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Abstract  We demonstrate that the internal forces 
and moments in a shell structure can be described by 
4 vectors in 3 dimensional space which could be used 
to express the equilibrium of a shell graphically. The 
internal forces and moments described by 2 of the 
4 vectors actively carry imposed loads and imposed 
couples, while the other 2 describe ‘redundant’ inter-
nal forces and moments that are purely in equilibrium 
with themselves. Nevertheless redundant stresses and 
moments are important in controlling internal stresses 
and satisfying boundary conditions. We show that 
forces and moments ‘flow’ across a shell in exactly 
the same way that fluid flows, with a combination 
of irrotational flow and incompressible flow. The 
aim is that these ideas can help in the initial design 
of those shell structures which have to rely on bend-
ing moments in addition to membrane action in sup-
porting loads, and also in the interpretation of results 
from an analysis using the finite element method. We 
demonstrate the use of the technique for the design 
of an umbrella structure like those built by Amancio 
Williams.

Keywords  Shells · Formfinding · Graphic statics · 
Airy stress function · Beltrami stress functions · 
Günther stress functions · Redundant forces and 
moments · Membrane theory · Pucher’s equation

1  Introduction

In the design of shell structures the aim is as far possi-
ble to carry loads by membrane action, that is tensions 
and compressions in the tangent plane to the surface, 
as opposed to bending action involving moments and 
shear forces perpendicular to the surface. However, 
there are many situations in which bending action is 
unavoidable, and the aim of this paper is to examine 
how we can deliberately include bending action in the 
design process and actively decide how we want the 
moments to act. Having produced a proposed design, 
then conventional techniques, such as the finite ele-
ment method can be used to confirm that the structure 
is indeed acting as we intended.

Some authors describe this approach as the ‘force 
method’ in which we concentrate upon finding a 
system of forces and moments in equilibrium with the 
applied loads. This system will in general include a 
set of ‘redundant’ forces and moments which carry 
no load, but the choice of redundancies is arbitrary 
and this applies to shell structures in the same way 
that it does for frameworks [29]. Having found such 
a system, including a choice of the redundancies, we 
then need to design the structure so that its stiffness 
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is appropriate for producing the distribution of forces 
and moments which we desire.

In the equilibrium theory of shell structures there 
are 6 unknown components of internal force and 6 
unknown components of internal moment. Many 
theories assume that 2 of the possible components of 
moment are zero, and 2 of the remaining components 
are equal, or equal and opposite, according to sign 
convention. However  we shall not make these 
assumptions, at least to begin with.

We have 3 equations of equilibrium of force and 
3 equations of equilibrium of moments. Thus we 
have a possible 2 × 6 = 12 unknowns and 2 × 3 = 6 
equations, so that shell structures are 6 times statically 
indeterminate, unless we make further assumptions. 
A structure is potentially statically determinate if the 
number of equations equals the number of unknowns 
and we use the word ‘potentially’ since having the 
correct number of equations does not mean we have 
a solution, particularly if we have partial differential 
equations, as is the case with shells.

We will demonstrate that these statical 
indeterminacies or redundant forces and moments 
can be expressed by 2 redundancy vectors in 3 
dimensional space, leaving 2 further vectors to 
describe the internal forces and moments that resist 
loads and loading couples. These vectors can be 
expressed graphically as surfaces in themselves, 
although interpretation of the geometry of these 
surfaces is by no means an easy task.

In addition we shall show that forces and moments 
‘flow’ across a shell in exactly the same way that fluid 
flows, with a combination of irrotational flow and 
incompressible flow. Irrotational flow is flow with 
zero mean angular velocity.

The design of structures that contain statical 
indeterminacies is always difficult, firstly in making 
often arbitrary decisions as to how forces and 
moments should travel through the structure and 
secondly in ensuring that the structure does indeed 
function as predicted taking into account creep, 
foundation settlement etc. The ideas introduced in this 
paper are intended to help understand the structural 
behaviour of shell structures which rely on bending 
moments as part of their primary structural action.

2 � Organization of the paper

In Sect.  3 we try and summarize the theoretical 
background to our work and we use this to inform our 
treatment of internal forces and internal moments in a 
shell or gridshell in Sect. 4.

In Sect.  5 we show how the internal forces and 
moments can be expressed in terms of the vectors to 
which we give the symbols � , � , � and � . We believe 
this to be the main contribution of the paper.

In Sect.  6 we introduce the analogy the flow of 
a fluid across a surface and show how this mirrors 
the flow of the Cartesian components of force and 
moment. As with all analogies this does not make 
it easier to solve the equations, but it does help in 
physical understanding, and is interesting in its own 
right.

In Sect. 7 we discuss the relationship between the 
specification of moment using � , � , � and � and its 
specification using the tensor M that is usually used.

In Sect.  8 we discuss the boundary conditions 
at a free edge, which is an important issue in the 
application of the theory. This leads on to Sect. 9 in 
which we discus a partially loaded shell and this gives 
further insights into the boundary conditions.

In Sect. 10 we show how the theory can be applied 
to the membrane theory, leading to 1 equation in 1 
unknown. In Sect.  11 we apply the theory to a flat 
plate and here the theory could be used in plastic 
design of concrete slabs using the lower bound theory.

In Sect.  12 we introduce the ‘moment surface’ 
which best represents a shell and allow this to be 
different from the ‘reference surface’ on which we 
do our calculations. This is a generalisation of the 
concept of projecting a shell onto a plane.

Finally, in Sect. 13 we apply the the theory to the 
Monumento en homenaje a Amancio Williams, a 
shell structure which relies on both membrane action 
and bending action. We use a flat surface for the 
reference surface.

3 � Theoretical background

In his paper [4] entitled The theory of shell structures: 
Aims and methods Professor Calladine writes
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The theory of shell structures is indeed a large 
subject. It has been actively studied for about 
100 yr; and the literature is enormous.
In some large subjects it is possible to discern 
a main stream of thought, perhaps associated 
with a succession of dominating personalities. 
In the field of shell structures there have been, 
and indeed still are, some dominant figures; but 
in general they appear to me to be more like 
the leaders of a collection of schismatic sects 
than a continuing chain of central authority. 
The sectarian nature of the subject springs 
partly from the fact that problems concerning 
shell structures crop up in many diverse types 
of engineering practice; and accordingly the 
stimulus and sponsorship for academic work 
has come, and still comes, from a wide range of 
sources.

and he goes on to write

One of the underlying difficulties of the subject 
lies in the fact that the basic equations of elastic 
shells are of eighth order; and they can only 
be expressed properly in terms of coordinates 
which fit the curved surface.

Some books, for example Timoshenko and 
Woinowsky-Krieger [35] and Flügge [16, 17] use 
what might be termed ‘engineering notation’ together 
with numerous complicated diagrams, although in 
the bibliography for chapter  6 in the first edition of 
his book Wilhelm Flügge gives a list of papers using 
the tensor notation which ‘establish sets of basic 
equations for shells of arbitrary shape’. However, he 
goes on to state that

The papers of this group have the merit that they 
provide an extremely general formulation of the 
theory. However, it is a long way from such 
general formulations to a solution applicable to 
a concrete engineering problem.

This neatly summarises the difficulty.
The tensor notation with subscripts and 

superscripts, as used in Green and Zerna [18] avoids 
the need for the diagrams, but is difficult to apply in 
practice, as Flügge observed. The tensor notion is not 
difficult to learn, but it does take time.

Even though different books use different 
notations, they all essentially agree on the equations 

of equilibrium of force and equilibrium of 
moments for shell structures. There is more scope 
for variation in the assumed relationship between 
deformation and strain in a shell. The Kirchhoff-
Love theory [27] of the bending of plates and shells 
is an extension of the Euler-Bernoulli beam theory 
in which plane sections are assumed to remain 
plane and perpendicular to the axis of an arch or the 
surface representing a shell. The Uflyand-Mindlin 
and Cosserat [19, 28] theories allow for the shear 
deformation of plates and shells in very much the 
same way as Timoshenko-Ehrenfest beam theory.

In this paper we are primarily interested in the 
equilibrium equations, which naturally leads to 
application of the lower bound theory of plasticity 
[14]. Professor Heyman’s application of plasticity 
theory to masonry arches and vaults is particularly 
relevant [21, 22].

As curved surface structures the theory of 
shell structures bears a close relationship with the 
differential geometry of surfaces, and here again 
books adopt different notations to describe the 
same relationships. Struik [34] uses what might be 
termed ‘elementary’ notation, whereas Eisenhart 
[15] uses tensor notation. More modern differential 
geometry books use differential forms pioneered by 
Élie Cartan [8], and it is possible that this could be 
applied to shell structures.

The application of the finite element method 
to shell structures uses the elements to interpolate 
between a finite number of nodes. This is essentially 
the same problem as surface representation in 
computer aided geometric design and the introduction 
of isogeometric analysis [10] brings the two 
disciplines together.

