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identification, was examined. Experimental data from 
a double torsion pendulum system, characterized by 
discontinuous dynamics, is employed for training. 
Results demonstrate the PINN’s superiority, provid-
ing more accurate representation of stick–slip phases 
at the contact zone and exhibiting faster performance 
compared to the N–M algorithm. The paper con-
cludes by deliberating on challenges, prospects, and 
future directions in friction modeling.

Keywords Friction force model · Dynamic friction 
model · Static friction model · Frictional torque · 
White-box friction model · Grey-box friction model · 
Black-box friction model · Physics-informed neural 
network

1 Introduction

Multibody dynamics is a field that focuses on the 
modelling of complex and highly coupled mechanical 
or mechatronic systems, which typically possess mul-
tiple degrees of freedom and undergo rotational and/
or translational motion. The presence of friction in 
such systems cannot be overlooked, as it can lead to 
steady-state errors, stick–slip motion, and limit cycles 
[1]. Therefore, it is crucial to investigate the nature 
of friction and its behaviour under different circum-
stances to enable compensation and enhance the 
design of these systems. Friction is prevalent in vari-
ous industrial and sensitive systems, including robotic 

Abstract This paper presents an exploration of fric-
tion modeling encompassing theoretical and practical 
aspects, utilizing a planar or 2D contact system. Vari-
ous white-box friction models, including static and 
dynamic variants, are introduced, highlighting the 
superior capability of dynamic models in comprehen-
sively capturing friction effects, substantiated through 
numerical simulation. Practical aspects of friction 
measurement and data-driven friction modeling are 
elucidated. The discourse extends to the development 
of grey-box and black-box friction models. A signifi-
cant contribution lies in the proposition of a physics-
informed neural network-based friction modeling 
approach, presenting it as an advanced and prefer-
able alternative for friction estimation. To exemplify 
its efficacy, a case study of a torsion-based frictional 
contact scenario, employing Physics-Informed Neural 
Network (PINN) and the Nelder–Mead (N–M) algo-
rithm for concurrent dynamics and friction model 
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manipulator joints, where it can be responsible for 
up to 50% of the positioning error in heavy industrial 
manipulators [2]. Other examples of systems where 
friction plays a significant role include large motor 
and rotor assembly, milling machine tool feed drives, 
surgical robot joints, and the drive mechanism of an 
astronomical mount system.

Friction is a natural form of external resistance that 
occurs at the contact point or points of contact surface 
of two bodies. This phenomenon is influenced by var-
ious factors, such as the sliding or relative velocity, 
the material properties of the contact surface, tem-
perature, and the presence and type of lubrication [1]. 
When two bodies are stationary, static friction occurs, 
whereas kinetic friction occurs when the bodies are 
in motion. Frictional behaviour can be observed in 
two regimes: the pre-sliding regime, which deals with 
microscopic effects, and the sliding regime, which 
deals with macroscopic effects. A transition regime 
also exists between these two regimes. Research-
ers have studied various aspects of friction, includ-
ing stiction, viscous effects, the Stribeck effect, pre-
sliding displacement, stick–slip effects, hysteresis (or 
frictional lag), varying break-away force, and chaos 
(or bifurcation) [3]. Many researchers have investi-
gated friction over the years [4–9], as it has a signifi-
cant impact on the efficient operation and control of 
many engineering systems.

The investigation of friction dates back to the six-
teenth century, and since then, various mathematical 
models have been explored to comprehend the behav-
iour of friction in diverse systems. Notable models 
include Coulomb, viscous, Karnopp, LuGre, Dahl, 
Leuven, and generalized Maxwell-slip. These models 
are categorized into static and dynamic friction mod-
els [10]. However, static models have limitations in 
their ability to capture the richness of frictional phe-
nomena. Additionally, their results are less accurate 
than dynamic models, as stated in [11]. Another chal-
lenge posed by some of the existing friction models 
is the discontinuity that emerges when transitioning 
from the pre-sliding to sliding regime, as noted in 
[12].

In [4], a total of 21 static and dynamic models 
were reviewed, each with its unique advantage. This 
is due to the complex nature of friction, which makes 
it challenging to formulate a single model that cap-
tures all aspects of friction [13]. Consequently, sev-
eral questions arise when dealing with a new system 

or machine, including: (1) which of the existing fric-
tion models is most suitable for the system; (2) what 
are the dominant frictional phenomena in the system 
of interest; and (3) whether the selected model is ade-
quate to represent the essential frictional aspects, or 
if a new friction model is necessary. Clearly, identi-
fying the appropriate friction model is neither trivial 
nor straightforward, as each system is unique. In [14], 
a novel nonlinear friction model was formulated and 
validated on the first three joints of a 6-DoF industrial 
robot (ER-16 without payload). The model comprises 
Coulomb and viscous terms and two additional terms 
to capture frictional behavior at motion reversal. The 
results demonstrate that the improved friction model 
is superior to the Coulomb-viscous model in repre-
senting the friction characteristics of the manipula-
tor’s joints.

