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Abstract  This article focuses on the influence of 
the propulsion mechanism design on the transient 
and steady-state response of the yoke–bell–clapper 
system with a proportional–integral controller. The 
analysis is made using the mathematical model vali-
dated in our previous paper. Three different propul-
sion system designs are considered. Analyzed cases 
are compared and assessed, taking into account the 
launching time of the system, additional loads in the 
supports, and final steady-state response. The subject 
of the analysis contributes to the topic devoted to the 
dynamic interaction between the bells and their sup-
porting structures that is recently widely considered 
by the scientific community.

Keywords  Yoke–bell–clapper dynamics · Impact · 
PI control · Transient response

1  Introduction

Loads transferred between the swinging bells and 
their supporting structures is a problem widely 
considered by the scientific community. Horizontal 
forces and dynamic loads due to impacts can be 

especially harmful to the supporting structures. For 
masonry towers—that often are supports for the 
bells—severe phenomena of resonance, excessive 
deflection of the building or the effect of tower 
rocking were reported and investigated by researchers 
recently and in the past [1–7]. Consequently, various 
methods to estimate the loads produced by swinging 
bells were developed over the years. In the mid-
seventies of the last century, two English scientists 
Heyman and Therefal performed an experiment in 
order to determine the magnitude of inertia forces 
produced by swinging bells [8]. The experiment 
was complemented by mathematical modeling. 
Researchers calculated horizontal and vertical 
reaction forces in the bell’s supports using second 
order differential equation with one-degree-of-
freedom (DoF) and small angle approximations. 
Laboratory results and analytical investigation gave 
similar results. A few years later, in 1978, a DIN 
4178 [9] standard describing the design of bell towers 
was published in Germany. It was revised in 2005.In 
the standard, there are semi-empirical formulas for 
calculating forces produced by the swinging bells. 
Formulas are derived assuming the static equilibrium 
in the system that consists of the bell itself. The 
next significant documented attempts to tackle the 
problem are, for example, the work of Ivorra et. al 
[10] published in 2006. The author repeated the 
experiments performed by Heyman and Therefal for 
different types of bell mounting layouts. The research 
comprised mathematical modeling and experimental 
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work. In the mathematical model, the authors used 
a compound pendulum (the mass of the clapper was 
neglected), and they derived analytically equations 
for reaction forces in the supports in horizontal 
and vertical directions. The study showed that the 
mounting layout and swinging amplitude significantly 
influence the dynamic loads produced by bells. 
Similarly, the loads are estimated in other related 
studies in the last several years [11–13].

All examples mentioned in the previous paragraph 
consider the steady-state of the bell’s swinging. It 
may be a perilous simplification when the structure’s 
health is considered. In some of the scientific papers 
devoted to the dynamics of the bell towers, the authors 
emphasize the influence of the transient time on the 
supporting structure dynamics. Ivorra et al. [14] inves-
tigated the tower with six bells mounted in various 
manners. The displacement of the top of the tower was 
extreme during the transient period of the bell swing-
ing because of the dynamic interaction between the 
frequencies of the horizontal forces produced by the 
bells and the tower. It was concluded that the bell’s 
launching time should be reduced to limit the dynamic 
problem. In [15], Bru et al. indicated that during the 
transient period of the bell motion, the displacement 
of the supporting tower could exceed the safe values 
even if the bell and tower were designed according to 
standards [9] and the steady-state of the bell operation 
causes no harm to the structure.

When the bell steady-state response is analyzed, 
the yoke geometry and the excitation force magni-
tude (or swinging amplitude) determine the system 
dynamics [10, 16]. However, when the transient 
period is considered, the system’s excitation is cru-
cial. The methods of bell excitation have changed 
over the centuries. The oldest method is the manual 
control of the bell by professional ringers using ropes. 
Following the revolution in science and technology, 
ringers were replaced by AC motors, chain transmis-
sions, and sprockets. Currently, there is a tendency to 
use modern linear motors, since this kind of propul-
sion is much simpler, imitates better manual control, 
and makes the phase of free motion of the bell pos-
sible. The linear motors are usually controlled using a 
proportional–integral-derivative (PID) mathematical 
algorithm (usually limited to a proportional–integral 
(PI) algorithm) that is embedded in the programma-
ble logic controller (PLC).

