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Abstract The paper reports on the DNS results of 
the flow in co- and counter-rotating coaxial cylinders 
of aspect ratios Γ = H/(R2 −  R1) between 3.8 and 4.05, 
and radius ratio η =  R1/R2 = 0.5, with the end-walls 
rotating with the angular velocity of the inner cylin-
der Ω1. The computations are performed for a wide 
range of rotational number  RΩ = (1 − η)(Re1 +  Re2)/
(ηRe2 −  Re1), from −  1.069 to 0.0, which includes 
both the linearly unstable flows and the Rayleigh sta-
ble flows. The considered Reynolds numbers of the 
inner cylinder  Re1 = Ω1R1(R2 −  R1)/ν are up to 3000 
 (Re2 = Ω2R2(R2 −  R1)/ν). The obtained flow structures 
appearing at various stages of the laminar-turbulent 
transition and the radial profiles of statistical param-
eters are discussed in the light of the data published 
by other authors. The critical bifurcation lines are 
determined as functions of the inner and outer cylin-
der Reynolds numbers. Many interesting phenomena 
have been found.

Keywords Bifurcation phenomena · Turbulence · 
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1 Introduction

The Taylor-Couette flow (TCF)—the flow between 
two coaxial rotating cylinders—is one of the para-
digmatic systems in the physics of fluids. Many ideas 
in the field of flow instability and in the field of fully 
turbulent flow have been investigated in this simple 
configuration, perfectly suitable for both numeri-
cal and experimental investigations. Traditionally, 
TCF has been characterized by four control param-
eters: Reynolds numbers of the inner and outer cyl-
inders  Re1 = Ω1R1(R2-R1)/ν,  Re2 = Ω2R2(R2-R1)/ν, 
radius ratio η =  R1/R2, and aspect ratio Γ = H/(R2-R1), 
where Ω1, Ω2 are angular velocities of the inner and 
outer cylinders,  R1,  R2 are radiuses of the inner and 
outer cylinders, H denotes the distance between the 
end-walls and ν is kinematic viscosity. The radius 
difference  (R2-R1) is used as the length scale and 
Ω1R1 is used as the velocity scale. However, alter-
native parameters have been introduced to improve 
the understanding of observed bifurcation processes. 
Instead of Reynolds numbers  Re1 and  Re2, authors 
often use shear Reynolds number Re = 2|ηRe2 −  Re1|/
(1 + η) and rotational number  RΩ = (1-η)(Re1 +  Re2)/
(ηRe2 −  Re1)—for example, the flow is cyclonic for 
 RΩ > 0 and anti-cyclonic for  RΩ < 0. The TCF dynam-
ics strongly depends on all these parameters, as well 
as on the end-wall boundary conditions, which results 
in a large variety of observed bifurcation processes. 
In all this wealth of phenomena, two main paths lead-
ing to turbulence can be distinguished: supercritical, 
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where the sequence of bifurcations eventually leading 
to turbulence occurs, and subcritical, where the cata-
strophic route to turbulence takes place.

One of the articles which set the directions of 
the TCF studies for many years is the paper by 
Andereck, Liu, Swinney [1], where the authors 
investigated experimentally the transitional TCF in 
tall configurations (Γ = 20–48, η = 0.883), with the 
co- and counter-rotating cylinders, and with the end-
walls rotating with the angular velocity of the outer 
cylinder (in experimental investigations it means 
that the outer cylinder is attached to the end-walls). 
The authors gradually increased  Re1 with fixed  Re2, 
and analyzed the consecutive bifurcations in the 
 (Re2,  Re1) plane. They found that the laminar flow, 
known as the circular Couette flow (in which fluid 

elements follow the circular paths) is linearly unsta-
ble above the neutral line (see Fig. 1. [1]). With the 
increase of  Re1, the circular Couette flow is replaced 
by the Taylor-Couette (TC) vortices. With further 
increase of  Re1, the Taylor-Couette vortices become 
unstable themselves, which begins the transition to 
more complex states. Below the neutral line, the cir-
cular Couette flows are linearly stable, however they 
can be unstable with respect to the finite-amplitude 
disturbances. In the linearly stable cyclonic area the 
subcritical transition can occur. The linearly stable 
flows in the anti-cyclonic area are called the quasi-
Keplerian flows (these flows are characterized by 
the radially increasing angular momentum and the 
radially decreasing angular velocity).

Fig. 1  a The critical lines 
obtained for the Taylor-
Couette configurations with 
η = 0.5 in the  (Re2,  Re1) 
plane. The red symbols 
depict the neutral line 
obtained experimentally in 
[2], the blue line is the neu-
tral line obtained in [3] using 
the approximate formula, 
the black dashed lines are 
the lines of different α along 
which the present computa-
tions have been performed 
(the green solid line depicts 
α = − 0.5, the black solid line 
α = 0.0), the black symbols 
depict the appearance of the 
3D structures for particular 
α- present computations, the 
yellow segments indicate the 
critical Reynolds numbers 
of the appearance and 
disappearance of the small 
unstable area at very low 
 Re1 (the results of codi-
mension-2 point), present 
computations. b The critical 
lines in the  (RΩ, Re) plane, 
the numerical data obtained 
in [4] for η = 0.2, 0.8 and 
0.935, predictions obtained 
in [3] for η = 0.2 and 0.8, the 
present prediction obtained 
for η = 0.5 based on [3]. 
The colors are visible in the 
online version
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The research of Andereck et al. [1] was continued 
by many authors [5–8], which led to new scenarios of 
the laminar-turbulent transition. More recently, in [9] 
the authors reviewed the main features of both super-
critical and subcritical ways to turbulence in TCF.

The inviscid linear stability theory shows that the 
flow between rotating cylinders is Rayleigh stable if 
α = Ω2/Ω1 >  (R1/R2)2 or if  Re1(Re2 − ηRe1)2 > 0. The 
flow is unstable with respect to infinitesimal distur-
bances if −  1 <  RΩ < 1/η − 1. Esser, Grossmann [3] 
have derived the approximate formula for the bound-
ary of the linearly stable area in the  (RΩ, Re) plane 
for all radius ratios η (see also [10]). Based on this 
formula, the neutral stability line has been computed 
in the present paper for η = 0.5 and shown in Fig. 1b, 
together with the results obtained numerically for 
η = 0.2, 0.8 and 0.935 by Snyder [4]. We can see 
that with the increasing value of η the neutral curve 
becomes symmetrical about  RΩ = −  0.5 (α = 0.0). 
For η very close to 1.0, the stability curve diverges 
at  RΩ = 0.0 and − 1.0. For the currently considered 
configuration of η = 0.5, the neutral line diverges at 
 RΩ = 1.0 and − 1.0 (the red solid line in Fig. 1b).

The scientists’ attention has always been focused 
on the Rayleigh stable flows, with  ReΩ < −  1, due 
to their potential application to the astrophysical 
flows (the accretion discs). In the Rayleigh stable 
flow cases, the q parameter (ηq = α) is used to better 
characterize the studied phenomena. The flow cases 
limited to these with 0 < q < 2 are related to the accre-
tion discs. The accretion phenomenon requires the 
orbiting gas to be transported radially towards the 
centre of mass, which in turn requires the equivalent 
outward transport of the angular momentum. If we 
assume that the orbiting gas is laminar, the molecular 
viscosity is too weak for the accretion phenomenon 
to occur. In the common opinion of scientists, the 
flow of the orbiting gas must be turbulent, [11–19]. 
The question of the source of turbulence in such con-
figurations is still open—several mechanisms are con-
sidered, for example the turbulence via the magneto-
rotational instability, [17, 20, 21].