The application of the finite element method to the 
design of shell structures involves the generation of a 
geometric model which is then analysed in the finite 
element program. The results are studied and the the 
model is modified to try and improve the behaviour. 
This might include some automated optimization 
process, but this is no means a simple process since 
increasing the strength of over-stressed elements 
increases their stiffness, attracting more force and 
moment.

It might be argued that the best structures have a 
relatively simple mode of structural action and the 
aim of this paper is to help designers to search for 
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such a structure and interpret the results from a finite 
element analysis.

However, it should always be remembered that 
if a shell can be designed to carry load primarily by 
membrane action, then it can be very thin and prone 
to buckling. Shells are very sensitive to imperfections 
and so a linear or eigenvalue buckling analysis may 
greatly overestimate their strength [31].

4 � Internal forces and moments in a shell structure

In this section we define the tensor � describing the 
internal forces within a shell structure and the tensor 
� describing the internal moments. In a gridshell 
the internal forces and moments are concentrated 
in individual members, but this in no way negates 
the use of � and � , it just means that they have high 
values where there is a member and zero between the 
members. If we want to represent the members by 
lines in space, then � and � tend to infinity, but the 
integral across the member remains finite.

Let us imagine making a cut through the shell 
structure shown in Fig.  1 using the fret saw shown 
in Fig. 2. The cut is closed so that we could remove 

a portion of shell. We can use a reference surface S 
to describe the saw blade, so that for each point on S 
there is a corresponding curve in space describing the 
saw blade. The saw blade will often be assumed to 
be straight, and its orientation is usually assumed to 
be perpendicular to the reference surface, although in 
some circumstances it might be more appropriate to 
make it vertical.

Fig. 1   A shell structure

Fig. 2   A fret saw. Image: Gerd Fahrenhorst
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In the case of a gridshell, such as the kitchen sieve 
in Fig. 3 we have a choice of either considering each 
wire separately or ‘smoothing out’ the effects of the 
wires to produce an equivalent continuous shell.

In this paper we are primarily concerned with 
equilibrium of a shell with a fixed geometry, and 
various elastic, plastic and creep deformations and 
prestressing actions will have occurred to achieve the 
internal forces and moments within the shell. Even 
if our imaginary cut was done with a straight blade, 
subsequent deformation may mean that the cut will no 
longer be a ruled surface with straight line generators.

The blade may or may not pass through the 
corresponding point on S , but it is usually simpler to 
assume that it does.

The closed curve C on S represents the entire cut 
necessary to remove a portion of shell. We make no 
assumption that the shell is thin - that assumption 
is only necessary when analysing the stiffness and 
strength properties of the shell.

The reference surface is arbitrary, and it would 
usually be chosen to ‘best represent’ the shell.

There will be an element of force df and moment 
dm crossing the element of cut represented by the 
element of curve between the adjacent points r and 
r + dr on the curve C . dm acts about the point r , and 
since dr → 0 it makes no difference whether we take 
moments about r or r + dr , or even r + dr∕2.

However, it could be convenient to choose a 
simpler shape for the reference surface, such as 
a plane, a cylinder or a sphere. In Sect. 12 we 

discus the introduction of a second ‘moment 
surface’ and take moments about a point on this 
surface instead. For each point on S there is a 
corresponding point on the moment surface.

df and dm will depend upon dr , and also upon the 
orientation of the saw blade. Since dr → 0 the 
element of shell producing dm will be a narrow strip, 
and if the saw blade is straight and passes through 
r then dm will be about an axis perpendicular to 
the blade, that is about the horizontal if the blade 
is vertical or about axes tangential to the surface if 
the blade is normal to the surface - see Fig. 4. If the 
shell is thin compared to the radius of curvature of 
the reference surface, then the component of moment 
about an axis tangential to the surface is the same for 
both elements in Fig. 4, but the element of cut on the 
left will also produce a moment about the normal. 
The saw blade orientation clearly cannot influence 
the physical equilibrium of a shell, only our perceived 
values of moments and we shall see in Sect. 5 that the 
moment about the normal is largely a purely internal 
‘redundant’ moment, although in the case of a sieve-
like structure (Fig.  3) the moment about the normal 
due to the geodesic curvature of the members clearly 
affects the structural behaviour. These ‘geodesic 
moments’ about the normal might also be described 
as Cosserat moments [9].

We can use df and dm to define the internal forces 
� and internal moments � in the shell by

and

(1)df = (dr × n) ⋅ � = dr ⋅ (n × �) = −dr ⋅ � ⋅ �

(2)dm = (dr × n) ⋅ � = dr ⋅ (n × �) = −dr ⋅ � ⋅ �

Fig. 3   A kitchen sieve

Fig. 4   Element cut with vertical blade on the left and blade 
normal to the reference surface on the right
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in which n is the unit normal to the reference surface 
and � is the surface permutation tensor defined in 
(A3). In writing these equations we are effectively 
assuming that the shell is a continuum, although that 
does not preclude concentrations of force and moment 
in individual members. The equations apply whether 
we are in a loaded or unloaded region of shell.

Equations (1) and (2) are the definitions of � and 
� and therefore require no proof, except that it is 
implicitly assumed that a small element with constant 
� and � will be in equilibrium.

� and � are 2nd order tensors which are composed 
of the sum of tensor products of vectors. The tensor 
product uv of the vectors u and v is defined by

where w is any vector and the ⋅ represents the inner or 
scalar product. Thus uv ⋅ w is a vector in the direction 
of u , but with a magnitude (v ⋅ w) times that of u . The 
tensor product is sometimes written u⊗ v and is also 
called the dyadic product or the outer product. Scalars 
are 0th order tensors, vectors are 1st order tensors and 
by adding repeated tensor products of vectors we can 
produce tensors of any order.

Thus we can use tensor products of the Cartesian 
base vectors i , j and k to write the stress tensor in 3D 
[36] as

which has units force per unit area. However our � in 
(1) is a force per unit length of cut and � in (2) is a 
moment per unit length of cut.

The tensor properties that we shall be using are 
summarized in Appendices A and B.

Since dr × n is perpendicular to n in (1) and (2) we 
can stipulate that

without affecting the values of df and dm . In 3D a 2nd 
order tensor has 3 × 3 = 9 components. However (3) 
means that � and � each only have 6 components, of 
which 4 are tangential to the surface and 2 are normal 
to the surface.

uv ⋅ w = (uv) ⋅ w = u(v ⋅ w) and

w ⋅ uv = w ⋅ (uv) = (w ⋅ u)v

�xii + �xyij + �xzik
+ �yxji + �yjj + �yzjk
+ �zxki + �zykj + �zkk

(3)n ⋅ � = 0 and n ⋅ � = 0

We shall see in Sect.  7 how the moment can be 
specified in a way which is more familiar to engineers.

We are attempting to write equations in using a 
coordinate free notation. However coordinates are 
useful for calculations and are, of course, used in 
formulating finite elements. In their chapter 10 Green 
and Zerna [18] use n�� and q� for the 6 components of 
� , in which case we can write

There is no other way of writing � to satisfy (3), 
except, of course we could write

and

if we were so minded. Note that Green and Zerna’s 
use of n�� is in no way related to our use of n for the 
unit normal. They use a3 = a3 for the unit normal.

5 � Solution of the equilibrium equations

In this section we show how the 12 components of the 
internal forces and moments in a shell structure, � and 
� , can be expressed in terms of the 12 components of 
the vectors � , � , � and � and substitute the vectors 
into the equilibrium equations.

The equilibrium equations are derived in Appendix 
C. The reason that they are relegated to an appendix 
is that they are well known, although perhaps not 
in the form we repeat here using the ∇ (pronounced 
nabla or del) notation [37]:

for equilibrium of forces and

for equilibrium of moments. p and c are the loading 
forces and loading couples per unit area of the 
reference surface. � is the Levi-Civita permutation 
pseudotensor in 3D space defined in (A2) and (B4). 
� is related to � by (A3). � is used in performing the 
vector product and here isolates the non-symmetric 
parts of � which contribute to equilibrium of 
moments.

(4)� = n��a�a� + q�a�n.

n��a�a� = n�
⋅�
a�a

� = n⋅�
�
a�a� = n��a

�a�

q�a� = q�a
�

(5)∇ ⋅ � + p = 0

(6)∇ ⋅ � + � ∶ � + c = 0
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We could, of course, write these equations in 
component form, so that if we write � in the form (4), 
then (5) becomes

which are equations (10.4.4) and (10.4.5) in Green 
and Zerna [18]. Writing (7) starting from (4) and (5) 
is a purely mechanical process using the methods in 
Appendices A and B. The inverse process of inferring 
(5) from (7) is not so simple.

In (5) and (6) p and c are usually assumed to be 
known, and c is almost invariably taken as zero. � and 
� are the unknown internal forces and moments.