In our previous paper [16], we introduced and 
validated the mathematical model of the novel 
yoke–bell–clapper system with variable geometry. 
We used a four-degree-of-freedom model that com-
prises the bell, the clapper and the supports of the 
yoke. We assessed the influence of the yoke geom-
etry and excitation force magnitude on the system 
response. Aspects important from an engineering 
point of view, namely the ringing scheme of the bell 
and associated forces in the supports, were analyzed. 
Still, in the paper, we assessed only the steady state 
of the system response. In the present work, we focus 
on the transient time of system response, but some 
attention is also paid to the steady-state. We use vali-
dated mathematical model to consider various posi-
tions of the motor with respect to the rotation axis, 
different yoke geometries, and a range of swinging 
amplitudes. We implement a PI algorithm that imi-
tates real controllers used to propel bells in real-world 
applications. We assess different propulsion designs 
with regard to launching time, final ringing scheme, 
and additional loads in the supports. Launching time 
determines the length of the transient part of the sys-
tem response when the dynamic interaction between 
the bell and the tower is increased. Additional loads 
in the supports are understood as impact forces due to 
initial high-energy collisions between the bell and the 
clapper or due to the nature of the piece-wise excita-
tion of the bell. These forces can be especially severe 
to the bearings that support the bell and can increase 
the dynamic interaction between the bell and its sup-
porting structure. The sample-based methods comple-
ment the analysis. Values of system parameters are 
randomly sampled from the analyzed set of parameter 
values. The algorithm is parallelized, therefore multi-
ple simulations are run at the same time.

This paper is organized as follows. Section  2 
explains our approach to simulate and assess 
different propulsions. In the Sect. 2.1 we describe the 
mathematical model and the idea behind the novel 
design. Then, in Sect. 2.2, we explain the PI algorithm 
that is used to control the excitation. Finally, in the 
Sect. 2.3 we describe different propulsion set-ups that 
are analyzed. Section 3 presents the influence of the 
propulsion system design on the final ringing scheme, 
overloads in the supports, and launching time. At the 
end of this section also, the steady-state response is 
presented. We summarise our results in the Sect. 4.
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2 � Methodology

2.1 � Mathematical model

The mathematical model representing the 
yoke–bell–clapper system consists of a set of ordinary 
differential equations (ODEs) that describe its motion. 
The mathematical model is built based on the physical  
model that is schematically presented in Fig.  1. It is a 
four-degrees-of-freedom system accommodating the 
yoke with the bell, the clapper, and the yoke’s supports. 
The yoke consists of a rectangular frame and a moving 
beam that alters the system’s geometry. Four generalized  
coordinates describe the model. The angle between 
the bell’s axis and downward vertical is given by �1 . 
Whereas the angle between the clapper’s axis and the 
downward vertical is given by �2 . The horizontal com-
pliance of the supports is given by xs , while the vertical 
is by ys . A System of four coupled second-order ODEs 
that describe the system’s motion is presented below. The 
meaning and values of the parameters appearing in the 
equations are given in the following paragraphs.

The yoke and the bell are treated as one part with 
mass M and moment of inertia Bb . Mass M is obtained 
by simply adding masses of all elements of the yoke 

(1)

(M + m)ẍs + (ML cos𝜑1 + mlc cos𝜑1)𝜑̈1 + (ml cos𝜑2)𝜑̈2

= ML𝜑̇2
1
sin𝜑1 + mlc𝜑̇

2
1
sin𝜑1 + ml𝜑̇2

2
sin𝜑2 − kxxs − dxẋs,

(2)

− (mlc sin𝜑1 +ML sin𝜑1)𝜑̈1 − ml sin𝜑2𝜑̈2 + (M + m)ÿs

= mlc cos𝜑1𝜑̇
2
1
+ ml cos𝜑2𝜑̇

2
2
+ML cos𝜑1𝜑̇

2
1

+ g(m +M) − kyys − dyẏs,

(3)