One of the problems discussed widely in publi-
cations is the influence of the end-wall boundary 
conditions on the bifurcation processes. With the 
assumption of infinitely long cavity, the Taylor-Cou-
ette vortices appear from a pitchfork bifurcation and 
their wavelength in the axial direction is well defined, 
[22–24]. The pitchfork bifurcation is destroyed due 

to the presence of end-walls. In the numerical inves-
tigations the periodic boundary conditions in axial 
direction are often used, or the end-walls are attached 
to the inner cylinder or to the outer cylinder. If the 
numerical studies take into account the confinement 
effect in the axial direction, and additionally, if the 
configuration is short, then the effect of such bound-
ary conditions can be large due to the energy dissi-
pation and the Ekman pumping, [25–27]. The opti-
mized rotating discs have been used to minimize the 
influence of the Ekman vortices in both experimental 
and numerical studies (including the discs divided in 
some rings, rotating with optimized rotational speed, 
see for example [28, 29]).

The aim of the research presented here is to show, 
the changes in the laminar-turbulent transition occur-
ring in the short TC configurations (with the end-
walls rotating with the rotation of inner cylinder), 
caused by changes of the governing parameters α and 
 Re1. In the TC cavities with the end-walls attached to 
the inner cylinder, the flow is directed towards higher 
radiuses along discs, and recirculates towards the 
inner cylinder. The size of so-called Ekman vortices 
and their impact on the TC flow dynamics depend 
on α. To illustrate the basic trends in the bifurcation 
phenomena occurring in the short TC configurations 
with the end-walls attached to the inner cylinder, 
computations have been performed for the cavities of 
Γ = 3.85–4.05, η = 0.5, with α = Ω2/Ω1 between − 0.5 
and 0.275, and with  Re1 up to 3000 (the computa-
tions cover the linearly unstable flows and one quasi 
Keplerian flow case). The simulations are performed 
along the  Re1 =  Re2η/α lines, for 14 different values of 
α. The author has focused on the time series, bifurca-
tion processes and changes of the meridian flows. The 
statistical quantities have also been examined. For all 
considered flow cases the large impact of the end-
walls on the flow dynamics has been observed. For α 
with values close to zero a small unsteady area con-
nected with the existence of the codimension-2 point 
has been found. To the best of the author’s knowl-
edge, this is the only research done for such configu-
rations and for the governing parameters mentioned 
above. The obtained results are discussed in the light 
of [1, 8, 16, 19, 25, 30].

The outline of the paper is as follows: the consid-
ered problem is defined and the 3D DNS algorithm 
based on the spectral collocation method is described 
shortly in Sect. 2. In Sect. 3 the obtained results are 
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presented, i.e., in Sect.  3.1 the critical lines in the 
 (Re2,  Re1) and  (RΩ, Re) planes are presented and ana-
lyzed, the counter-rotating and the co-rotating TCF 
cases are discussed in Sects. 3.2 and 3.3, respectively. 
In Sect.  3.4 the changes in meridian flows observed 
with subsequent increase of α are analyzed. The 
results are summarized in Sect. 4.

2  Numerical methods

The flow is governed by the incompressible 
Navier–Stokes equations written in the cylindri-
cal coordinates R, φ, Z. In the research the inner 
and outer cylinders rotate with the angular veloci-
ties Ω1[rad   s−1] and Ω2[rad   s−1], respectively. 
The end-walls are rotating with angular velocity 
of Ω1. The dimensionless axial and radial coor-
dinates are denoted by z = Z/(H/2), z ∈[−  1, 1], 
r = [2R −  (R2 +  R1)]/(R2-R1), r ∈[− 1, 1]. In the algo-
rithm the velocity components in the radial (U), azi-
muthal (V) and axial (W) directions are normalized 
by Ω1R2 (the dimensionless components are denoted 
by u, v, w). Time is normalized by Ω1

−1. The com-
putations are performed along the  Re1 =  Re2η/α lines, 
for 14 values of α = Ω2/Ω1 (from − 0.5 to 0.275) and 
for  Re1 up to 3000.

The DNS code is based on a pseudo-spectral Che-
byshev-Fourie approximation, [31–34]. In temporal 
approximation a projection scheme is used (based 
on backward differentiation in time). The govern-
ing equations are approximated in time by using the 
second-order semi-implicit scheme i.e., an implicit 
scheme for the diffusive terms is used and an explicit 
Adams–Bashforth scheme is used for the non-linear 
convective terms. The spatial approximation of the 
flow variables Ψ = [up, vp, wp, pp, �]T i.e., the pre-
dictors of velocity components, predictor of pressure 
and correction function ϕ (described below) is given 
in the following form:

(1a)

Ψ(ri, zj, 𝜑l, t) =

K∕2−1
∑

k=−K∕2

M
∑

m=0

N
∑

n=0

Ψ̃(t) ⋅ Tn(ri) ⋅ Tm(zj)e
ik𝜑l ,

r ∈ [−1, 1], z ∈ [−1, 1], 𝜑 ∈ [0, 2𝜋],

(1b)

ri = cos(�i∕N) i ∈ [0, ...N], zj = cos(�j∕M) j ∈ [0, ...M],

�l = 2�l∕K l ∈ [0, ..,K − 1],

where  ri and  zj are the Gauss–Lobatto collocation 
points,  Tn(ri) and  Tm(zj) are the Chebyshev polynomials 
of degrees n and m, respectively. The numbers of col-
location points in the radial, axial and azimuthal direc-
tions are depicted by N, M and K, respectively. The 
numerical procedure begins with solving the Poisson 
equation (with the Neumann boundary condition) to 
obtain the pressure predictor, then the Helmholtz equa-
tion with the appropriate boundary conditions is solved 
to obtain the velocity predictor. The predicted veloc-
ity components are corrected by taking into account 
the pressure gradient at time section (i + 1). The finally 
obtained velocity components satisfy the incompress-
ibility constraint:

with the boundary conditions Vi+1
⋅ n = Vp

⋅ n. In 
above equations δt denotes the increment of time and 
n is the normal vector. The correction of the veloc-
ity components is performed by using new param-
eter ϕ = 2δt(pi+1 −  pp)/3 computed from the Poisson 
equations

with the boundary condition ∇(�) ⋅ n = 0. The pre-
dictor of velocity components  (up,  vp,  wp), predictor 
of pressure  pp and function ϕ are computed from the 
Helmholtz equation written in the following form:

where term S contains the flow variables obtained in 
the predictor stage or during the previous iteration, q 
is a function of r (for  vp and  up) or takes the constant 
value for  (wp,  pp, ϕ). Then, Eq. (4) is expanded into 
Fourier series, and finally, the discretization in the 
radial and axial directions is carried out which leads 
to the following equations:

(2a)
3Γ ⋅ (Vi+1 − Vp)∕{[(� + 1)∕(� − 1) + 1]2�t}
= −(∇pi+1 − ∇pp),

(2b)∇ ⋅ Vi+1 = 0,

(3)Δ� = div(Vp)Γ∕[(� + 1)∕(1 − �) + 1],

(4)

Γ2
�2Ψ

�r2
+

Γ2

[(1 + �)∕(1 − �) + r]

�Ψ

�r
+

Γ2

[(1 + �)∕(1 − �) + r]2
�2Ψ

��2

+
�2Ψ

�z2
− qΨ = S,

(5)AΨ + ΨB = S
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where

In above equations (Dr)(2)
i,j
, (Dr)

(1)

i,j
, (Dz)

(2)

i,j
 are dif-

ferentiating matrices. The system of Eqs. (5) is solved 
using the diagonalization technique. The numerical 
computations are performed for the following meshes 
N = 100, M = 200, K = 50, 100, 150. The numerical 
error has been tested for α from − 0.5 up to 0.2, and for 
 Re1 = 1500–2500. In the considered ranges of  Re1 and 
α the divergence error is from  10–7 to  10–6. For the 
α = − 0.5,  Re1 = 2000 flow case, and for the mesh (100, 
150) the following values have been obtained at z = 0: 
(ΔR+)1 = 0.035, (ΔR+)2 = 0.14, (ΔZ+)1 = 0.022, 
(ΔZ+)2 = 0.357 where:

For the α = 0.2 (z = 0.0) flow case the results are as 
follows: (ΔR+)1 = 0.008, (ΔR+)2 = 0.0079; for α = 0.2 
(r = 0.0): (ΔZ+)1 = 0.082, (ΔZ+)2 = 0.261. The compu-
tations are performed for the time increment from the 
range δt = 0.001–0.005.