The meaning of the divergence ∇ ⋅ � and ∇ ⋅ � is 
given in (B12). The divergence is the inner product of 
the gradient in (A4) with itself. The gradient and the 
divergence are physical entities which exist entirely 
separately from any coordinate system, and so as far 
as possible coordinates should be avoided in their 
definition.

Let us now consider internal forces of the form

and moments of the form

in which I is the unit tensor, defined in (A1) and H 
is the mean curvature of the reference surface in 
(B7). � , � , � and � are vectors which will in general 
have both tangential and normal components. These 
equations automatically satisfy (3).

Equations (8) and (9) are of a very similar form 
to those in the Note Added in Proof at the end of 
Carlson’s paper on the Günther Cosserat stress 
functions [7] in 3 dimensional space in which 
he refers to equations given in a lecture given by 
Professor Schaefer in September 1965 in Augustów, 
Poland. In the case of an unloaded non-Cosserat 
material, the Günther stress functions reduce to 
the Beltrami stress functions. Schaefer’s [12, 32] 
concept of a Krustenschale (crust shell) corresponds 
to discontinuities across the shell in the Günther 
Cosserat stress functions [11, 20] in 3 dimensional 
space. However, even though the derivation of the 
equilibrium equations for a shell starting from the 

(7)

(
n��|� − b�

�
q� + p�

)
a�

+
(
b��n

�� + q�|�
)
n = 0

(8)� = � ⋅ ∇� + ∇�

(9)
� = � ⋅ ∇� + ∇�

+� ⋅ (nI − In) + � ⋅ (n� + �n)

3 dimensional equations is of great interest, it is 
probably simpler to start with the reference surface, 
even though the resulting equations should be 
identical. In addition our definition of � and � apply 
regardless of how the physical stresses vary through 
the thickness of the shell or of how thick the shell is 
- it could be very thick. All we assume is that � and � 
are the result of some integration, the details of which 
do not concern us.

The substitution (8) and (9) into the equilibrium 
equations is a pure mathematical process and is 
given in Appendix D. The equation of equilibrium of 
forces, becomes

where ∇2� = ∇ ⋅ ∇� is the Laplacian of the vector � 
and the equation of equilibrium of moments becomes

Thus we have 2 vector differential Eqs. () and (11) in 
the 2 unknown vectors � and � , assuming that p , c 
and the geometry of the reference surface are known.

We can first solve (10) for � and then solve 
(11) for � . Both these equations are Poisson [30] 
equations. In these Poisson equations the Cartesian 
components of � and � are independent so that we 
have 6 completely separate Poisson equations to 
solve.

The vectors � and � do not appear in (10) or 
(11), so they describe a redundant system of 
internal forces and moments in equilibrium 
with zero applied loads and loading couples. 
The loads are resisted by the action of 
the vectors � and � which are statically 
determinate in the sense that we have the same 
number of differential equations as unknowns. 
Boundary conditions can be satisfied by a 
combination of � and � with � and � which 
we can also use to apportion loads following 
Calladine’s [5, 6] stretching action and 
bending action.
Since the only the gradients of � and � appear 
in the expression for � and not at all in the 
expression for � we can allow discontinuities 
in the value of � and � without introducing 
a concentration of moment or force. In other 
words, we may go around a closed path and 

(10)∇2� + p = 0

(11)∇2� + 2H� ⋅ � + c = 0.
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find that � and/or � have a different value at 
the end of the path than at the beginning.

From Eqs. (1) and (2) together with (8) and (9) we 
have

and

for the elements of force and moment crossing an 
element of cut dr . These equations show more clearly 
how the vectors � , � , � and � contribute to the force 
and moment crossing an element of cut.

It is perhaps worth noting, but not pursuing that we 
could dispense with � and write

and

in which case we automatically satisfy equilibrium 
of moments. � is the 3rd order tensor defined in (B6). 
However the equations of equilibrium of force in the 
3 Cartesian directions are now coupled via the term 
containing the mean curvature, H. Therefore we will 
not adopt this alternative. Note that the values of � , � 
and � will be different from those in (8) and (9).

6 � An analogy from fluid mechanics

In this section we shall show how Eqs.  (8) and (9) 
can be thought of as forces and moments ‘flowing’ 
across a shell structure, possibly concentrated in the 
members of a gridshell.

In the flow of fluids, such as air or water, in 2 
dimensions it is usual to express the 2 components of 
fluid velocity as

in which the scalar � is the velocity potential and 
the scalar � is the stream function which Lamb 
[26] attributes to Lagrange. If � = 0 the flow is 
incompressible and if � = 0 , the flow is irrotational, 
that is the vorticity is zero. If

(12)df = d� − dr ⋅ � ⋅ ∇�

(13)dm = d� − dr ⋅ � ⋅

(
∇� +� ⋅ (nI − In)

+� ⋅ (n� + �n)

)

� = � ⋅ ∇� − c ⋅ � + ∇� − 2H(I − nn) ⋅ �n

� = � ⋅ ∇� +� ⋅ (nI − In) + � ⋅ (n� + �n)

(14)v = � ⋅ ∇� + ∇�

then the flow is both incompressible and irrotational. 
� ⋅ ∇� = ∇� are the Cauchy-Riemann equations 
leading to analytic functions of a complex variable 
- see §62 of Lamb [26]. This applies for flow in a 
plane, but also for flow over a curved surface, if we 
assume that the layer of fluid is thin and of constant 
thickness.

We have used the symbols � and � deliberately 
because then (14) and (8) are similar, except � 
and � are scalars, whereas � and � are vectors. 
Correspondingly v is a vector and � a second order 
tensor.

We can imagine � flowing across the reference 
surface. The ‘irrotational stress’ represented by � 
carries the load whereas the ‘incompressible stress’ 
corresponding to � carries no load, corresponding to 
the fact that incompressible flow does not pick up any 
‘rain’ falling on the surface.

We can also say that the moment � in (9) flows 
across the surface with the ‘irrotational moment’ 
represented by � and the ‘incompressible moment’ 
represented by � . However, now we have additional 
moment flows represented by � and � in (9).

Finally 2 dimensional fluid flow can also be 
written as

as an alternative to (14). � and � are scalars and the 
direction of flow is tangential to the contour lines of � 
and the magnitude

The disadvantage of this approach is that it is non-
linear, but on the other hand for a known v it is easy 
to plot � by drawing streamlines parallel to the flow.

7 � Specification of moment

In this section we shall examine the way in which we 
specify the internal moments � . It is worth noting that 
if we set V = 0 in (16)(below) then

v = � ⋅ ∇� = ∇�

∇2� = 0

∇2� = 0

v = �� ⋅ ∇�

(15)|v| = �|∇� |.
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where 
√
a is given in (B3). Thus �1

⋅2
 and �2

⋅1
 are the 

components of bending moments, whereas �1
⋅1
 and 

�2
⋅2

 are the components of twisting moments. This is 
explained by the fact that in Cartesian coordinates 
the component of the sagging moment Mxx for plate 
bending acts about the y axis in an anticlockwise 
direction.

The internal moment � contains 6 independent 
components. However (9) contains 4 vectors, � , � , � 
and � making 12 components in all. The reason for 
doing this is that there is no unique way of finding 
the internal forces from the internal moments 
because the term � ∶ � in (6) is not influenced by 
a contribution to � corresponding to a symmetric 
surface tensor. However, by including � , � , � and � 
we can include all possibilities for � in (8).

It is more usual to write the 6 components of 
moment as

where M is a 2nd order surface tensor, that is a tensor 
with only surface components and V is a surface 
vector which represents the Cosserat geodesic 
moments. It is usually assumed that V = 0 and that 
M is symmetric in the theory of plates and shells [18, 
35]. If M is symmetric, then the trace tr (�) = 0.

Shell structures often have arches, cables or 
beams as boundaries. If we think of these 
elements as part of the shell, then they are 
simply concentrations of force and moment, 
which we can include in our formulation. Thus 
if we want a moment about an axis normal to 
the shell in an arch, it is simply a concentration 
of geodesic moment. If we want a torsional 
moment in an arch, it represents a concentration 
in both the symmetric and antisymmetric parts 
of M . Thus to exclude geodesic moment and 
making M symmetric means that edge arches 
have to be considered to be separate structures.

If we equate (9) and (16) we obtain

�1
⋅2
=
√
aM11

�1
⋅1
= −

√
aM12

�2
⋅2
=
√
aM21

�2
⋅1
= −

√
aM22

(16)
� = −M ⋅ � + V ⋅ (nI − In)

= −M ⋅ � − Vn

which means that

and

Thus, taking the trace of (18), and noting that 
tr (I − nn) = 3 − 1 = 2,

and so (17) gives

Thus, remembering that V is a surface vector, we can 
ensure that V = 0 by setting

and we can ensure that M is symmetric by setting

Thus we can ensure that the geodesic moments 
represented by V are zero and that M is 
symmetric purely by adjusting � , regardless of 
the values of � , � and �.
However, this does not necessarily mean that 
we have satisfied the boundary conditions.