The current static and dynamic friction models are 
considered to be white-box models, as their corre-
sponding parameters require estimation from empiri-
cal data. In [15], the authors investigated various fric-
tion models, including Coulomb, Stribeck–Coulomb, 
LuGre, and GMS, for a DC motor [16], while utiliz-
ing the Nelder–Mead simplex algorithm for param-
eter optimization of each model. In [17], the pulley 
bearing friction of a 6-DoF cable-driven robot was 
modeled using the Coulomb friction model. In [18], 
three friction models, namely non-conservative, lin-
ear, and nonlinear types, were compared for a rotary 
triple inverted pendulum. The non-conservative 
model considered only viscous friction, while the lin-
ear model included both Coulomb and viscous fric-
tion. The third model, the nonlinear friction model, 
is comprised of zero drift error friction, Coulomb 
friction, viscous friction, and experimental friction. 
The estimation results, in terms of root mean squared 
error for each model, showed that the nonlinear fric-
tion model was more effective in estimating the joint 
frictions of the system.

For many applications, the Coulomb or viscous 
friction models are satisfactory in depicting the fric-
tional behavior or effect within multibody dynamic 
systems. However, for machines or systems where a 
high level of accuracy in positioning is required—
such as within the micrometer range in machine tool 
applications—more sophisticated and effective fric-
tion models are needed [19].

Black-box modeling is an alternative approach 
employed to develop friction models. For instance, 
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in [20], the authors considered a tribometer and 
employed a nonlinear autoregressive model with 
a polynomial order of 5, local, and recurrent neural 
networks to model friction in sliding and pre-sliding 
regimes, without incorporating any prior physics-
based knowledge of the test system. Furthermore, in 
[21], neural networks were utilized to estimate the 
friction coefficient of a titanium-based sliding surface 
under varying conditions, including temperature, slid-
ing velocity, and stress. The results showed that the 
radial basis type of neural network outperformed the 
multi-layer feed-forward type in estimating the fric-
tion coefficient.

However, there has been limited research on uti-
lizing neural networks and other machinelearning 
techniques to develop friction models for various 
mechanical and mechatronic systems. The few ones 
found include the use of neural network optimized 
by genetic algorithm to model the static friction in 
a robot joint [22], long short-term memory (LSTM) 
which is a type of neural network to model the non-
linear friction error of a CNC machine tools [23], 
convolutional neural network to identify friction in 
a 6-DoF robotic arm [24] and LSTM to model the 
rolling friction in a mechanical system [25]. Further-
more, there is scarce information available regarding 
the type of data and experimental methods required 
for friction estimation. Additionally, several issues 

are not well understood, such as the selection of 
time-domain or frequency-domain data, open-loop or 
closed-loop experiments, online or offline estimation, 
and the necessity for data pre-processing.

This paper aims to present a novel approach to 
friction estimation, proposing a PINN-based fric-
tion modeling method. The supporting objectives of 
this study include: (1) investigating the performance 
of common frictional models through a numerical 
simulation of a double torsion pendulum reduced 
mathematical model; (2) discussing practical data-
driven friction modeling approaches; (3) demonstrat-
ing the data-driven dynamic and friction modeling of 
a double torsion pendulum system using PINN and 
comparing its results with those of the Nelder–Mead 
(N–M) algorithm; and (4) discussing the challenges 
and potential advancements in friction modeling.

The overview of this review paper is illustrated in 
Fig. 1. In Sect. 2, various common static and dynamic 
friction models are presented along with a numerical 
simulation to show the superiority of dynamic models 
in capturing friction effects. Section 3 provides an over-
view of friction measurement, useful concepts in data-
driven modelling, and the development of grey-box and 
black-box friction models. In Sect. 4, we present a case 
study where PINN is used to simultaneously identify 
the dynamic and friction model of a double torsion pen-
dulum. Finally, Sect. 5 covers the concluding remarks, 

• Sta� cimanyddnac
models

• Numerical simula� no

• Conclusion
• Future work

• Fric� tnemerusaemno
• Useful data-driven

modelling concepts
• Grey-box and black-
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• Results and discussion

Fig. 1  The research overview
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challenges and prospects of friction modelling, and 
future directions of our research.