(ML cos𝜑1 + mlc cos𝜑1)ẍs + (BB + ml2
c
)𝜑̈1

+ mllc cos(𝜑1 − 𝜑2)𝜑̈2

− (mlc sin𝜑1 +ML sin𝜑1)ÿs =

− mllc sin(𝜑1 − 𝜑2)𝜑̇
2
2
− (ML + mlc)g sin𝜑1 − db𝜑̇1

− dc(𝜑̇1 − 𝜑̇2)

− dbf
2

𝜋
arctan(105𝜑̇1) − dcf

2

𝜋
arctan(105(𝜑̇1 − 𝜑̇2)) +Mt,

(4)

ml cos𝜑2ẍs + mllc cos(𝜑1 − 𝜑2)𝜑̈1 + BC𝜑̈2 − ml sin𝜑2ÿs

= mllc𝜑̇
2
1
sin(𝜑1 − 𝜑2) − mgl sin𝜑2 − dc(𝜑̇2 − 𝜑̇1)

− dcf
2

𝜋
arctan(105(𝜑̇2 − 𝜑̇1)).

and bell. Considering the resultant moment of inertia 
Bb , it is calculated using the following relation:

where Bbo , Bb00 , Bb01 are the moments of inertia of 
the rectangular frame, the bell, and the moving beam, 
respectively. Whereas M0 , M1 , M2 are corresponding 
masses and d, d4 , d5 corresponding dimensions 
describing position of each element gravity center. 
Variables d2, l2, l are geometric parameters resulting 
from the design. The position of the movable beam 
is described by lmb dimension. Dimensions S, lc, L 
are depended on lmb and received using the following 
formulas:

Consecutively, these dimensions are the position 
of the yoke-bell system gravity center, its distance 
from the yoke axis of rotation ( O1 ), and the distance 
between the clapper’s pivot joint O2 and O1 . The yoke 
is supported by the rolling bearings, the stiffness 
of the supports is described by kx and ky while the 
associated viscous damping by dx and dy . Clapper 
parameters are constant, its moment of inertia with 
respect to its rotation axis is described by BC , mass 
by m, and the distance between the clapper axis of 
rotation and its gravity center is marked with l.

As far as energy dissipation is considered, we take 
advantage of the Rayleigh dissipation function, which 
accounts for the viscous damping in the bell (db) and the 
clapper (dc) joints. We also introduce the dry friction 
component of damping that is represented by Coulomb 
friction torque for the bell (dbf ) and the clapper (dcf ) . 
The dry friction component is modeled according 
to the Coulomb model, and we approximate it using 
smooth arctan function. Thanks to that, we obtain 
the continuous model of damping; consequently, we 
simplify the model that, due to discontinuities, piece-
wise nature, and four degrees of freedom, requires 
significant computational effort. The combination of 
Rayleigh’s viscous damping and Coulomb’s dry friction 

(5)
Bb = Bbo +M0(d − d2)2 + Bboo +M1(lmb + d4 − d2)2

+ Bb01 +M2(d2 − lmb − d5)2,

(6)S =
M0d +M1(d4 + lmb) +M2(lmb + d5)

M
,

(7)L = S − d2,

(8)lc = l2 + lmb − d2.
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Fig. 1   The physical model of the system along with its physical and geometrical quantities
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gives a satisfactory approximation of the investigated 
real-world system. A good accordance between 
numerical and experimental results was shown in [16]. 
The excitation torque Mt is described in Sect. 2.2.