We can also write (18) as

so that

� ⋅ ∇� + ∇� + � ⋅ (n� + �n)
= −M ⋅ � + (V −�) ⋅ (nI − In)

(17)(� ⋅ ∇� + ∇�) ⋅ n + � ⋅ � = −(V −�) ⋅ (I − nn)

(18)
(� ⋅ ∇� + ∇�) ⋅ (I − nn) + (� ⋅ n)�

= −M ⋅ � + ((V −�) ⋅ n)(I − nn).

−� ∶ ∇� + ∇ ⋅ � = M ∶ � + 2(V −�) ⋅ n.

−(V −�) = (� ⋅ ∇� + ∇�) ⋅ n + � ⋅ �

−
1

2
(−� ∶ ∇� + ∇ ⋅ � −M ∶ �)n.

� ⋅ (I − nn) = (� ⋅ ∇� + ∇�) ⋅ n + � ⋅ �

(19)� ⋅ n = −
1

2
(−� ∶ ∇� + ∇ ⋅ �).

(� ⋅ ∇� + ∇�) ⋅ � − (� ⋅ n)(I − nn)

= M + ((V −�) ⋅ n)�

1
2
(

M +MT) = 1
2
� ⋅

(

∇� + (∇�)T
)

⋅ �

+ 1
2
(

∇� ⋅ � + (∇� ⋅ �)T
)

− (� ⋅ n)(I − nn)
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which applies regardless of whether V = 0 or M is 
symmetric. The superscript T is the transpose. The 
solution of this equation for � , assuming M , � and 
� are known, is the same as the problem of finding 
the velocity of a surface for a given rate of membrane 
strain [18]. To find the velocity we have to introduce 
another unknown, which is the mean angular velocity 
and first solve for that. This is equivalent to what we 
do in Sect. 10.

8 � Boundary conditions at a free edge

Timoshenko and Woinowsky-Krieger [35] discuss 
the boundary conditions at a free edge of an elastic 
flat plate in §22 of chapter 4. They use the Kirchhoff-
Love theory of plates leading to a non-homogeneous 
biharmonic equation, which only allows 2 boundary 
conditions at a free edge, whereas there are 2 
components of moment and one of vertical shear 
force.

This problem can be overcome using virtual 
work, or better puissance virtuelle (virtual power) 
using velocities and angular velocities because the 
equation applies to increments of what may be large 
displacements or rotations. The puissance virtuelle 
of the twisting moments and vertical shear force are 
combined since the angular velocity of the boundary 
curve is not independent of its velocity.

These considerations apply equally to shells. 
However we do not need to go through this process 
of reducing the boundary conditions because we are 
not making the assumptions of the Kirchhoff-Love 
theory.

Equations (12) and (13) apply equally to an 
element dr along a boundary. Along a free boundary 
we have df = 0 , which can be satisfied by an 
appropriate choice of � and dm = 0 , which can be 
satisfied by an appropriate choice of �.

We may have edge elements, such as arches 
or beams, which simply correspond to 
concentrations of stress and moment. If we 
imagine a ‘ghost shell’ attached to the boundary, 
then a step change in � between the real shell 
and the ghost shell gives a concentrated force in 
the edge element and a step change in � gives a 
concentrated moment.

We also need to think about the boundary 
conditions that we use in solving the Poisson 
equations (10) and (11). In fact we can choose 
whatever we like, either the values of � and 
� to give Dirichlet problems, or their normal 
derivatives to give Neumann problems, or some 
mixture of the two. In heat flow a specified 
temperature corresponds to a Dirichlet boundary, 
whereas an insulator corresponds to a Neumann 
boundary. The reason that we can choose whatever 
we like is that we can then satisfy the physical 
boundary conditions using � and �.

Examination of (12) shows that it makes sense 
to use the Neumann boundary condition and set the 
normal derivative of � to zero. This corresponds to 
a ‘force insulator’ ensuring that no load flows across 
the free edge. Then we simply have � = constant 
along a free edge.

It also makes sense to set the normal derivative of 
� to zero in (13), but we still have to find � because � 
and � will not be zero.

9 � A partially loaded shell

Figure  5 shows a shell which is only loaded in the 
shaded areas and unloaded elsewhere. In the unloaded 
regions p = 0 and c = 0 so that (10) and (11) become

and

The discussion in Sect.  8 tells us that we can set 
� = constant and � = constant in an area which is 
in direct contact with a free edge, provided that we 
also apply the same conditions to the boundaries of 
the loaded areas, effectively surrounding the loaded 
areas with their own edge beams.

Thus (12) and (13) become

so that

and

∇2� = 0

∇2� + 2H� ⋅ � = 0.

df = d�

(20)f = �
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The integral ∫ df = 0 for C1 in Fig. 5 because it does 
not surround any load. However for C2 the integral 
∫ df must be equal to minus the load contained within 
the curve. This means that we have a discontinuity in 
� , but no discontinuity in ∇� . This discontinuity in 
� does not correspond to a real concentrated force. 
This might seem strange, but the reason is that we 
have to imagine some fictitious ‘loading framework’ 
which applies the loads and it is that that carries the 
force due to the discontinuity in �.

A similar consideration applies to the moment, 
where now the discontinuity in � corresponds to the 
moment in the loading frame.

However, it may well be easier to instead include 
the unloaded areas in the solution of the Poisson 
equations for � and � , which avoids the discontinuities 
in � and � , and also the need for the fictitious edge 
beams surrounding the loaded areas.

Equations equivalent to (20) and (21) were 
presented in a previous paper [1]. However the 
previous paper did not include � and � and so require 

(21)
dm = d� − dr ⋅ � ⋅ (� ⋅ (nI − In))

= d� − dr ⋅ (� ⋅ (n� + �n)).

the discontinuities in � and � to transmit a load 
through an unloaded region.

10 � Membrane stress

In this theory we discuss the membrane theory. As 
we stated in Sect. 1, the aim is always to ensure that 
shells act primarily by membrane action whenever 
possible.

The membrane theory of shells assumes that the 
applied loading couples c and internal moments � are 
both zero. It therefore follows from (6) that � ∶ � = 0 
so that the internal force tensor is a symmetric surface 
tensor. Using (D3) (8) becomes

so that

We now need to solve these equations for � , 
assuming that we have already solved the equilibrium 

∇ ⋅�n − ∇� ⋅ n + ∇� ∶ � = 0

∇ ⋅� + ∇� ∶ � = 0

−∇� ⋅ n + � ⋅ ∇� ⋅ n = 0.

Fig. 5   Partially loaded shell, loaded areas are shown shaded and curve C
2
 surrounds load, while C

1
 and C

2
 do not
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equation for � . In order to do this let us write � in 
terms of its tangential and normal components as

where

Then

where H is the mean curvature (B7), and

We can now use (B9) to write

where K is the Gaussian curvature.
We can now substitute for �̃ in (23) to give

which is 1 equation in the 1 unknown � from which 
we can calculate � . This approach has to be modified 
when K = 0.

The differential equation is elliptic if K > 0 and 
hyperbolic if K < 0 , and this explains why shells 
with positive or negative Gaussian curvature behave 
so differently. Shells made of developable surfaces 
with K = 0 , such as cylindrical shells, require a 
parabolic differential equation to be solved.

An elliptic partial differential equation requires 
one condition all the way around the boundary and 
examples include Laplace’s equation and Poisson’s 
equation. In the membrane theory this means that 
a shell with positive Gaussian curvature requires a 
support all the way around, unless the shape of the 
shell is such that it is funicular for a particular load. 
The easiest way to find funicular shapes is to use 
hanging models in tension which are then inverted 

(22)� = �̃ + �n

�̃ ⋅ n = 0.

(23)
∇ ⋅� = ∇ ⋅ �̃ + ∇ ⋅ (�n)

= ∇ ⋅ �̃ − 2H� = −∇� ∶ �

∇� ⋅ n = ∇�̃ ⋅ n + ∇(�n) ⋅ n

= −∇n ⋅ �̃ + ∇� = b ⋅ �̃ + ∇�

= � ⋅ ∇� ⋅ n.

K�̃ = � ⋅ b ⋅ � ⋅ (∇� − � ⋅ ∇� ⋅ n)

= � ⋅ b ⋅ � ⋅ ∇� + � ⋅ b ⋅ ∇� ⋅ n.

∇ ⋅

(
1

K
� ⋅ b ⋅ � ⋅ ∇�

)
− 2H�

= −∇ ⋅

(
1

K
� ⋅ b ⋅ ∇� ⋅ n

)
− ∇� ∶ �

to form compression shells, as was done by Antoni 
Gaudí, Heinz Isler and Frei Otto [2].