2  Physics‑based friction models

The physics-based, or white-box, friction models can 
be classified into two categories: static and dynamic 
models. This section provides an overview of various 
static and dynamic friction models and presents the 
numerical simulation of a few selected friction models.

2.1  Static and dynamic friction models

In the domain of friction modeling, static models typi-
cally assume the absence of microscopic effects in the 
pre-sliding regime, while dynamic models account for 
both microscopic and macroscopic friction effects dur-
ing both the pre-sliding and sliding regimes [7]. As a 
result, dynamic models are better suited to capture the 
microscopic surface displacements that occur during 
the pre-sliding phase, as well as the lags or hysteresis 
that arise during sliding. The unique characteristics of 
these two types of physics-based or mathematical fric-
tion models are summarized in Table 1.

The frictional phenomena that are captured by white-
box friction models include static friction, dynamic 
friction, break-away force, pre-sliding displacement, 
frictional lag or hysteresis and stick–slip [3, 11]. Static 
friction gives a description of friction during the stick-
ing phase, i.e., when the sliding velocity is zero, while 
dynamic friction refers to the dominant friction during 
the sliding/slipping phase. Break-away force is the force 
required to overcome stiction. Stribeck effect shows 
the decrease or negatively sloped characteristic of fric-
tion force in the low sliding velocity regime (i.e., when 
moving from static to Coulomb friction). Pre-sliding 
displacement or Dahl effect is the microscopic motion 
between two contacting surfaces during the sticking 
phase. Frictional lag or hysteresis happens when there 
is a delay in the change of frictional forces under an 
unsteady condition. This can be observed through 
a change in the path of friction force as the relative 

velocity oscillates (i.e., accelerate and decelerate) [26]. 
Stick–slip motion occurs which the sliding velocity 
fluctuates; thus, causing an intermittent motion.

Some examples of the commonly used static and 
dynamic friction models are summarized in the fol-
lowing sections, where one or a combination of the 
explained phenomenal can be found. Three static: 
Coulomb, Coulomb-viscous and Stribeck; and three 
dynamic: Dahl, LuGre, and generalized Maxwell-slip 
friction models are presented in terms of their math-
ematical function, parameters, and other distinguishing 
features.

2.1.1  Coulomb friction

The Coulomb friction is mathematically expressed with 
the use of sgn function as follows:

where Fc = �cN , Ff  is the friction force [N], Fc is the 
Coulomb friction [N], Fa is the applied force [N], N is 
the force perpendicular to the contacting surfaces [N] 
and it is directly proportional to the frictional force, v 
is the relative sliding velocity [m/s] and �c is the coef-
ficient of Fc [−] which is a measure of resistance pre-
sent at the contact surface during a sliding or rolling 
motion.

This friction model is often used because its struc-
ture is simple and easy to implement. However, one of 
its drawbacks include a discontinuous behaviour at zero 
velocity, which is caused by the sign function. To avoid 
this issue and ensure a smoother behavior of the model, 
an alternative approach involves approximating the sign 
function with a hyperbolic tangent function. [27]. The 
friction model with the hyperbolic tangent function 
takes this form [28]:

(1)Ff =

{
Fcsgn(v) if v > 0,

Fa if v = 0 and Fa < Fc,

(2)Ff = Fc tanh(𝛼ẋ),

Table 1  Static and 
dynamic friction models 
characteristics

S/No Property Static friction model Dynamic friction model

1 Structure Simple structure Complex structure
2 Type of parameters Static Static and/or dynamic
3 Computation time Generally low Generally high
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where lim𝛼→∞ tanh (𝜀ẋ) = sgn(ẋ) , � is an arbitrary 
constant in the range 0 → ∞ [s/m]. The lower the 
value of � , the smoother the approximation.

The other drawbacks of Coulomb friction model is 
that frictional phenomena like viscous, Stribeck, pre-
sliding and hysteresis effects are not present [4, 11].

2.1.2  Coulomb‑viscous friction

The Coulomb-viscous model is an extension of the 
Coulomb model and follows:

where Fv = �vv, Fv is the viscous friction [N] and 
�v is the viscous fricition coefficient [N  s/m] which 
measures the intensity of damping influence and is 
closely linked to the viscosity of the fluid.