The values of the parameters used in the mathematical 
model have been obtained and validated in our previous 
article [16], where we introduced the mathematical 
model. Values of parameters are the following: 
M0 = 36.87 [kg] , M1 = 96.72 [kg] , M2 = 13.97 [kg] 

Bb0 = 11.43
[
kg

m2

]
 , B00 = 4.27

[
kg

m2

]
 , Bb01 = 0.838

[

kg
m2

] , 

d = 0.565 [m] , d2 = 0.500 [m] , d4 = 0.474 [m] , 
d5 = 0.035 [m] , BC = 0.525

[
kg

m2

]
 , m = 5.49 [kg] , 

l = 0.274 [m] , db = 0.22 [Ns] , dc = 0.10 [Ns], 
dbf = 0.10 [Nm] , dcf = 0.15 [Nm] . Stiffness coeffi-
cients kx and ky were determined experimentally and are 

equal kx = 813770
[
N

m

]
 , ky = 10939000

[
N

m

]
 , while 

dx = 260.30
[
Ns

m

]
 and dy = 954.00

[
Ns

m

]
.

The mathematical model of the clapper-to-the-bell 
impact is well described and validated in another work 
of ours [17]. It is a discrete model based on the coef-
ficient of restitution. The provided algebraic formulas 
allow us to calculate the collision effect based on the 
description of the pre-collision dynamical state of the 
system. The impact occurs when:

where � is an angular parameter associated with bells 
mouth. When this condition is fulfilled, we stop the 
integration process. Then, we restart the simulation, 
updating the initial conditions of equations  1–4 by 
switching the bell’s and clapper’s angular velocities 
from the values before the impact on the ones 
after the impact. The angular velocities (after the 
impact) are obtained by taking into account the 
energy dissipation function and conservation of the 
system’s angular momentum that are expressed by the 
following formulas:

(9)|�1 − �2| = �,

(10)
1

2
Bc(𝜑̇2,AI − 𝜑̇1,AI)

2 = k
1

2
Bc(𝜑̇2,BI − 𝜑̇1,BI)

2,

where index AI stands for “after impact”, index 
BI for “before impact” and parameter k is the 
coefficient of energy restitution. For this particular 
yoke–bell–clapper system we assume k = 0.15 [−] . 
This value was estimated by performing curve 
fitting while comparing experimental and numerical 
results. In reality, the consecutive impacts between 
the bell and the clapper vary. It was first reported 
by Menghetti and Rossi [18], where authors 
analyzed the clapper acceleration before the impact. 
Proposed value of k refers to estimated average 
energy dissipated during each impact. However, 
the difference between particular impacts may be 
significant (see [18]). The set value of k gives a 
satisfactory accordance between the experimental and 
numerical results for this particular system [16].

2.2 � System excitation

The analyzed yoke–bell–clapper system is propelled by a 
linear electric motor. The schematic view of the propul-
sion system is presented in Fig. 2. The “unrolled” stator 
is designated by red color, while the rotor is yellow. The 
stator is anchored to the bell-supporting structure. The 
rotor is in the form of a curved-shaped plain metal sheet 
connected to the yoke. The force generated by the linear 
motor pushes the rotor against the stator in the direction 
recognized as horizontal (along the X axis in Fig. 1). The 
rotor is placed at a distance from the yoke axis of rotation; 
hence, the torque around the yoke rotation axis is created 
and the bell is set in swinging motion.

It is a typical propulsion system found in mod-
ern bell control systems. In this paper, the excitation 
model is based on the motor and the control unit pro-
vided by Rduch company. Both are the components 
commonly used in industrial applications. Because 
it is a commercial product, the exact logic between 
the control unit is unknown, and we treat it as a black 
box. The input for the control unit is based on the 
desired swinging amplitude. The unit uses propor-
tional–integral (PI) algorithm.

In our model, the logic behind the control algo-
rithm is as follows. Firstly, as in the commercial 

(11)

[Bb + ml2
c
+ mlcl cos(𝜑2 − 𝜑1)]𝜑̇1,BI

+ [Bc + mlcl cos(𝜑2 − 𝜑1)]𝜑̇2,BI

= [Bb + ml2
c
+ mlcl cos(𝜑2 − 𝜑1)]𝜑̇1,AI

+ [Bc + mlcl cos(𝜑2 − 𝜑1)]𝜑̇2,AI
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design, the user has to define the desired bell oscil-
lation amplitude �1(max) . Then, taking advantage 
of the mechanical energy conservation law, 𝜑̇1(max) 
is calculated and set as the set-point value 𝜑̇SP . The 
difference between the value of 𝜑̇1 , when the bell 
goes through its stable equilibrium position, and the 
set-point 𝜑̇SP value is defined as control error e.