In order to compare the present results with those 
published in literature, velocity components are nor-
malized again by the inner wall rotation velocity Ω1R1. 
More information about the DNS algorithm can be 
found in [34–37].

(6a)Ψ = Ψ̂i,j, k = Ψ̂k(ri, zj),

(6b)S = Ŝi,j, k = Ŝk(ri, zj),

(6c)
A =Γ2(Dr)(2)i,j + Γ2(Dr)(1)i,j ∕[(� + 1)∕(� − 1) + ri]

− {qi + k2Γ2∕[(� + 1)∕(� − 1) + ri]2}�i,j,

(6d)B = (Dz)
(2)

i,j
.

(7a)
ΔR+

1 = ΔR ⋅ u�∕�, ΔR+
2 = ΔR ⋅ u�∕�, u�

= {�2[(�W∕�R)2w + (�V∕�R)2w]}
0.25,

(7b)
ΔZ+

2 = ΔZ ⋅ u�∕�, ΔZ+
1 = ΔZ ⋅ u�∕�, u�

= {�2[(�V∕�Z)2w + (�U∕�Z)2w]}
0.25,

(7c)ΔR = (H∕2Γ) ⋅ Δr, ΔZ = (H∕2) ⋅ Δz.

3  Results

3.1  The critical lines in the  (Re2,  Re1) and  (RΩ, Re) 
planes

In [1] the authors determined experimentally the 
neutral line of the linear instability area (η = 0.883), 
and the lines of the successive bifurcations appear-
ances in the  (Re2,  Re1) plane. The shape of the neu-
tral line depends on η. Figure 1a presents the η = 0.5 
neutral line in the  (Re2,  Re1) plane, obtained experi-
mentally in [2] (the red symbols), and obtained with 
the approximate formula [3] (the blue solid line). 
In Fig.  1a all lines along which the computations 
have been performed  (Re1 =  Re2η/α) are marked by 
the dashed black lines or by the colored lines. The 
critical Rayleigh line  Re1 =  Re2η/αcr is marked by 
the double black line. The studies have been con-
ducted for Reynolds numbers up to  Re1 = 3000, but 
in Fig.  1a the range of  Re1 is reduced to (−  400, 
400) to emphasize the critical lines occurring at 
lower Reynolds numbers. From Fig. 1b we can see 
that in the  (RΩ, Re) plane the unstable anti-cyclonic 
flow area for η = 0.5 occurs between  RΩ = −  1 and 
 RΩ = 0. For  RΩ < −  1 the anti-cyclonic flow is sta-
ble. The flow cases under investigation are listed in 
Table  1 with the obtained critical Reynolds num-
bers  crRe1,  crRe2 of the occurrence of the 3D flow 
structure.

3.2  The counter-rotating flow cases

3.2.1  The flow case of α = − 0.5

In this subsection we analyze the present results 
obtained from the investigations of the counter-
rotating flow case of α = −  0.5 (α = −  0.5 means 
that the computations are performed along the line 
separating the cyclonic flow from the anti-cyclonic 
flow). The detailed DNS study for α = −  0.5 has 
been carried out by Dong [8] for the same radius 
ratio η = 0.5, but with the assumption of infinitely 
long configuration (the computations for the same 
configuration have been performed also in [38]). 
His research has resulted in many interesting dis-
coveries, which are analyzed here in the light of the 
present data obtained for the short configuration of 
Γ = 4.05.
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In the present investigations, for the α = − 0.5 flow 
case, the instability process starts at about  Re1 = 185 
with a regular time series of very low frequency of 
f = 0.05 (Fig. 2a), which is connected with the appear-
ance of 2D flow structures (the frequency f is normal-
ized by the rotation of the end-walls). The meridian 
flow shows the existence of two counter-rotating TC 
vortices, between two Ekman vortices (the Ekman 
vortices transport fluid of high velocity along the end-
walls from the area near the inner cylinder towards 
the higher radiuses). However, unlike in the classic 
TCF (α = 0.0), for α = −  0.5 the TC vortices do not 
fill the entire area between the cylinders—they are 
located near the inner cylinder and in the central part 
of the cavity. The outflow boundaries of the TC vorti-
ces contain the high speed fluid which is transported 
towards higher radiuses. This transport takes place 
along two stripes located at both sides of the z = 0 line 
in the (φ, z) plane. At the beginning of the instabil-
ity process, the TC vortices are spaced regularly in 
the axial direction and the high speed fluid stripes 
are parallel (for larger  Re1 this regularity is slightly 
disturbed, see Fig. 3a). The distance between stripes 
coincides with this obtained in [8].

The first irregular time series appears at Reynolds 
number  Re1 = 232. In the time series shown in Fig. 2b 
 (Re1 = 237.5) we observe fluctuations with two differ-
ent frequencies of f = 0.05 and f = 0.14. Only in the 
time intervals where the fluctuations with higher fre-
quency (f = 0.14) occur, the flow is 3D (in the time 

intervals where the regular oscillations of f = 0.05 
occur, the flow is 2D). These 3D structures are irregu-
lar and stretched in the circumferential direction along 
the stripes of high speed fluid, see Fig. 3a. With fur-
ther increases of  Re1 (to 2500 for example), the time 
series becomes chaotic and the small-scale perturba-
tions stretched in the azimuthal direction dominate 
(the level of the flow turbulence gradually increases). 
A characteristic feature of the flow at higher  Re1 is the 
formation of groups of the small-scale disturbances: 
in the (φ, z) plane (Fig. 3b) we can see the areas in 
which the small-scale disturbances do not occur, and 
the areas in which they are densely packed. This phe-
nomenon is consistent with the description given in 
[8]. At  Re1 = 3000 the small-scale disturbances occur 
in the whole cavity, but their concentration is the larg-
est near the cylinders (the perspective view of the 3D 
flow obtained for  Re1 = 3000 is presented in Fig. 3c).

In the original Andereck, Liu, Swinney [1] dia-
gram (in the  Re2,  Re1 plane) the line  Re1 =  Re2η/α 
(α = − 0.5) runs mainly through the area described by 
the authors as “unexplored”, but close to “featureless 
turbulence”. The present study has shown that above 
 Re1 = 237.5 there are no rapid bifurcations, only a 
gradual increase of the small-scale vortices concen-
tration is observed, which ultimately leads to turbu-
lent flow. This agrees with the results presented in [1, 
8].

