, 
and in this CFD-based research, advanced modal 
techniques and correlation analyses have been 
applied aiming at deciphering the intricacies of the 
fluid–structure interaction.

The main findings and contributions of this work 
are:

• The assessment of the correlation of the time 
dependent force coefficients has permitted a bet-
ter understanding about how the flow organisa-
tion impacts the magnitude of the flow forcing 
action. In the application case, this approach 
enabled to identify the differences in the 
flow around the static deck and the peak VIV 
response in heave.

• The application of three different modal analysis 
techniques has showcased the strong points of 
each one and the complementarity among them. 
Based on the extracted modal information, a better 
understanding about the complex interplay among 
the aerodynamic response of each box has been 
possible.

• Based upon the spectra obtained for the differ-
ent modal decomposition techniques used, it 
has been demonstrated that the main frequen-
cies governing the pressure field over the deck, 
correspond with the vortex shedding frequency 
for the static case and both, the vortex shedding 
frequency and the natural frequency of the one 
degree of freedom dynamical system for the VIV 
case. The most prominent peak for the overall 
deck at VIV is the one corresponding with the 
vortex shedding frequency, feeding energy to the 
system in order to sustain the oscillations.

• Moreover, the analysis of the SPOD spectra for 
each individual box, has permitted to identify 
the time-dependent pressure distributions around 

the downwind box as the ones controlling the 
VIV phenomenon. This is consistent with the 
accepted knowledge about the importance of the 
gap distance in the VIV response of the twin-box 
decks, taken into account that the flow around 
the upwind box is weakly affected by the gap 
distance for medium to large slots.

• The analysis of the DMD modes provided an expla-
nation for the self-limiting characteristic of VIV 
and confirmed the critical role played by the down-
wind box, in agreement with the SPOD outputs.

Finally, the successful application of these modal 
methods enables the extension of this piece of 
research in the development of reduced order mod-
els (ROM) for VIV excitation of twin-box decks in 
future research efforts.
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