Control error is calculated in each half-period of 
motion. The control signal is designated by F, which 
is the force in Newtons generated by the propulsion 
system. The control signal F consists of two terms Sk 
and xk.

where, ki is an integral gain and, kp is a proportional 
gain. In case of the term S(k) the value form previ-
ous step S(k−1) is saved and used in the calculations. 
Parameters ki and kp are tuning parameters they are 
equal to ki = 15 [−] and kp = 100 [−] . Set values 
of ki and kp provide that the propulsion dynamics in 
the numerical model and the real-world system are 
comparable (i.e. the number of periods of motion 
needed to reach the desired amplitude when the ball 
is hanging high, or significantly lowered). Figure  3 
schematically presents the idea behind the control 
algorithm. One can observe the control signal F, 

(12)e = 𝜑̇SP − 𝜑̇1

(13)F = xk + Sk

(14)Sk = S(k−1) + kie

(15)xk = kpe

the bell angular displacement �1 and the bell angu-
lar velocity 𝜑̇1 , each with its individual scale. The 
error value e and the control signal F are calculated 
according to Eqs. 12–15 when the bell goes through 
its stable equilibrium position, i.e. �1 = 0 . Then, the 
bell reaches the tilting point and is about to turn back 
( 𝜑̇1 = 0 ), the algorithm is using calculated force F 
that will be generated by the propulsion mechanism 
when the stator and rotor overlap again. The figure 
shows that the force is reduced as the swinging ampli-
tude approaches the set-point value.

The excitation generated by the motor is introduced 
to the model by the torque Mt(�1) described by the 
following piece-wise formula:

where F is force generated by the motor (control sig-
nal), and r is the distance between the force applica-
tion point and the yoke axis of rotation.

2.3 � Propulsion system set‑ups

Alternating the location of the stator in the vertical 
direction (y direction according to Fig.  1), one can 
change the maximum torque generated by the motor. 
In this paper, we investigate three different positions 
of the motor. Two different propulsion system set-ups 
are schematically presented in Fig.  4. What can be 
seen from the figure is that by increasing r we aug-
ment torque magnitude Mt , but the bell angular dis-
placement �critical for which the rotor and the stator 

(16)Mt(𝜑1) =

{
Frsgn(𝜑̇1), for |𝜑1| ≤ 𝜑critical

0, for |𝜑1| > 𝜑critical

.

Fig. 2   3D model of the 
linear motor propelling the 
yoke–bell–clapper system

Stator

Rotor
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overlap is reduced. Therefore, greater torque can be 
generated but at the cost of motor activation range.

The relationship between the parameters r and 
�critical is linear and depends on the design of the 
propulsion elements. In the case of the considered 
system: �critical(r) = −1.263r + 1.107 , where r 
is expressed in meters and �critical in radians. In 
the numerical model, the motor is activated when 
the centerline of the rotor plate overlaps with the 
stator. The three different positions of the linear 

motor are investigated. In the first case (case W) 
r = 0.255 [m] and �critical = 0.785 [rad] . In the 
second case (case S), we lower the linear motor with 
respect to the yoke axis of rotation, r = 0.411 [m] 
and �critical = 0.588 [rad] . In the third case (case N), 
r = 0.566 [m] and �critical = 0.392 rad . In every case, 
we assess the launching time tl of the system, the 
maximum accelerations in the supports ÿs and ẍs , and 
the final ringing scheme. The methodology behind 
calculating the launching time tl is as follows, first, we 
check if the 90% of the desired swinging amplitude 
is reached. Then, the moment when the first collision 
between the bell and the clapper occurs is marked as 
a launching time tl.