Figure  4a shows the radial profiles of the azi-
muthal velocity < v > t, A(R) (averaged over the time, 

Table 1  The basic flow parameters of the studied flow cases (α,  RΩ) and respective critical Reynolds numbers of the appearance of 
the 3D flow structures (the black points in Fig.1a)

α − 0.5 − 0.4 − 0.3 − 0.2 − 0.15 − 0.1 − 0.05 0.0 0.05 0.1 0.15 0.2 0.25 0.275
RΩ 0 − 0.07 − 0.15 − 0.25 − 0.30 − 0.36 − 0.43 − 0.5 − 0.58 − 0.67 − 0.76 − 0.88 − 0.1 − 1.07
crRe1 233 190 190 190 215 315 401 428 355 320 288 315 412 427.5
crRe2 − 233 − 152 − 114 − 75 − 64 − 63 − 37 0 36 64 86 126 206 235

Fig.2  The time series, a  Re1 = 205, b  Re1 = 237.5, c  Re1 = 2500. α = − 0.5, Γ = 4.05
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axial and azimuthal directions) obtained for α from 
− 0.5 up to 0.0 (the averaged values are denoted as 
follows: <…> t, A(R), [39]). In Fig. 4a the present pro-
files obtained for α = − 0.5 (marked by the blue lines, 
 Re1 = 1500, 2000, 2500) are compared with the pro-
file obtained for  Re1 = 4000 in [8] (the blue line with 
symbols, α = − 0.5). The <v> t, A(R) profiles show the 
existence of the high velocity gradient areas in the 
vicinity of the cylinders and the distinct core area in 
the middle of cavity. The increase of  Re1 causes an 
increase of the velocity gradients near the cylinders, 
decrease of the thickness of the boundary layers on 
both cylinders, and the enlargement of the central 
core. This is in agreement with the results published 
in [8].

In the TC flows between infinitely long cylin-
ders (as in [8]) the transverse current of azimuthal 
motion  JΩ (see Eq.  8, [39]) is conserved, which 
means that this parameter must be a constant across 
the cavity gap. However, this rule does not apply to 
the TC flow cases with no-slip axial boundary con-
dition. In [8] the author used the second term of 
Eq. (8), i.e. –ν∂ < (V/R) > t, A(R)/∂R, to determine the 
thickness of boundary layers at the cylinders. The 
present investigations are conducted in a very short 
cylindrical configurations (Γ up to 4.05, closed by 
the end-walls), in which the condition of constant 
 JΩ value across the cavity gap is not conserved—
the thickness of boundary layers at the cylinders 
can only be estimated based on Eq.  (8), but these 
approximate values agree with those published by 
[8]).

In the present profiles (α = −  0.5, Fig.  4a) the 
azimuthal velocity values in the core are almost 
constant and close to zero, whereas the profiles pre-
sented in [8] show a slight slope in this area. But, 
such a small slope occurs for the flow example of 
α = 0.0 (the yellow lines, Fig.  4a). The occurrence 
of profiles with a non-zero slope implies the pro-
duction of the turbulent kinetic energy in the cen-
tral core. Figure  4c shows the averaged turbulent 
kinetic energy production <P+>t, A(R) as a function 
of r obtained for α = − 0.5 and α = 0.0, and for dif-
ferent  Re1. The production, defined in Eq.  (9a), is 
normalized by  (R2-R1)/uσ

3 (see [40]), where the 
total friction velocity  uσ is computed based on 
the parameters at the inner cylinder (r = −  1). Fig-
ure  4c presents the results only near the inner 
cylinder areas, r ∈ [−  1, 0]). The results show 
that <  P+ > t, A(R) is close to zero in the central core 
(r = 0.0) for α = − 0.5, while for α = 0.0 the produc-
tion value <  P+ > t, A(R) (r = 0) is equal to about 15% 
of its peak value.

In the counter-rotating flow cases there is a 
cylindrical surface of the radius marked by R* 
in [8], with the zero averaged azimuthal veloc-
ity < v(R*) > t, A(R) = 0.0. Figure 4b shows the dimen-
sionless radius of this surface (R* −  R1)/(R2 −  R1) as 

(8)JΩ = R3[U ⋅ ∕RV − ��(V∕R)∕�R]

(9a)P+ = −R ⋅ U�V �
⋅

�(V∕R)

�R
⋅

R2 − R1

u3
�

,

(9b)u� = {�2[(�W∕�R)2
w
+ (�V∕�R)2

w
]}0.25.

Fig. 3  The flow structure obtained in the (φ, z) plane near the inner cylinder (r = − 0.8) for  Re1 = 500 (a) and for  Re1 = 2500 (b). The 
perspective view of 3D flow,  Re1 = 3000 (c). α = − 0.5, Γ = 4.05. The colors are visible in the online version
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Fig. 4  a The averaged azimuthal velocity component 
<v>t, A(R) profiles obtained for different α and for different  Re1, 
the profile with blue symbols is reconstructed from Fig.  15a 
in [8] (α = −  0.5,  Re1 = 4000, η = 0.5). b The dimensionless 
parameter (R* −  R1)/(R2 −  R1) as a function of  Re1; the red 
symbols indicate the present results obtained for α = − 0.5, the 
black dots show the reconstructed results from Fig. 15b in [8] 

(α = − 0.5, η = 0.5). c The radial profiles of the normalized tur-
bulent kinetic energy production <P+> (averaged in time, and 
in the axial and azimuthal directions) obtained for α = − 0.5 
and α = 0.0,  Re1 = 1500, 2000 and 2500 (the area adjacent to 
the inner cylinder is considered). The colors are visible in the 
online version
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a function of  Re1, obtained here and in [8]. We can 
see that the (R* −  R1)/(R2 −  R1) parameter increases 
with the increase of  Re1, but only up to a certain limit 
value, then remains at a constant level. The (R* −  R1)/
(R2 −  R1) values obtained in the present investigations 
for particular  Re1 are about 0.2 higher than those 
presented in [8], which can be attributed to the end-
walls effect. The velocity profiles < v > t, A(R) obtained 
for α = −  0.5, −  0.4, −  0.2, −  0.1 and 0.0 (Fig.  4a) 
show that (R* −  R1)/(R2 −  R1) also increases with the 
increase of α until α = 0.0, for which it has the value 
of 1.0. Such an analysis has been carried out (among 
others) in [41], where the authors have found that the 
TC vortices occur mostly in the areas of the radius 
smaller than R*, which is in agreement with the pre-
sent observations.

The radial profiles of the square root of the 
averaged Reynolds stress tensor component 
(<(v’v’)>t, A(R))0.5 and <v′u′>t, A(R) obtained for dif-
ferent α (from − 0.5 up to 0.0), and  Re1 = 1500–2500 
are presented in Fig.  5a, b, respectively. The 
(<(v′v′)>t, A(R))0.5 distributions show the two-peak 
profiles for all α—such profiles are typical for the 
bounded shear flows. At lower  Re1 (not presented in 
Fig.  5a) the velocity gradients at the cylinders are 
small, and the (<(v′v′)>t, A(R))0.5 values are relatively 
large in the core (it is the result of the large-scale vor-
tices presence in this area). For higher  Re1 = 1500, 
2000, 2500, 3000, the flow is dominated by the small-
scale disturbances occurring mostly near both cyl-
inders. The peak values of (<(v′v′)>t, A(R))0.5 in the 

profiles obtained for higher  Re1 and their locations 
are similar to those published in [8], where the pro-
files of r.m.s. azimuthal velocity fluctuations are pre-
sented. However, the present (<(v′v′)>t, A(R))0.5 values 
in the central part of the cavity are lower than those 
obtained by Dong [8] for the infinitely long cavity. 
Figure 5b shows that maximum values of the Reyn-
olds stress tensor component <u′v′>t, A(R) occur near 
the inner cylinder—there is an agreement with the 
results in [8] as to the maximum values and their loca-
tions. The present peak values show a slight increase 
with increasing Reynolds number, but this increase 
gradually disappears for higher  Re1. The existing 
tail of zero or even negative values of <u′v′>t, A(R) 
near the outer cylinder is longer in comparison with 
the results of [8]. The tail shrinks slightly with the 
increase of  Re1, but still the present <u′v′>t, A(R) val-
ues in the central part of the cavity are smaller. The 
differences between the current results obtained for 
the short configuration and those obtained in [8] can 
be attributed to the end-walls effect.