A hyperbolic partial differential equation 
requires two boundary conditions around part 
of the boundary. An example includes the wave 
equation for a vibrating string in which the lateral 
displacement, y, is a function of x and time, t. We 
have to specify the initial shape and initial velocity 
along the boundary t = 0 . Waves will travel along 
the string with a wave speed c which correspond to 
lines in (x, t) space. The equivalent to these lines for 
a membrane shell are the asymptotic lines which 
are in the directions of zero normal curvature [34]. 
For a shell with negative Gaussian curvature to be 
able to carry all loads by membrane action each 
asymptotic line must have one end attached to a 
boundary. If both ends are connected to a boundary, 
then the structure is statically indeterminate and 
can be prestressed. Of course, structures which are 
mechanisms like cable nets and tensegrity structures 
can also be prestressed, but only if they have the 
correct geometry [3].

Shells with zero Gaussian curvature share some 
of the properties of shells with positive Gaussian 
curvature and some of the properties of shells with 
negative Gaussian curvature. Shell whose Gaussian 
curvature change from positive to negative are more 
complicated.

In Sect. 12 we shall derive Pucher’s equation which 
is an alternative way of solving the membrane equations 
for equilibrium. The form of the equation-elliptic, 
parabolic or hyperbolic is the same in both cases.

11 � A flat plate

In this section we discuss the application of our theory 
to flat plates, which is the simplest special case of a 
surface structure containing bending moments.

A flat plate is simply a shell whose normal is in a 
constant direction given by the unit vector k . The 
equilibrium Eqs. (5) and (6) are unchanged, as are the 
stresses and moments in (8) and (9), except for the 
substitution of k for n , which we also have to do for � 
in (A3), which means that ∇� = 0 . Clearly the mean 
curvature of a flat plate, H, is zero.

We shall use the words ‘vertical’ for the direction 
of k and ‘horizontal’ for directions perpendicular 
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to k , even though the flat plate may have a different 
orientation, as wall for example.

As the equivalent of (22) we will write

where

We will assume that the loading couples c = 0 and so 
(8) becomes

in which we have introduced the horizontal vector Z 
and set H = 0 so that (11) is satisfied by � = 0 for a 
flat plate. Equation (9) becomes

If there is no horizontal loading on the plate, then 
�̃ = 0 , and if there are no geodesic moments, then 
� ⋅ k = 0 and

and

so that � is the Airy stress function [36].
We will now concentrate on vertical equilibrium of 

forces and moments about horizontal axes. The lower 
bound theorem of plasticity was applied to the design 
of slabs by Hillerborg [23, 24] and in applying the 
lower bound or ‘safe’ theorem we are only required to 
satisfy equilibrium and not violate the yield condition 
for the slab in bending. Johansen’s yield line theory 
[25] is the equivalent upper bound method, but we 
are concentrating on equilibrium corresponding to the 
lower bound method.

Using (16) we can rewrite the moments about 
horizontal axes from (26) as

The vertical shear force is described by Z in (25), 
which can also be written

� = �̃ + �k

�̃ ⋅ k = 0.

(24)� ⋅ (I − kk) = � ⋅ ∇�̃ + ∇�̃

(25)Z = � ⋅ k = � ⋅ ∇� + ∇�

(26)� ⋅ (I − kk) = � ⋅ ∇�̃ + �(I − kk) + ��

(27)� ⋅ k = � ⋅ ∇� − �̃ + �̃ ⋅ �.

�̃ = � ⋅ ∇�

� ⋅ (I − kk) = � ⋅ ∇(� ⋅ ∇�) = −� ⋅ ∇∇� ⋅ �.

(28)M = � ⋅ ∇�̃ ⋅ � + �� − �(I − kk).

and the load

We can again treat Z as flow of a fluid in 2 
dimensional fluid mechanics [26] as we did in Sect. 6. 
(29) is again Poisson’s equation which we need to 
solve for � if the load per unit area p is known.

M and Z may be smoothly distributed over the 
plate or they may be concentrated in beams or ribs 
which might be curved in plan. There may be torsional 
moments in beams in which case M will not be 
symmetric, however if we do impose the condition that 
M is symmetric then (19) gives

so that

which is indeed symmetric. One could equally well 
write

and these 2 forms are equivalent in light of (B14).
Let us now write the vector �̃ as

where � and � are scalars. Then

and

so that (28) and (30) become

Z = −∇ ⋅M

(29)
p = −∇ ⋅ � ⋅ k = −∇ ⋅ Z

= ∇ ⋅ (∇ ⋅M) = −∇2�.

� =
1

2
� ∶ ∇�̃

M = � ⋅ ∇�̃ ⋅ � +
1

2
� ∶ ∇�̃� − �(I − kk)

=
1

2

(
∇�̃ +

(
∇�̃

)T
)

−
(
∇ ⋅ �̃ + �

)
(I − kk)

(30)M =
1

2
� ⋅

(
∇�̃ +

(
∇�̃

)T
)
⋅ � − �(I − kk)

�̃ = ∇� + � ⋅ ∇� = ∇� − ∇� ⋅ �

∇�̃ = ∇∇� − ∇∇� ⋅ �

∇ ⋅ �̃ = ∇2�

(31)� = −
1

2
∇2�
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and (25) becomes

We can use the identity (B14) to compare (32) with 
the equivalent expression for an elastic plate [35], 
together with the equivalents of (25) and (29). For an 
elastic plate we have

where u is the deflection of the plate, which is 
assumed to be small, D is the bending stiffness and � 
is Poisson’s ratio. The discussion in Sect. 8 explains 
how the boundary conditions for a free edge can be 
satisfied when only u and its normal derivative that 
can be adjusted.

11.1 � Principal directions and discontinuities

The only differential equation the we have is (29) for 
� in terms of the load per unit area p. In general loads 
will be distributed, but we can have line loads or point 
loads for which the load per unit area is infinite and 
are equivalent to line or point sources in the Poisson 
equation. The total load, including support reactions, 
will always be zero for overall equilibrium.

The scalar � in (32) acts very much like the 
Airy stress function and a ‘fold’ in the � surface 
corresponds to a concentrated moment acting about 
an axis perpendicular to the fold, and so the fold 
represents a beam. This corresponds to the fact that 
the principal directions of the curvature of the � 
surface and the moment are interchanged.

(32)

M = ∇∇� +
1

2
(� ⋅ ∇∇� − ∇∇� ⋅ �)

−
(
∇2� + �

)
(I − kk)

= � ⋅ ∇∇� ⋅ � +
1

2
(� ⋅ ∇∇� − ∇∇� ⋅ �)

− �(I − kk)

= � ⋅ ∇∇� ⋅ � + � ⋅ ∇∇�

−
1

2
∇2�� − �(I − kk)

Z = −
1

2
� ⋅ ∇

(
∇2�

)
+ ∇�.

M = D(∇∇u − �� ⋅ ∇∇u ⋅ �)

= D((1 + �)∇∇u − � tr (Q)(I − kk))

Z = −D∇ ⋅ (∇∇u)

p = D∇4u

Let us imagine that the � surface is defined locally 
by

so that the principal curvatures of the � surface are �x 
in the x direction and �y in the y direction.

Then

and so the principal values of that part of the moment 
due to � are at 45◦ to those of the � surface itself.

12 � A separate moment surface

In Sect. 4 we discussed the introduction of ‘moment 
surface’ which is distinct from the ‘reference surface’. 
The reference surface then becomes a map which we 
use to refer to points on the moment surface which 
better represents the shape of the shell. We can 
choose a simple shape for the reference surface upon 
which we do our calculations, typically a plane, pro-
vided that we take into account the change of lever 
arm when we take moments.

In Eqs. (1) and (2), which we repeat again here,

� = �x
x2

2
+ �y

y2

2

1

2
(� ⋅ ∇∇� − ∇∇� ⋅ �) =

(
�y − �x

)
(ij + ji)

(1)df = (dr × n) ⋅ � = dr ⋅ (n × �) = −dr ⋅ � ⋅ �

(2)dm = (dr × n) ⋅ � = dr ⋅ (n × �) = −dr ⋅ � ⋅ �

Fig. 6   Separate moment and reference surfaces
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the internal moment dm is acting about the point r 
on the reference surface, S , which is used to define 
the saw blade, but note that the saw blade does not 
necessarily pass through the point r . We design the 
shell to resist the element of force df and moment 
dm crossing that part of the shell corresponding to 
dr . But now let us suppose that the actual shell is 
separated from r by some distance, which might be 
large.

The point r is an arbitrary point on the cut 
represented by the arbitrary curve C on the surface S . 
Thus r is an arbitrary point on S and in the following 
which shall write ‘on r ’ to mean ‘on the surface S ’ to 
avoid having to introduce yet more symbols.

R is a point on the moment surface which better 
represents the shell as shown in Fig.  6. Each point 
on R = R(r) corresponds to a point on the reference 
surface r . In the figure r is on a flat surface, but as we 
stated above, it could be on some other shape.

If r is on a flat surface, then the simplest thing to 
do would be to have R vertically above r , so that R 
is defined simply by its height above r as is done in 
§10.6 of Green & Zerna [18].