In the analysis, we use a sample-based approach. 
This approach is especially efficient when we want to 
assess the influence of several parameters simultane-
ously and analyze higher dimensional systems where 
classical methods are difficult to apply [16, 19]. In 
each simulation, the value of �SP , which is defined as 
the desired swinging angle of the bell, is drawn from 
the range 𝜑SP ∈<

𝜋

6
,
𝜋

2
> [rad] , while the value of 

lmb that determines the yoke geometry is drawn from 
the range lmb ∈< 0.15, 0.5 > [m] . The distribution 
of both drawn parameters is uniform. In each of the 
three cases, we perform 100, 000 number of numeri-
cal trials. Every time we start the simulation when 
the bell is in the hanging down position, hence simu-
lations begin with the following initial conditions: 
�1 = 0 , �2 = 0 , xs = 0 , ys = 0 . These are the natural 
conditions for the bells to start operating.
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3 � Results

3.1 � Final ringing scheme

The ringing schemes are classified according to 
the number of impacts between the bell and the 
clapper in one period of motion (1, 2, 3, or more 
impacts). They are also distinguished by types of 
impacts (If the bell and the clapper are performing 
in phase motion during the impact, we deal with a 
flying clapper, otherwise, we call it a falling clap-
per). Because this work focuses on the transient 
response, extensive information about different 
ringing schemes will not be given. A more detailed 
explanation can be found in [16]. In this system, 
what in practice is defined as the ringing scheme 
would be an attractor in the nomenclature of the 
non-linear dynamics. Figure 5 shows possible ring-
ing schemes (attractors) for three different propul-
sion system designs. Each plot is a two-parameter 
map that shows the influence of lmb and �SP on the 
system response. As a reminder, �SP is the swinging 
amplitude of the bell, lmb is determining the yoke 
geometry..

In numerical simulations, depending on the case 
(N, S, and W), there are minor differences between 
reached attractors. They can be found in the left 
lower corner of the plot and in close vicinity to 
the transition region between the attractor marked 
with blue (2 impacts) and black (No impacts) color. 
These differences comprise up to a few percent of 
the plot and are considered irrelevant. Where the 
disparities are spotted, there are attractors whose 
contribution to the two-parameter map is minor, or 
the aperiodic motion is observed, these regions are 
prone to obstructions and parameter fluctuations. 
These variations are also present when extreme 
parameter values are considered, hence, the 
accuracy of the numerical model is diminished.

The same final ringing scheme is obtained 
regardless of the linear motor position. Systems 
exhibit various ringing schemes depending on the 
lmb and �SP parameters.

3.2 � Overloads

Panels (a)–(f) in Fig. 6 show maximum accelerations 
ÿs(max) and ẍs(max) during transient time depending 
on two parameters lmb and �SP . Each map on the 
horizontal axis has lmb parameter determining yoke 
geometry, while the vertical axis presents the bell 
swinging amplitude �SP . Color intensity indicates 
the values of the maximum accelerations ÿs(max) and 
ẍs(max).

Considering horizontal direction, one can observe 
that the plots differ qualitatively and quantitatively. For 
the case W (Fig. 6a) the ẍs(max) values are increasing 
gradually up to the value of 0.4

[
m

s2

]
 , the growth is only 

due to changing yoke geometry. The color intensity 
changes gradually. The swinging amplitude has nearly 
no effect on the ẍs . For the case S (Fig. 6b), we observe 
step change in the produced acceleration value when 
the parameter describing yoke geometry lmb is equal to 
approximately 0.2 [m] . Above that value, ẍs(max) is 
increasing gradually, the linear motor is not able to 
push the rotor plate away from the stator in the first 
period of motion (Situation that is schematically pre-
sented in Fig. 4). Therefore, the motor has to switch the 
direction of acting force when the rotor and stator still 
overlap. The difference in time traces of the system 
response in terms of ẍs when the lmb is below and above 
0.2 [m] is schematically presented in Fig. 7. In Fig. 7, 
there are two plots. On both plots, the excitation force 
F, the bell angular displacement �1 , the bell angular 
velocity 𝜑̇1 , and the horizontal accelerations in the sup-
ports ẍs are visible. Each variable has its individual 
scale. The plots show the launching of the system for 
two different parameter lmb values and comprehensibly 
illustrate the phenomena visible in Fig.  6b and c. In 
Fig. 7a we can see the phase of free motion of the bell 
in the first period of motion, i.e. the rotor plate and sta-
tor do not overlap and the bell performs motion with-
out any excitation. In this case the phenomena of 
changing the direction of acting force is smooth 
because the motor propels the yoke when the rotor 
plate is moving towards the stator and bell angular dis-
placement is below �critical . In other words, the yoke 
changes its direction during the free motion phase 
without any external excitation. A contrary situation is 
observed when the motor cannot push the rotor plate 
away from the stator in a single period of motion. If it 
occurs, the phenomena of changing the direction of the 