3.2.2  The flow cases of α = (− 0.4) − (− 0.3)

The flow structures obtained for α = −  0.5 are sub-
stantially different from those observed for α from 
− 0.4 up to 0.0. In the α = − 0.4, − 0.3 flow cases, two 
TC vortices exist between the Ekman vortices (as in 
the α = − 0.5 flow case), and again these large-scale 
vortices do not fill the entire space between cylinders 
(see Fig.  4a), however, in many aspects these flow 

Fig. 5  The averaged radial profiles of (< (v′v′)>t, A(R))0.5 (a) and <u′v′>t, A(R) (b), obtained for  Re1 = 1500, 2000 and 2500, and for 
different α. The colors are visible in the online version
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cases differ from α = − 0.5. For α = − 0.4 and − 0.3, 
the 3D structures appear at about  Re1 = 190 with the 
smooth increase of regular oscillations of the fre-
quency about f = 0.44–0.5. The appearance of these 
waves is accompanied by three regular structures 
observed in the azimuthal direction, asymmetrically 
located with respect to the z = 0.0 line (see Fig.  6a, 
α = − 0.4,  Re1 = 235). The structures are located in 
the vicinity of two narrow stripes along which the 
high speed fluid is transported by the TC vortices 
from the inner cylinder area to higher radiuses. Fig-
ure 6b shows the flow structure in the meridian sec-
tion (we can see two TC vortices between the Ekman 
vortices, regularly distributed in the axial direction). 
In the flow case of α = −  0.5, the 3D structures are 
also formed in the vicinity of the stripes of high speed 
fluid, but they are irregular and stretched in the azi-
muthal direction.

The flow structures obtained for α = −  0.4 and 
−  0.3 are similar to those obtained experimentally 
in [1] (η = 0.883,  Re1 = 350,  Re2 = −  100), where 
the authors have found 6–7 waves around the annu-
lus. In [42] the authors have found numerically 5 

waves in the cavity of η = 0.75, Γ = 6, with the end-
walls attached to the outer cylinder  (Re1 = 750, 
 Re2 = −  250). They proposed the following for-
mula to measure the wave speed in the TC con-
figurations with independently rotating cylinders: 
γ = [f(1 + η)/2k − α]/(η − α), where k is the number of 
vortices in the azimuthal direction (see Fig. 1 in [42]). 
Figure  7 includes the data reconstructed from [42] 
(this includes the results obtained in [43–45]), and 
the present results: γ = 0.56 (α = − 0.4, k = 3, f = 0.44, 
Γ = 3.95, the red dot) and γ = 0.45 (α = −  0.2, k = 3, 

Fig. 6  The flow structures: 
a in the (φ, z) plane, r = 0.0, 
 Re1 = 235, b in the merid-
ian section,  Re1 = 235, c 
in the (φ, z) plane, r = 0.0, 
 Re1 = 2500, d in the merid-
ian section,  Re1 = 2500, 
e the axial profiles of the 
turbulence kinetic energy 
normalized by squared total 
friction velocity at the disc 
(denoted by k), obtained in 
the middle section of the 
cavity (r = 0) for different 
 Re1 (the top part of the cav-
ity is presented). α = − 0.4. 
The colors are visible in the 
online version

Fig. 7  The wave speed parameter γ as a function of aspect 
ratio Γ. The present results are marked by the red and blue 
symbols. The remaining results are reconstructed from Fig. 2 
in [42]. The colors are visible in the online version
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Γ = 4.025, f = 0.46, γ = 0.45, the blue dot). We can see 
that the value obtained for α = − 0.2 (γ = 0.45) agrees 
well with the result obtained in [44]. Generally, the 
results presented in Fig. 7 show large variation.

With further increase of  Re1, the period doubling 
phenomenon appears and the amplitudes of oscilla-
tions become irregular and finally chaotic (at about 
 Re1 = 500). In Fig. 6c, we can see the turbulent flow 
structure obtained for α = −  0.4 in the (φ, z) plane 
 (Re1 = 2500, r = 0.0), and Fig.  6d presents the cor-
responding flow in the meridian section. The merid-
ian flow shows two dominant Ekman vortices, which 
occupy a large part of the cavity, and some smaller 
structures near the z = 0.0 line. In order to better 
characterize the distribution of the turbulence in the 
meridian section, in Fig.  6e the axial profiles of the 
turbulence kinetic energy (normalized by the squared 
total friction velocity at the disc) obtained for differ-
ent  Re1 are presened. We can see that the smallest 
values occur in the vicinity of the rotating end-wall.

3.2.3  The flow cases of α = (− 0.2) − (− 0.15)

For α = − 0.2 and − 0.15, the 3D structures appear 
at about  Re1 = 190 and 212, respectively, together 
with the regular oscillations of frequency 0.46 and 
0.44. However, the influence of the rotating outer 
cylinder becomes weaker in comparison with the 
α = − 0.5 flow case, which results in the appearance 
of only one counter-rotating vortex between the 
Ekman vortices. In contrast to the flow examples of 
α = − 0.5, − 0.4 and − 0.3, for α = − 0.2 and − 0.15 
the TC vortex fills almost the entire area between 
the cylinders—the (R* −  R1)/(R2 −  R1) parameter is 
close to 1.0. The example 3D flow structures in the 
(φ, z) plane obtained for α = −  0.2,  Re1 = 210 are 
presented in Fig. 8. For higher  Re1, the strong mod-
ulation occurs and the regularity of the structures 
gradually fades away. The time series become cha-
otic at about  Re1 = 500 and the small-scale vortices 
begin to dominate in the vicinity of the cylinders.

3.2.4  The flow cases of α = (− 0.1) − (− 0.05)

With the further increase of α (up to −  0.1 and 
−  0.05) rapid changes are observed. For α = −  0.1, 
at the beginning of the instability process one coun-
ter-rotating TC vortex occurs. The first instability 

wave of very low frequency f = 0.006 appears at 
 Re1 = 257.5 and at  Re1 = 267 the transition to a new 
wave, with an extremely irregular time series, takes 
place. At  Re1 = 267 the 3D structure emerges (of 
the wave number 1, see Fig.  9a) in the central part 
of cavity (this structure resembles this occurring for 
α = 0.0 at very low  Re1, which is connected with the 
codimension-2 point, [37]). With  Re1 above 267, the 
TC vortex fades gradually to disappear at  Re1 = 320. 
Above  Re1 = 320 the time series become regular, with 
the oscillations of frequency 0.55, and simultaneously 
two 3D vortices appear, asymmetrically located with 
respect to the z = 0.0 line, Fig. 9b.