Let us suppose that d
R
m is the moment acting about 

the point R on the moment surface then

where the tensor representing moments is

in which � and � are given by (8) and (9).
Note that we use (dr × n) ⋅ � and not (dR × N) ⋅ � , 

in which N is the unit normal to R , and so � , which 
is an uppercase upsilon, represents the moment acting 
about a point on R per unit length on r.

The loading couple c is about a point on r . The 
corresponding loading couple C about a point on R is

where p is the loading force per unit area on r . Note 
that even though C is applied on R , it is an applied 
couple per unit area on r.

d
R
m = dm + (r − R) × df

= (dr × n) ⋅ � − (dr × n) ⋅ � × (r − R)

= (dr × n) ⋅ �

(33)
� = � − � × (r − R)

= � − (�(r − R)) ∶ �

(34)C = c + (r − R) × p

We can define the gradient

which gives us the change in � on R in terms of a 
displacement dr on r.

The gradient of R tells us the displacement on R in 
terms of a displacement on r,

We can form the divergence of (33),

in which we have used the equation of equilibrium of 
force, (5) and (34).

Thus the equation of equilibrium of moments, (6), 
which we repeat here,

becomes

We could at this stage examine what happens to � , � 
and � when we are considering moments referred to 
R in (8) and (9).

However, let us instead consider a much 
simpler case and derive Pucher’s equation which is 
described in §113 of Timoshenko and Woinowsky-
Krieger [35], although our derivation is quite 
different to theirs.

Let us take r to be a flat surface, in which case 
we can use the results in Sect. 11, and let us assume 
that a point on R is a height z immediately above 
the corresponding point on r . Thus

where k is a vertical unit vector. Let us further assume 
for simplicity that there are no horizontal loads and 
so vertical loads follow the direction from R to r and 
therefore have no eccentricity.

d� = dr ⋅ ∇�

dR = dr ⋅ ∇R.

∇ ⋅ � = a� ⋅ �,�

= ∇ ⋅ � − ∇ ⋅ � × (r − R)

− a� ⋅ � ×
(
a� − a� ⋅ ∇R

)

= ∇ ⋅ � + p × (r − R)

− a� ⋅ �
((
a� − a� ⋅ ∇R

))
∶ �

= ∇ ⋅ � + c − C + � ∶ � +
(
�T

⋅ ∇R
)
∶ �

(6)∇ ⋅ � + � ∶ � + c = 0

∇ ⋅ � +
(
(∇R)T ⋅ �

)
∶ � + C = 0.

(35)R − r = zk
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Let us write �̃ = 0 and �̃ = � ⋅ ∇� in (24) and 
(25) to give

and also in (26) and (27),

so that there are no moments about a vertical axis.
Thus

and

so that equilibrium of moments is satisfied, as we 
would have expected. The vertical load per unit area 
is given by (29), p = −∇2�.

Thus far we are considering a flat plate carrying 
the load p by bending moments and vertical shear 
forces. But now let us use (33) to find the moments 
in the surface R . Substituting (36) and (37) into 
(33), and using (35),

Thus if we set � = 0 for pure membrane action, we 
have 4 equations from which we could find �̃ , � and 
� for given z and � . But it simpler to just write

so that

and therefore equilibrium of moments is satisfied by

since

Thus the load,

(36)� = −� ⋅ ∇∇� ⋅ � + (� ⋅ ∇� + ∇�)k

(37)� = � ⋅ ∇�̃ + �(I − kk) + ��

∇ ⋅ � = ∇� + ∇� ⋅ �

� ∶ � = ((� ⋅ ∇� + ∇�)k) ∶ �

= −(� ⋅ ∇� + ∇�) ⋅ � = −∇ ⋅ �

� = � ⋅ ∇�̃ + �(I − kk) + ��

+ ((−� ⋅ ∇∇� ⋅ � + (� ⋅ ∇� + ∇�)k)zk) ∶ �

= � ⋅ ∇�̃ + �(I − kk) + ��

− z(−� ⋅ ∇∇� ⋅ �) ⋅ �

= � ⋅ ∇�̃ + �(I − kk) + �� − z� ⋅ ∇∇�.

(38)� = z� ⋅ ∇∇�

∇ ⋅ � = ∇z ⋅ � ⋅ ∇∇�

� = −� ⋅ ∇∇� ⋅ � − ∇z ⋅ � ⋅ ∇∇� ⋅ �k

(�k) ∶ � = I − kk.

and in Cartesian coordinates we have the well known 
expression [35]

which is Pucher’s equation.

13 � An example

Let us imagine that we are designing a shell of a form 
similar to the Monumento en homenaje a Amancio 
Williams in Fig. 7, and that we expect it to act partly 
as a shell and partly as a plate in bending.

We can begin by considering a flat plate containing 
bending moments, vertical shear forces and horizontal 
membrane stresses. We can then project up onto the 
actual shell represented by R as described in Sect. 12.

pk = −∇ ⋅ � = ∇∇z ∶ (� ⋅ ∇∇� ⋅ �)k

= −������z|���|��k

(39)
�2�

�y2
�2z

�x2
− 2

�2�

�x�y

�2z

�x�y
+

�2�

�x2
�2z

�y2
+ p = 0

Fig. 7   Monumento en homenaje a Amancio Williams 1999, 
by Claudio Williams and Claudio Vekstein Photo: Fonds 
Amancio Williams, Centre Canadien d’Architecture, Don des 
enfants d’Amancio Williams
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The vertical force will ‘flow’ towards the column 
in exactly the same way as that for an interior bay 
of a slab supported on a square grid of columns. We 
know that the load will not be uniform because the 
concrete thickness will vary, as does the slope of the 

shell, but let us for simplicity imagine that the load p 
is constant. The solution to the Poisson equation (29), 
p = −∇2� is

in which L is the column spacing and the summation 
is obtained from rows of sinks [33] to produce the 
square grid. ℜ{} indicates the real part and i =

√
−1 . 

The summation is stopped after a finite number of 
terms.

� is plotted in Fig.  8 and this distribution for � 
is unique, except for the addition of an arbitrary 
constant, for the given loading and symmetry 
conditions. � corresponds to an isotropic moment 
and the corresponding vertical shear force flows in 
a direction perpendicular to the contour lines of � . It 
can be seen that the shear force flows parallel to the 
edges of the shell, as we would expect. However, we 
still have to satisfy the condition of zero moment on 
the free edges.

Figure 9 shows a plot of � from (31), which was 
obtained from a possible candidate for � in (32),

Unlike in Fig.  8 where the flow of shear force is 
perpendicular to the contour lines, in Fig. 9 the flow 
is parallel to the stream lines. The total shear force is 
given by the sum of the two flows. Because the flow 
is conserved in Fig. 9 this contribution to shear force 
is carrying no load.

The actual distribution of � and hence � is 
arbitrary, but Fig. 9 has the correct symmetry.

We still have to achieve zero moments on the free 
edge. Symmetry tells us that we only have bending 

� =
py2

2

−
p

2�

n=∞∑

n=−∞

ℜ

{
log

(
sin

�(x + i(y − nL)))

L

)}

� = sin
2�x

L
sin

2�y

L
sin

2�(x + y)

2L
sin

2�(x − y)

2L
.

Fig. 8   Contour lines for � . The corresponding vector field is 
normal to the contour lines

Fig. 9   Contour lines for � which we can consider as stream-
lines. The corresponding vector field is tangential to the 
streamlines

Fig. 10   � left, z centre and −p right
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moments and not twisting moments to remove and we 
could do this simply by choosing � in (32) of the form

where f () is a Fourier series chosen to balance the 
moments due to � and �.

Finally we can use the technique in Sect.  12 to 
reduce the moments by shell action. Here we have 
choice of the shell shape, given by z and the Airy 
stress function � . Figure 10 shows possible shapes for 
� , z given by

Fig.  10 also shows −p obtained from (39). As 
expected membrane action cannot support the 
corners. However it can support load towards the 
middle of the edges since there can be tension 
parallel to the edge and there is curvature in the 
direction parallel to the edge. In combining the 
effects of membrane action (that is Calladine’s 
stretching action) and bending action we can either 
think in terms of their contribution to load or in 
the contribution of membrane action in reducing 
moment, in effect using the z� ⋅ ∇∇� in (38) where 
∇∇� is the force per unit width and z is the lever arm.

Thus there is tremendous freedom in controlling 
the moments in the shell. Having decided the 
moments that we would like to achieve, we can try 
adjusting the shell thickness, introducing ribs or 
prestressing to control the moments.

In this section we have concentrated upon 
moments acting about a horizontal axis, but if desired 
the geodesic component of moment can be removed 
by adjusting � in (9) without affecting equilibrium, 
although � does affect boundary conditions.