Fig. 5   Two-parameter(l
mb

 and �
SP

 ) ringing schemes diagram 
showing variety of existing attractors. a Case N b Case S c 
Case W

◂
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acting force is abrupt, which is manifested by increased 
accelerations in the supports. Consequently, the impact 
effect, this situation is visible in Fig.  7b. The time 

traces also show that increased accelerations ẍs are 
caused either by the control signal or by the impact. 
For the case N (Fig.  6c) we observe the same 
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phenomena as in the case of S, however, the threshold 
when there is no free motion phase in the first period of 
motion is moved on the horizontal axis when 
lmb ≈ 0.318 [m] . There is no step change in maximum 
acceleration ẍs(max) in the case W because the situa-
tion when the rotor plate is pushed away from the sta-
tor in the first period of motion never happens, regard-
less of the yoke geometry.

Considering vertical accelerations ÿs , case W is 
presented in Fig.  6d. There are clearly visible step 
changes in produced accelerations. The steps are 
determined by the fact in which period (or half-
period) of motion the phase of the bell’s free motion 
occurs. By increasing lmb , the inertia of the combined 
bell and yoke is growing exponentially. Therefore, 
the linear motor needs more periods of bell motion to 
push the rotor plate beyond the stator and allow for 
the phase of free motion. The excitation is explic-
itly dependent on bell velocity, the later in the time 
domain the rotor is pushed away from the stator, 
the greater the velocity of the bell in the last period 
before the creation of the phase of free motion of 
the bell. Consequently, the bigger the acceleration ÿs 
when the force direction is changed. The situation is 
repeated also in the case S (Fig. 6e) and N (6f). We 
can observe two-step changes in case S and one-step 
changes in case N. In panels (d)–(f) correspond-
ing to vertical accelerations, we observe more step 
changes than in panels (a)–(c) related to horizontal 
accelerations. Hence, the ÿs(max) is more sensitive 
to the changes of yoke geometry than ẍs(max) . How-
ever, maximum accelerations in the vertical direc-
tion are almost 3 times smaller than in the horizontal 
direction.

In summary, the propulsion system’s position 
significantly influences the overloads produced 
during the transient time of the system response. The 
main influencing factor is whether the phase of the 
bell-free motion can be reached in the first period of 
motion. The bell-supporting structure and bearings 
will be subjected to additional loads if not.

3.3 � Launching time

Panels (g)–(i) in Fig.  6 show how the launching 
time depends on the yoke geometry and swinging 
amplitude in each analyzed case. When lmb or �SP 
parameters are increased, we observe a rise in 
launching time tl . The step changes visible on the 

plots are created because 90% of the desired swinging 
amplitude is reached in different half-periods of bell 
motion. Therefore, we observe a discrete change in 
the launching time equal to approximately half of 
the period of the bell motion. One can also notice 
that there are more discrete regions for Case W than 
for Case S. The fewest discrete regions for Case N. 
Case W is, therefore, the most sensitive to parameter 
changes and Case N the least sensitive. Considering 
the influence of linear motor position on the launching 
time, we can observe that the difference between case 
N and case S is approximately 1 [s] , regardless of 
the system parameters, while the difference between 
case S and W is equal approximately 3.7 [s] . The 
dark blue region on the plots in the bottom right 
corner corresponds to the situation when there are no 
impacts between the bell and the clapper, hence, we 
assume that the launching procedure is never finished. 
This region size is comparable for all cases.