For α = −  0.05, the local unsteady area with one 
3D vortex in the central part of cavity occurs in the 
range of  Re1 = 167–201 (see Fig. 9c). For  Re1 higher 
than 201, the flow is steady and 2D, up to the new 
unsteady area occurring at about  Re1 = 410, where 
regular oscillations of frequency f = 0.22 is observed. 
However, the period doubling phenomenon very 
quickly leads to the new wave of f = 0.52. Both waves 
are associated with the 3D structures presented in 
Fig. 9d.

3.2.5  The flow case of α = 0.0

A special role in the analysis is played by the clas-
sic TCF with the stationary outer cylinder. In the flow 
case of α = 0.0, the steady meridian flow consists of 
one TC vortex between two Ekman vortices. The 
first unsteady area, with the regular oscillations of 
f = 0.126, appears at about  Re1 = 100 and is associated 
with the presence of one 3D vortex (Fig. 10a) located 
in the central part of cavity, see [37]. This is the same 
structure which has been observed for α = − 0.1 and 
−  0.05, but its range of occurrence for α = 0.0 is 

Fig. 8  The flow structure in the (φ, z) plane obtained for 
 Re1 = 210, α = − 0.2. The colors are visible in the online ver-
sion
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larger:  Re1 = 100–167 (the exact value depends on 
Γ). This 3D vortex is squeezed out due to the gradual 
enlargement of the Ekman vortices with increasing 
 Re1. For  Re1 higher than 167, the flow is steady, 2D 
and only the Ekman vortices exist. The next unsteady 
area begins at  Re1 = 428 with the appearance of regu-
lar oscillations of f = 0.86, which is connected with 
the occurrence of 8 structures symmetrically distrib-
uted with respect to the z = 0.0 line (Fig. 10b). With 
further increase of  Re1, many consecutive bifurca-
tions are observed (the example time series are pre-
sented in Fig. 11a–c), which finally lead to turbulent 
flow.

From Fig.  5a we can see that the formation of 
the turbulent (<(v′v′) > t, A(R))0.5 profile for α = 0.0 
requires much higher  Re1 than for negative α, but 
shear Reynolds number is far smaller for α = 0.0 than 
for α = − 0.5: Re = 3333 for α = 0.0,  Re1 = 2500, and 
Re = 5000 for α = − 0.5,  Re1 = 2500. For  Re1 between 
1500 and 25,000, and for α between − 0.5 and − 0.2, 
a clear maximum of (<(v′v′)>t, A(R))0.5 occurs in the 
vicinity of the inner cylinder, and a second lower 
maximum occurs in the vicinity of the outer cylin-
der. The profiles obtained for α = 0.0 are different: 
although two peaks of (<(v′v′)>t, A(R))0.5 near the 
inner and outer cylinders are visible, their values are 
much smaller (generally the profiles are flatter). The 
<v′u′>t, A(R) profiles are also different from these 
obtained for negative α: from Fig. 5b we can see the 
almost linear decrease of <v′u′>t, A(R) with the radius 
in the central part of cavity (α = 0.0), while for other 
α the values are close to zero or are even negative in 
this area.

Fig. 9  The flow structure in the (φ, z) plane obtained for a–b  Re1 = 300,  Re1 = 325, α = − 0.1, c–d  Re1 = 170 and 590, α = − 0.05. 
r = 0.0. The colors are visible in the online version

Fig. 10  The flow structure in the (φ, z) plane obtained for 
 Re1 = 117 (a),  Re1 = 435 (b), α = 0.0. The colors are visible in 
the online version

Fig. 11  The time series obtained for: a  Re1 = 497.5, b  Re1 = 535, c  Re1 = 590. α = 0.0, Γ = 3.95
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3.3  The co-rotating flow cases

3.3.1  The flow cases of α = 0.05–0.15

The α = 0.05, 0.1, 0.15 and 0.2 flow cases are located 
in the linear instability area (Fig.  1a), but only the 
bifurcation processes occurring for α = 0.05 and 0.1 
resemble those observed for α = 0.0. At the beginning 
of the instability process for α = 0.05 and 0.1 one TC 
vortex exists between the Ekman vortices. The small 
unsteady area with regular oscillations connected 
with the existence of one-arm structure (as in the flow 
case of α = 0.0, − 0,05, − 0.1) has been observed in 
the range of  Re1 = 108.75–132.5 for α = 0.05 (f = 0.12) 
and in  Re1 = 108–120 for α = 0.1 (f = 0.11). For  Re1 
higher than in the mentioned ranges, the flows are 
steady, 2D and only the Ekman vortices occur. The 
example one-arm structure, obtained for α = 0.1 and 
 Re1 = 117 in the (φ, z) plane, is presented in Fig. 12a. 
A new unstable area (with regular oscillations) begins 
at  Re1 = 355 for α = 0.05 (f = 0.745, 7 symmetric vor-
tices are observed), and at  Re1 = 317.5 for α = 0.1 
(f = 0.5, 5 symmetric vortices are observed, Fig. 12b). 
With further increase of  Re1, a series of bifurcations 

similar to these found for α = 0.0 occurs, which finally 
lead to the chaotic time series and turbulence.

In the flow cases of higher α (starting from 
α = 0.15) only the Ekman vortices have been observed 
in the meridian flows (these observations are consist-
ent with the results presented in [25], η = 0.5, Γ = 8, 
10 and 12). For α = 0.15 the flow is stable up to 
 Re1 = 287.5 (there is no local unstable area at low  Re1 
for this flow case). Above  Re1 = 287.5 the time series 
are uniform with regular oscillations of frequency 
f = 0.46. In the (φ, z) plane 5 symmetric vortices 
occur, which are regular up to about  Re1 = 520.

3.3.2  The flow case of α = 0.2

For α = 0.2, the  Re1 =  Re2η/α line (q = 2.232, 
 RΩ = − 0.875) is located close to the Rayleigh crite-
rion line (αcr = 0.25, q = 2,  RΩ = −  1), which causes 
the analyzed bifurcation phenomena to be extremely 
diverse. Again, in the meridian flow only the Ekman 
vortices occur. The instability process begins with the 
appearance of the regular oscillations of frequency 
f = 0.34 at  Re1 = 315, which is connected with four 
vortices in the (φ, z) plane, located symmetrically 
with respect to the z = 0.0 line. For slightly higher 
 Re1 these structures become asymmetric, but still are 
regular up to  Re1 = 525. At  Re1 = 525 the transition to 
the new wave with the oscillations of frequency 0.05 
appears, then with the further increase of  Re1 some 
consecutive bifurcations occur. Generally, for higher 
 Re1 two global flow structures are observed. The first 
one is presented in Fig. 13a, b (Γ = 3.85,  Re1 = 1000) 
and the second one, obtained for  Re1 = 3000, is pre-
sented in Fig.  13c, d. These flow structures are 
very similar to those obtained in [30] for the quasi-
Keplerian flow case of  RΩ = −  1.04686, Γ = 11.47, 

Fig. 12  The flow structure in the (φ, z) plane obtained for 
Re = 117 (a) and  Re1 = 370 (b), α = 0.1. The colors are visible 
in the online version

Fig. 13  The flow structures in the (φ, z) plane (r = 0.0) and the perspective view of 3D flow a–b  Re1 = 1000, c–d  Re1 = 3000. α = 0.2, 
Γ = 3.85. The colors are visible in the online version
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η = 0.7245 (the end-walls attached to the outer cylin-
der, Fig. 2a, b, [30]). For α = 0.2 computations have 
been performed for Γ from the range of [3.85–4.025], 
but no significant effect on the bifurcation processes 
in this narrow range of Γ has been found. However, 
such a symmetrical structure (with respect to the 
z = 0 line) as in Fig. 13a, b has been found only for 
Γ = 3.85.