14 � Conclusions

The design of shells which combine both bending and 
membrane actions is difficult, although their analysis 

� = f (x) + f (y)

� = −constant ×

√

1 −

(
4x2

L2
− 1

)2(
4y2

L2
− 1

)2

and

z = constant ×

√(
x2 + y2

)

L2
−

(
x2 + y2

)2

L4
.

using the finite element method presents no problem. 
The ideas in this paper enable the designer to better 
understand how bending and membrane actions can 
be combined, and also how to interpret the results of 
a finite element analysis in order to improve a design. 
As always, if a part of a structure is over stressed in 
bending, it might be better to make it thinner, rather 
than thicker, in order to send the moment somewhere 
else.

However there are real difficulties in applying the 
theory, and therefore ways of relating the theory to 
the finite element method should be investigated.

A finite element analysis will produce all the 
internal forces and moments in a shell structure, 
which will be concentrated in the members if it is 
a gridshell. The internal forces can be resolved into 
their Cartesian components,

and the internal moments can be resolved into their 
Cartesian components,

�x , �y , �z , �x , �y and �z are not strictly vector fields 
since the depend on the directions of the Cartesian 
axes, but nevertheless they are tangent to the reference 
surface, even if we have chosen the reference surface 
of a curved shell to be a flat plane.

�x , �y , �z , �x , �y and �z could then be plotted each 
using the equivalent of � and � in (15).

Finally, our understanding of shell structures is 
partly mathematical and partly qualitative as part of our 
presence in the physical world and the ideas presented 
in this paper may be of more help in the latter. As 
Marcel Proust wrote in the introduction to his 1904 
translation into French of John Ruskin’s The Bible of 
Amiens,

Mais une cathédrale n’est pas seulement une 
beauté à sentir. Si même ce n’est plus pour vous 
un enseignement à suivre, c’est du moins encore 
un livre à comprendre.

�x = � ⋅ i

�y = � ⋅ j

�z = � ⋅ k

�x = � ⋅ i

�y = � ⋅ j

�z = � ⋅ k.
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But a cathedral is not only a thing of beauty to be 
felt. It may, for you, no longer be a lesson to be 
followed, but at least it is a book to understand.
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Appendix A: Some tensor properties

There are two tensors with special significance in 3 
dimensions. Firstly there is the unit tensor I which is a 
2nd order tensor with the property

where v is any vector. In Cartesian coordinates

which is equation (33) in Chapter V of Wilson [37].
Secondly, the Levi-Civita permutation pseudotensor 

� has the property

in which u × v is the vector product of any two 
tensors. In Cartesian coordinates

(A1)v ⋅ I = I ⋅ v = v

I = ii + jj + kk

u × v = −u ⋅ � ⋅ v

and we can also use the double dot notation

to write

We shall also use the antisymmetric 2nd order 
pseudotensor known as the surface permutation 
tensor [18],

and note that while � is a constant, � is not since it 
varies with the orientation of the unit normal to the 
reference surface, n.

We also need to be able to examine how some scalar, 
vector and higher order tensor quantity, Q varies over 
our reference surface. The gradient of Q , which is 
written ∇Q is defined such that

and

for any small displacement dr on the surface. It is 
important to write the dr in front of the ∇Q because 
dr ⋅ ∇Q will not in general be the same as ∇Q ⋅ dr . 
∇Q is a tensor of order one higher than Q , so that the 
gradient of a scalar is a vector, and so on. The gradient 
is a real physical quantity and it exists independent of 
any coordinate system, and so it is preferable to avoid 
coordinates in its definition, although clearly they 
will be useful in doing calculations.

Appendix B: Tensors in curvilinear coordinates 
on a surface

If we have surface coordinates or parameters �1 and 
�2 , replacing the u and v that are often used, then

and

(A2)� = ijk + jki + kij − kji − ikj − jik

(...uv) ∶ (xy...) = ...(u ⋅ x)(v ⋅ y)...

u × v = (uv) ∶ � = v ⋅ (u ⋅ �) = � ∶ (uv).

(A3)� = � ⋅ n = n ⋅ �

(A4)dQ = dr ⋅ ∇Q

n ⋅ ∇Q = 0

(B1)a� =
�r

���
= r,�

(B2)a� = ∇��

http://creativecommons.org/licenses/by/4.0/
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are the covariant and contravariant base vectors on 
the surface respectively. Greek indices, are assumed 
to have the value 1 or 2, and in general we will use the 
notation in Green and Zerna [18], except we use n for 
the unit normal, whereas they use a3 = a3 . Because 
surfaces are curved we have to use the curvilinear 
tensor notation, rather than Cartesian tensors.

We have

and

so that

��
�
 is the Kronecker delta. The Einstein summation 

convention enables us to write

in which the summation is implied whenever the same 
index is repeated as a subscript and as a superscript.

We can use the contravariant base vectors to 
write the gradient

because then

as required.
The gradient of r itself is

which satisfies dr = dr ⋅ ∇r and n ⋅ ∇r = 0 . Using 
the summation convention we can also write

in which

a� ⋅ n = 0

a� ⋅ n = 0

d�� = dr ⋅ ∇�� =

2∑

�=1

(
a�d�

�
)
⋅ a�

a� ⋅ a
� = ��

�

= 1 if � = �

= 0 if � ≠ �.

2∑

�=1

(
a�d�

�
)
= a�d�

�

∇Q = a�
�Q

���
= a�Q,�

dQ = dr ⋅ ∇Q = d��a� ⋅ a
�Q,� = d��Q,�

∇r = I − nn

∇r = a�a� = a��a�a� = a��a
�a�

a�� are known as the coefficients of the first 
fundamental form [15, 34] or the components of the 
metric tensor because

a�� and a�� are also used for raising and lowering 
indices, so that for the vector

� in (A3) can be written in terms of its components,

which enable us to write

Therefore

which is difficult to write without having recourse to 
base vectors. We also have

and the 3rd order tensor

has the useful properties that

a�� = a� ⋅ a�

a�� = a� ⋅ a� .

dr ⋅ dr = a��d�
�d�� .

v = v�a� + vn = v�a
� + vn

v = v ⋅ n

v� = v ⋅ a� = a��v
�

v� = v ⋅ a� = a��v� .

(B3)

� = ���a
�a�

��� = −���

�11 = 0

�22 = 0

�12 = −�21 =
√
a

a = a11a22 − a2
12

(B4)� = ���
(
a�a�n + na�a� + a�na�

)
.

(B5)

� ⋅ � = ������a�a� ⋅
(
a�a�n + na�a� + a�na�

)

= −a�a
�n + a�na

�

= −(I − nn)n + a�na
�

� ⋅ � = � ⋅ � ⋅ n = −(I − nn)

(B6)� =
1

2
n� − �n

� ∶ � =
1

2
2nn − � ⋅ � = I
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and

where v is any vector.
The normal curvature tensor, or shape operator, 

b is minus the gradient of the normal,

and since

we have

so that b is a symmetric surface tensor, that is a 
symmetric tensor with no normal components. The 
covariant components of b are known as the 
coefficients of the 2nd fundamental form [15, 34]. 
Because b is symmetric we can write b = b�

�
a�a

� and 
not worry about the order of � and � . Otherwise we 
would have to write b�

⋅�
.

As a symmetric surface tensor b has 2 orthogonal 
principal directions in which the curvatures are 
equal to the principal curvatures. The mean of the 
principal curvatures is

where tr (b) is the trace of b and the product of the 
principal curvatures is the Gaussian curvature,

We also have the useful result that

which is consistent with (B8).
I and � are constant tensors and therefore their 

gradient is zero. However,

In addition to b the Christoffel symbols,

n ⋅ (v ⋅ �) = 0

b = −∇n

n ⋅ n = 1

n ⋅ a� = 0

n,� ⋅ n = 0

n,� ⋅ a� = −n ⋅ a�,� = −n ⋅ r,��

(B7)H =
1

2
b�
�
=

1

2
tr (b)

(B8)
K = �12�12

(
b11b22 − b2

12

)
= b1

1
b2
2
− b1

2
b2
1

=
1

2

(
( tr (b))2 − b ∶ b

)
= −

1

2
tr (� ⋅ b ⋅ � ⋅ b).

(B9)� ⋅ b ⋅ � ⋅ b = −K(I − nn)

(B10)∇� = ∇n ⋅ � = −b ⋅ �.

are useful in finding the gradient. Thus if we have the 
vector

then the gradient

in which

v�|� is the covariant derivative [13, 18]. They are the 
components of a tensor, even though v�

,�
 and Γ�

��
 are 

not because they do not obey the rules under a change 
of coordinates and are therefore, at least partly, a 
property of the coordinate system, rather than 
physical entities.

The covariant derivatives of a�� , a�� , ��� and ��� 
are all zero, even though none of these quantities is 
constant. This is due to the presence of the Christoffel 
symbols.