In summary, the position of the propulsion system 
can be optimized to reduce the system’s launching 
time and, consequently, the transient time. In ana-
lyzed cases, the possible gain is approximately 4 [s].

3.4 � Steady‑state response

Figure  8 presents maximum clapper’s oscillation 
amplitude �2(max) and maximum accelerations 
ÿs(max) , ẍs(max) depending on the lmb and �SP param-
eters for case N. This figure refers to the steady-state 
response of the system, transient time is omitted.

Considering clapper oscillations (Fig.  8a) we 
can observe the lines that correspond to the transi-
tions between different ringing schemes presented 
in Fig.  5. This is because the clapper motion deter-
mines the ringing schemes. The clapper angu-
lar displacement increases with the bell-swinging 
amplitude. The influence of the parameter lmb on the 
clapper angular displacement is minor compared to 
the parameter �SP . The asymmetric ringing schemes 
are pronounced in the figure. Figure 8b and c present 
maximum accelerations ÿs(max) , ẍs(max) values. In 
both figures, there are also visible lines correspond-
ing to transitions between different ringing schemes. 
In the case of the vertical direction, the magnitude 
of the maximum acceleration is determined mainly 
by the ringing scheme, i.e., the number and type of 
collisions between the bell and the clapper. There-
fore, the greatest vertical accelerations are observed 
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for a working regime with 4 impacts per one period 
of motion. On the other hand, Fig.  8c suggests that 
the maximum horizontal accelerations are observed 
when the swinging amplitude of the bell and the iner-
tia of the system are the greatest (extreme values of 
lmb parameter). Moreover, the excitation force is act-
ing only in the horizontal direction, influencing the 
ẍs values. Accelerations in the horizontal direction 
are still somehow determined by the ringing scheme, 
however, the inertia of the bell and excitation force 
are predominant. The maximum acceleration values 
in the horizontal direction are approximately 40% 
greater than in the vertical direction. Parameter lmb 
has minor influence on the ÿs(max) , ẍs(max) in com-
parison to parameter �SP.

4 � Conclusions

In the paper, we assess the influence of the propul-
sion design on the system response. We focus on the 
transient response. Some attention is paid to steady-
state motion because we show that the same attractors 
are reached regardless of the investigated case. In the 
analysis, we use the validated mathematical model 
of the novel yoke–bell–clapper system with variable 
geometry. We investigate three exemplary configura-
tions of propulsion. Using a sample-based approach 
for each configuration, and we perform 100,000 
numerical trials for various yoke geometries and 
swinging amplitudes. After the analysis, the follow-
ing conclusions were drawn:

•	 Lowering the propulsion system vertically with 
respect to the yoke axis of rotation decreases the 
launching time of the bell at the cost of increased 
horizontal accelerations in the supports during 
transient time.

•	 The vertical accelerations during the transient 
time are increased when the linear motor is closer 
to the yoke axis of rotation.

•	 Considering steady-state response, the 
accelerations in the supports in the vertical 
direction depends mainly on the number and 
type of impacts between the bell and the clapper, 
while accelerations in the horizontal direction are 
predominantly determined by the inertia of the 
bell.

•	 Regardless of the propulsion system set-up, the 
steady-state response of the system is considered 
the same (As shown in Fig. 5)

The last conclusion somehow diverts attention from 
proper propulsion system design. When the control 
for the bell is designed, attention is paid only to the 
appropriate ringing scheme. However, what was shown 
in this paper, in practice, one may obtain the desired 
ringing scheme in different ways with distinct propul-
sion system designs and consequently with different 
transient responses of the system. The presented results 
are of practical importance as they enable the tool to 
optimize the system’s transient response in terms of 
reducing the time needed to achieve proper ringing 
and minimizing unwanted overloads of yoke bearings 
and supporting structure. The presented outcomes are 
the first comparative analysis considering different 
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propulsion designs for the yoke–bell–clapper system. 
The subject of the analysis contributes to the topic 
devoted to the dynamic interaction between the bells 
and their supporting structures that is recently widely 
considered by the scientific community.
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