3.3.3  The flow cases of α = 0.25–0.275‑ 
the quasi‑Keplerian flows

The experimental investigations of the quasi-Kep-
lerian flows performed in the short cavity (Γ = 2.1), 
with the end-walls divided into two independently 
rotating rings [11, 12], have shown that the bulk flow 
is laminar up to Reynolds number  106. The optimal 
rotational speed was chosen for every ring to mini-
mize the influence of the Ekman circulations. How-
ever, the DNS results obtained in [30] for the con-
figuration used in [12] have shown that the flow is 
turbulent at Re about  103. Then, in [16] the authors 
performed new experimental investigations which 
showed that if the end-wall boundary conditions are 
optimal, the quasi-Keplerian flow remains stable up 
to Re about  106. The authors pointed out that the dif-
ferent boundary conditions on the discs caused dis-
crepancies. In [19], the authors presented the new 
DNS computations obtained for Reynolds numbers 
up to  5.105 and stated that “the occurrence of tur-
bulence at low Re appears to be a robust feature of 
quasi-Keplerian Taylor–Couette flows.” However, 
they showed that with increase of Reynolds number 
up to  5.105 the gradual relaminarization of the flow 
in the middle part of cavity occurs and that the tur-
bulence finally is confined only in the thin bound-
ary layers near the end-walls. The authors showed 
that this process depends strongly on the end-wall 
boundary conditions. In [19] the authors studied the 
flow cases with the end-walls rotating independently 
from cylinders (named WR), and the flow cases with 
end-walls divided into three rings with optimized 
rotational speeds (named HTX). In the WR flow 
case the Ekman vortices (covering the entire cavity) 
destabilize the flow. The vortices typical for the linear 
unsteady regime are observed in the equatorial region 
(the turbulence does not reach the end-walls). In the 
HTX flow case, the Ekman vortices are only confined 

to the vicinity of the end-walls. Only in the HTX flow 
case the relaminarization process occurs.

In the present paper, the computations have 
been performed for one quasi-Keplerian flow case 
(α = 0.275) to check the influence of the end-walls 
attached to the inner cylinder on the flow dynamics 
in the linearly stable area. With such end-wall bound-
ary conditions, the Ekman circulations generate the 
strong inflow in the central part of the cavity (along 
the z = 0.0 line, Fig.  14c)—the observed supercriti-
cal Hopf bifurcations begin in this area. In consid-
ered Reynolds numbers the 3D structures obtained 
in the quasi-Keplerian area are triggered only by the 
Ekman vortices. The instability processes observed 
for α = 0.275 are connected with the appearance of 
four asymmetric (with respect to the z = 0.0 line) 
vortices in the middle area of the (φ, z) plane. The 
flow structures obtained for α = 0.275,  Re1 = 435 are 
presented in Fig. 14a—these structures are similar to 
those obtained numerically in [19] for the short cavity 
named WR (Γ = 2.2, η = 0.3478, q = 1.8). However, in 
[19] the authors obtained two asymmetric structures 
in the equatorial area, whereas in the present config-
urations four structures have been found. For higher 
Reynolds numbers the small-scale disturbances are 
observed in the middle part of cavity—see Fig. 14b, 
where the result obtained for  Re1 = 2000 is shown. In 
Fig.  14c the strong Ekman circulation  (Re1 = 2000) 
in the meridian flow section is presented – we can 
see that the smaller vortices are concentrated only in 

Fig. 14  The flow structures in the (φ, z) plane obtained 
for  Re1 = 435 (a),  Re1 = 2000 (b). The flow circulation in 
the meridian section obtained for  Re1 = 2000 (c). Γ = 4.025, 
α = 0.275. The colors are visible in the online version
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the middle region. Studies have shown that, despite 
different boundary conditions at the end-walls, the 
observed here structures resemble those obtained 
in [30] and partly those obtained in the WR cavity 
([19]). However, the results obtained in [19] for the 
HTX case differ significantly from the present results 
and those obtained in [30].

Selected results obtained for α = 0.275 
 (RΩ = −  1.069, Γ = 4.025) are presented below, 
together with the results of α = 0.25  (RΩ = −  1, 
Γ = 4.025). For α = 0.25 and α = 0.275 the first oscil-
lations (regular) appear at  Re1 = 412 (f = 0.318) 
and  Re1 = 427.5 (f = 0.306), respectively. In Fig.  15 

these neutral points are analyzed in the (Γ, Re) 
plane and are compared with those published in 
[30]  (RΩ = − 1.1, η = 0.5, Γ = 5 and 10, the end-walls 
attached to the outer cylinder). The critical Reynolds 
numbers of the appearance of 3D structures in the 
quasi-Keplerian area were also determined (numeri-
cally and experimentally) in [25], where the authors 
studied flows in the TC configurations of Γ = 6, 8, 10 
and 12 with the stationary end-walls (η = 0.5). They 
have shown that the onset of 3D structures strongly 
depends on the aspect ratio Γ (the study covers a sig-
nificant range of α, up to about 0.6, see Fig. 5b [25]). 
However, this dependence on Γ is relatively small in 
the vicinity of the Rayleigh line—the present critical 
 Re1 obtained for α = 0.275 is in agreement with criti-
cal Reynolds numbers obtained in [25] near the Ray-
leigh line.

Figure  16a, b show the radial statistical profiles 
of (<(v′v′)>t, A(R))0.5 and <u′v′>t, A(R) obtained for 
α = 0.0 (the yellow lines), 0.1 (the green lines), 0.15 
(the blue line), 0.2 (the red lines), 0.25 (the navy blue 
lines) and 0.275 (the black lines), and for  Re1 = 1500, 
2000 and 2500. The (<(v′v′)>t, A(R))0.5 profiles show 
that with increasing α the profiles become flatter, 
which suggests that the disturbances are concentrated 
in the central part of cavity. The values obtained for 
α = 0.2, 0.25 and 0.275 are very small so they are 
additionally presented in the inserts of Fig.  16a, b. 
In the <u′v′>t, A(R) profiles obtained for α = 0.0, 0.1 

Fig. 15  Critical Reynolds numbers Re of the quasi-Keplerian 
flows in the (Γ, Re) plane obtained for the short cavity with the 
end-walls attached to the inner cylinder (the red symbol, α = 
0.25,  RΩ = − 1; the blue symbol, α = 0.275,  RΩ = − 1.069). The 
results denoted by the black symbols are obtained in the cavity 
with the end-walls attached to the outer cylinder,  RΩ = − 1.1, 
[30]. η = 0.5. The colors are visible in the online version

Fig. 16  The averaged radial profiles of (<(v′v′)>t, A(R))0.5 (a) and <u′v′>t, A(R) (b) obtained for different α and different  Re1. The 
colors are visible in the online version
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and 0.15 there is a gentle peak near the inner cylinder, 
while for α = 0.2, 0.25 and 0.275 the <u′v′>t, A(R) val-
ues are close to zero or even are negative in this area.