We can form the covariant derivative of higher 
order tensors, so that, for example,

Thus, if

then

The divergence,

and it is a tensor of order 2 less than ∇Q and therefore 
1 less than Q . For the vector in (B11),

Γ
�

��
= g� ⋅ a�,�

v = v�a� + vn = v�a
� + vn

v� = a� ⋅ v = a��v�

v� = a� ⋅ v = a��v
�

v = n ⋅ v

(B11)∇v = a�
((
v�|� − vb�

�

)
a� +

(
v�b�� + v|�

)
n
)

v�|� = v�
,�
+ v�Γ�

��
.

Q�
⋅�
|� = Q�

⋅�,�
+ Q

�

⋅�
Γ�
��

− Q�
⋅�
Γ
�

��
.

Q = Q�
⋅�
a�a

�n

∇Q = Q�
⋅�
|�a�a�a�n

+ Q�
⋅�
a�
(
b��na

�n + b
�

�
a�nn

−b��a�a
�a�

)
.

(B12)∇ ⋅Q = I ∶ (∇Q) = a� ⋅Q,�

∇ ⋅ v = v�|� − vb�
�
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and from (B10),

The gradient of the gradient,

and therefore,

In the special case when Q is the unit normal, n , we 
have

which are the Peterson–Mainardi–Codazzi equations 
for the surface [15, 34]. There are 6 quantities a11 , 
a12 = a21 , a22 , b11 , b12 = b21 and b22 which are 
functions of the surface coordinates �� , but which 
can be expressed in terms of the Cartesian (x, y, z) 
coordinates, which are also functions of �� . Thus 
there are 3 compatibility equations relating a�� and 
b�� , 2 of which are the Peterson–Mainardi–Codazzi 
equations, and the 3rd is Gauss’s Theorema Egregium 
[15, 34] which enables the Gaussian curvature to be 
calculated purely by measuring lengths on a surface. 
There does not seem to be a nice way of writing the 
Theorema Egregium without involving differentials 
of the Christoffel symbols, but the rate of change of 
Gaussian curvature can be written in terms of the rate 
of change of membrane strain over a surface.

Also,

and

∇ ⋅ � = −b ∶ � = 0.

∇∇Q = a�
(
a�Q,�

)
,�
= a�

(
a�
,�
Q,� + a�Q,��

)

� ∶ ∇∇Q = ���
(
a� ⋅ a

�

,�
Q,� +Q,��

)

= −���a�,� ⋅ a
�Q,� = 0.

� ∶ ∇∇n = −� ∶ ∇b = 0

∇(� ⋅ ∇Q) = a�(n ⋅ � ⋅ ∇Q),�

= a�
(
n,� ⋅ � ⋅ ∇Q + � ⋅

(
a� ⋅ ∇∇Q

))

= a�na� ⋅ b ⋅ � ⋅ ∇Q − � ⋅ ∇∇Q

(B13)

∇ ⋅ (� ⋅ ∇Q) = a� ⋅ na� ⋅ b ⋅ � ⋅ ∇Q + � ∶ ∇∇Q

= 0.

(B13) is very useful in discussing the equilibrium of 
shells.

Finally, if Q is a 2nd order surface tensor, then

where tr (Q) is the trace of Q and QT is its transpose. 
If Q is symmetric,

Appendix C: The equilibrium equations

Equilibrium of forces

Note that in this section we are effectively deriving 
the divergence theorem for our own purposes. If we 
were to assume prior knowledge of the divergence 
theorem on a surface, we could simply write down 
the equilibrium equations.

Consider the closed curve C in Fig. 1 representing 
a cut through the shell reference surface, and also 
through the shell. For convenience, let us introduce 
the second order tensor,

so that from (1) the total force crossing the cut acting 
on the portion of the shell within the cut is

Now let us imagine that we move the boundary 
slightly by an amount �� where � is a function of r 
and � is perpendicular to the surface normal. � is a 
scalar constant which will allow to tend to zero. For 
convenience we can in addition imagine that � is a 
function of r even on points on the surface not on C.

The increase in f  due to moving the boundary is

Q − � ⋅Q ⋅ � =
(
Q�� − ������Q��

)
a�a�

=
(
Q�� − ������Q

⋅�

�
a��

)
a�a�

=
(
Q�� − Q⋅�

�
a�� + Q⋅�

�
a��

)
a�a�

= Q −QT + tr (Q)(I − nn)

(B14)Q − � ⋅Q ⋅ � = tr (Q)(I − nn).

(C1)F = n × �

f = ∮C

dr ⋅ F.
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in which we have used the fact that

If p is the load on the shell per unit area of reference 
surface, including the own weight of the structure, 
then the change in load on the area contained within 
C due to the movement of C is

in which the 3rd tensor � used for the vector product is 
defined in (A2) and (B4).

For equilibrium of forces the sum of these two 
forces must be zero and therefore

(dr� − �dr) is an antisymmetric surface tensor and 
therefore it is equal to a scalar times � . Thus

so that

We can rewrite this equation using � instead of F as 
follows using (C1),

∮C

d(r + ��) ⋅ (F + �� ⋅ ∇F) − ∮C

dr ⋅ F

= � ∮C

dr ⋅ (∇� ⋅ F + � ⋅ ∇F)

= � ∮C

dr ⋅ (∇(� ⋅ F) + � ⋅ ∇F)

− � ∮C

� ⋅ (dr ⋅ ∇F)

= � ∮C

(dr� − �dr) ∶ ∇F

∮C

dr ⋅ ∇(� ⋅ F) = ∮C

d(� ⋅ F) = 0.

−� ∮C

(dr × �) ⋅ np = � ∮C

(dr�) ∶ � ⋅ np

=
1

2
� ∮C

(dr� − �dr) ∶ �p

∮C

(dr� − �dr) ∶
(
∇F +

1

2
�p
)
= 0.

� ∶
(
∇F +

1

2
�p

)
= 0

� ∶ ∇F + p = 0.

in which � ∶ (∇n ⋅ � ⋅ �) = 0 because of (3) and the 
fact that � and ∇n contain no normal components, 
whereas all the parts of � contain the normal. 
Therefore

in which the load p is usually considered to be a 
known quantity. The equation number () corresponds 
to its number in Sect. 5.

Equilibrium of moments

Again for convenience let us introduce the second 
order tensor

as we did in (C2) for � and F . Then using (1) and (2) 
the total moment about some arbitrary fixed point Y 
crossing the closed curve C is

Using the same working that we used above the 
increase in mY due to moving the boundary by �� is

The change in the moment about Y due to the 
movement of C from the applied load and loading 
couples is

� ∶ ∇(n × �) = −� ∶ ∇(n ⋅ � ⋅ �)

= −� ∶ (∇n ⋅ � ⋅ �)

− � ∶ a�
(
� ⋅ �,�

)

= −a� ⋅ � ⋅ � ⋅ �,� = a� ⋅ �,�

= ∇ ⋅ �

∇ ⋅ � + p = 0

(C2)G = n × �

mY = ∮C

dr ⋅ (G − F × (r − Y)).

(C3)� ∮C

(dr� − �dr) ∶ ∇(G − F × (r − Y))

(C4)
− � ∮C

(dr × �) ⋅ n(c − p × (r − Y))

=
1

2
� ∮C

(dr� − �dr) ∶ �(c − p × (r − Y)).
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If we add (C3) to (C4) we obtain the equation of 
equilibrium of moments,

in which the terms containing p and ∇F have 
cancelled because of equilibrium of forces and we 
have used the base vectors (B1) and (B2).

Again we can use (C1) and (C2) to rewrite this 
equation in terms of � and �,

so that

in which the equation number (6) corresponds to its 
number in Sect. 5.

Appendix D: Substitution into the equilibrium 
equations

In order to substitute (8) and (9) into the equilibrium 
equations we have firstly that

from (B13).
For the equation of equilibrium of moments we will 

need the identity

in which we have used (B5).
Finally,

0 = � ∶

(
∇(G − F × (r − Y))

+
1

2
�(c − p × (r − Y))

)

= � ∶
(
∇G − a�F × a�

)
+ c

0 = ∇ ⋅ � + � ∶
(
a�(� ⋅ �) × a�

)
+ c

= ∇ ⋅ � − a� ⋅ � × a� + c

= ∇ ⋅ � + a� ⋅ � ⋅ � ⋅ a� + c

(6)∇ ⋅ � + � ∶ � + c = 0

(D1)∇ ⋅ (� ⋅ ∇�) = 0

(D2)∇ ⋅ (� ⋅ ∇�) = 0

(D3)

(� ⋅ ∇�) ∶ �

= −∇� ∶ (� ⋅ �)

= −∇� ∶
(
−(I − nn)n + a�na

�
)

= ∇ ⋅�n − ∇� ⋅ n

= −∇ ⋅ (� ⋅ (nI − In)).

where H is the mean curvature (B7).
Substituting (8) into (5) and using (D1) gives the 

equation of equilibrium of forces,

The Laplacian of the vector � is ∇2� = ∇ ⋅ ∇�.
If we substitute (8) and (9) into (6) we obtain

and using (D2), (D3), (D4) we find that the equation 
of equilibrium of moments becomes
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