3.4  The influence of α on the meridian flow 
structures

To summarize the flow structures obtained during the 
investigations performed here for α from the range of 
[− 0.5, 0.275], in Fig. 17 the structures occurring in 
the meridian section at the initial stage of the lami-
nar-turbulent transition process are presented sche-
matically in the  (Re2,  Re1) plane. Figure  17 shows 
that for the strongly counter-rotating flow examples 
(α = −  0.5, −  0.4, −  0.3) two TC vortices between 
two relatively small Ekman vortices occur. The TC 
vortices do not fill the entire area between the cylin-
ders—they are located near the inner cylinder and in 
the middle part of cavity. As α increases, the Ekman 
vortices grow in the axial direction, squeezing the 
TC vortices. As a result of this process, only one 
TC vortex occurs between two Ekman vortices for 
α = − 0.2 and − 0.15. For α from the range of [− 0.1, 
0.1] this one TC vortex still exists (and fills the entire 
gap between the cylinders), but only at very low  Re1 
and in a very narrow range of  Re1. This narrow range 
of  Re1 is related to the occurrence of a small, local 
unstable area triggered by the codimensio-2 point. 
The local unstable area disappears for slightly higher 
Reynolds numbers and only the Ekman vortices 
remain. In Fig. 17 two meridian flows connected with 
α from the range of [− 0.1, 0.1] are shown: first one 

(on left) is obtained for  Re1 from the local unstable 
area, the second one (on right) is obtained for  Re1 at 
which only the Ekman vortices exist. Starting from 
α = 0.15, the TC vortices do not appear any longer—
the Ekman vortices fill the entire space between the 
discs and cylinders. A similar analysis of the merid-
ian flows obtained for the co-rotating configurations 
(η = 0.5) is presented in Fig.  3a ([25]), where the 
multi-cell states obtained for Γ = 8 are presented.

The radial averaged azimuthal velocity pro-
files <v>t, A(R) obtained for α = −  0.5 (Re = 5000, 
 Re1 = 2500) and α = 0.0 (Re = 3333,  Re1 = 2500), 
which are presented in Fig.  4a, are compared in 
this section additionally with the experimental data 
published in [46]. The reconstructed data from 
[46], obtained in the long configuration of Γ = 22 
(η = 0.917, Re = 14,000, closed by the end-walls 
attached to the outer cylinder) for α = −  0.5 and 
α = 0.0 are presented in Fig.  18. Following [46], 
all profiles are normalized by  Sd =  2R1(Ω2-Ω1)/
(1 + η). We can see agreement between the present 
results and those obtained in [46], despite the dif-
ferent end-wall boundary conditions, different geo-
metrical parameters Γ, η, and also different Re. The 
comparison shows that the core of the profiles is 
clearly visible for α = − 0.5 and α = 0.0. It is note-
worthy that in [46] the authors obtained non-zero 
slope profile for α = − 0.5, similarly to the solutions 
obtained using DNS in [8] (the computations have 
been performed for infinitely long cavity). Problem 
has been discussed in Sect. 3.2.1. The present com-
putations performed for different α show that in the 

Fig. 17  The critical lines 
obtained for the Taylor-
Couette configurations in 
the  (Re2,  Re1) plane are 
presented (see also Fig. 1a), 
together with the schematic 
pictures of the meridian 
flows obtained for different 
α. Only the first stage of the 
laminar-turbulent transition 
is analyzed. The colors are 
visible in the online version
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short configurations (Γ about 4.0), with the discs 
rotating together with the inner cylinder, the slope 
of the azimuthal velocity profile in the core gradu-
ally increases with α.

4  Conclusions

In the paper, the bifurcation mechanisms occurring 
in the Taylor-Couette flows between cylinders rotat-
ing independently, with the rotational rate α = Ω2/
Ω1 from −  0.5 to 0.275 (Γ = 3.85–4.05, η = 0.5, the 
end-walls attached to the inner cylinder), have been 
investigated numerically using the DNS method. In 
the research  Re1 has been gradually increased (up to 
3000) along the  Re1 =  Re2η/α lines. The computations 
have been performed in the linearly unstable area 
(13 flow cases) and in the quasi-Keplerian area (one 
flow case). As it is known, the sensitivity of the tran-
sitional phenomena to the changes of the governing 
parameters (α,  Re1, Γ), and to the end-wall boundary 
conditions is large (particularly in the quasi-Keplerian 
area), which also is confirmed by the present results. 
The large variety of the laminar-turbulent scenarios 
has been observed and new interesting phenomena 
have been found. The conducted investigations lead to 
the following conclusions:

• For all investigated flow cases, the critical Reyn-
olds numbers  Re1 of the appearance of the 3D 
structures have been determined and displayed in 
the  (Re2,  Re1) plane (Fig. 1a). These 3D structures 
are connected with the instability waves of regu-

lar oscillations of the frequency approximately 
from 0.4 to 0.8 (the value depends on α). The only 
exception is the flow case of α = − 0.5, for which 
the time series connected with the appearance of 
the 3D structures is chaotic.

• The characteristic feature of the considered flow 
cases is the occurrence of a local unsteady area at 
a very low  Re1 for α from − 0.1 to 0.1, in which 
the only TC vortex, observed between two Ekman 
vortices, gradually disappears with increasing  Re1 
(this unsteady area is connected with the codimen-
sion-2 point). For the flow cases of α from − 0.1 
to 0.1 the next unstable area, leading finally to tur-
bulence, occurs for much higher  Re1 (see Fig. 1a).

• The number of the TC vortices occurring between 
two Ekman vortices varies with α: for α from 
− 0.5 to − 0.3 two TC vortices occur, for α = − 0.2 
and −  0.15 only one vortex is observed. For α 
from − 0.1 to 0.1 one TC vortex exists, but it dis-
appears due to the influence of the small unsteady 
area occurring at low  Re1. Starting from α = 0.15 
only the Ekman vortices are observed in the 
meridian sections.

• The DNS computations obtained for α from − 0.5 
to 0.275 (the anti-cyclonic flows cases) show that 
the transport of the angular momentum is due to 
the large scale structures.

• For α = − 0.5 the existing 3D instability structures 
(of the azimuthal wave number 1) are irregular. In 
all other flow cases the instability structures are 
regular with the azimuthal wave numbers from 
2 to 8 (value depends on α). The structures are 
mostly asymmetric with the respect to z = 0.0 line, 
but for α from − 0.1 up to 0.1 they are symmetric.

• With increasing  Re1 the consecutive bifurcations 
are observed, which lead to the chaotic time series 
and finally to turbulence. The number of observed 
bifurcations depends on α—the largest number has 
been observed for α close to 0.0. In order to obtain 
better characteristics of the processes taking place 
for higher  Re1, the radial profiles of the aver-
aged parameters <(v)>t,A(R), (<(v′v′)>t, A(R))0.5, 
<u′v′>t,A(R), <P+>t,A(R) have been determined, 
which enabled quantitative comparison of the pre-
sent results with those published in literature. The 
comparison has shown agreement with the results 
obtained for α = − 0.5 and α = 0.0 in [8, 25, 46], 
despite different boundary conditions applied at 
the discs. The flow cases with larger positive val-

Fig. 18  The comparison of the present averaged azimuthal 
velocity profiles obtained for α = − 0.5  (Re1 = 2500, Re = 5000) 
and α = 0.0  (Re1 = 2500, Re = 3333) in configurations of 
η = 0.5 with the end-walls attached to the inner cylinder, with 
the experimental results obtained in [46] (α = −  0.5 and 0.0, 
Re = 14,000, η = 0.917, Γ = 22, the end-walls attached to the 
outer cylinder). The colors are visible in the online version
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ues of α turned out to be the most sensitive to the 
boundary conditions at the discs, but also for these 
flow cases a qualitative agreement with the flow 
structures presented in [25, 30] has been observed. 
The results have also shown that in the considered 
range or  Re1, the Ekman circulations are the only 
source of instability in the considered quasi Kep-
lerian flow case of α = 0.275, Γ = 4.025 (the end-
walls attached to the inner cylinder).
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