The Coulomb-viscous friction model parameters 
are �c and �v . Basically, the viscous friction model 
was developed to describe the effect of lubrication in 
the two contact surfaces. As such, the application of 
this friction model is limited and mostly integrated 
with other models like Coulomb [11, 29, 30].

2.1.3  Stribeck effect

The Stribeck model is formed by combining Cou-
lomb, viscous and Stribeck effect. The mathematical 
formation is [11, 29, 30]:

(3)Ff = Fcsgn(v) + Fv,

where Fs = �sN , Fz is the Stribeck friction [N], Fs is 
the static friction [N] and �s is the coefficient of Fs 
[−] which represents the level of opposition to motion 
exhibited by the surfaces before a relative motion 
and vs is the Stribeck velocity [m/s], � is an empiri-
cal parameter from 0.5 to 2 (the exponential model 
becomes Gaussian model), but can be very large for 
systems with effective boundary lubricants.

The Stribeck effect parameters include �s , �c and 
�v . The static friction models introduced are depicted 
in Fig. 2.

2.1.4  Dahl

The Dahl friction model stands as an early dynamic 
model conceived to elucidate the friction characteris-
tics of ball bearings. It postulates that the frictional 
force is directly related to the average bristle deflec-
tion [4, 31]. Figure  3 illustrates the deflection of a 
bristle when two rough surfaces are in contact.

This friction model follows:

where z represents the average bristle deflection [m], 
�0 is asperity stiffness [N/m] and � is the parameter 
that determines the coefficient of the hysteresis loop 
[−], � = 1 − sgn(v)�0z∕Fc [−].

(4)Fz = Fv + sgn(v)
[
Fc + (Fs − Fc)e

−(v∕vs)
� ]
,

(5)Ff = 𝜎0z, ż = vsgn(𝛾)|𝛾|𝛽 ,

Fig. 2  Static friction model 
characteristics

(a) Coulomb (b) Coulomb + Viscous

(c) Coulomb + Stiction (d) Coulomb + Stiction + Stribeck
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The three parameters associated with this friction 
model are �0 , �c and � . This model was developed 
to describe pre-sliding friction but does not capture 
Stribeck effect [6, 32].

2.1.5  LuGre

The LuGre friction model is one of the most popular 
dynamic friction models and it is described through 
the following equations [6, 9, 11]: 

 where �1 and �2 are the damping and viscous coeffi-
cients that relate to the pre-sliding and kinetic friction 
states, respectively [Ns/m].

This model has six parameters, which are �0 , �1 , 
�2 , �c , �s and �.

The LuGre friction model is an improvement of 
Dahl’s model. It captures pre-sliding friction, stiction 
effects, viscous friction and Stribeck effect. In addi-
tion, it is the most applied dynamic model to different 
mechanical and mechatronic systems due to simplis-
tic form compared to other dynamic models like Leu-
ven and generalized Maxwell-slip [6, 33].

(6a)Ff = 𝜎0z + 𝜎1ż + 𝜎2v,

(6b)ż = v −
𝜎0

Fz(v)
z|v|,

(6c)Fz = Fc + (Fs − Fc)e
−(v∕vs)

�

,

2.1.6  Generalized Maxwell slip

In this model, friction force is described as a multi-
state system with n viscoelastic elements connected 
in parallel as described in Fig. 4.

Each element shares a common dynamic model 
but possesses distinct parameters. The equation used 
to describe GMS friction model is [19, 34]:

where Ki and Bi are the stiffness and damping coef-
ficients of the i-th element in [N/m] and [N  s/m], 
respectively. Each element stick until zi = si(v) for 
sliding to begin, v is the velocity input to the system 
[m/s], si(v) is the stribeck or velocity-reducing func-
tion of each element, Ci is the attraction parameter 
of the i-th element [−], which determine the speed at 
which zi approaches si(v).

The GMS friction model described above has the 
many parameters; they are Ki , Bi , si , Ci and �V.

2.2  Comparison of the discussed friction models

In this section, we shortly summarize the discussed 
static and dynamic friction models: Coulomb, Cou-
lomb-viscous, Stribeck, Dahl, LuGre, and generalized 

(7)Ff =

n∑
i=1

(
Kizi + Biżi

)
+ Fv,

(8)
dzi

dt
=

{
v if stick,

sgn(v)Ci

(
1 −

zi

si(v)

)
if slip,

Bristle

Stationary
surface

Sliding
surface

Fig. 3  The physical analogy of the bristle nature of friction in 
the Dahl model [31]

Fig. 4  GMS friction model representation [19]
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Maxwell-slip models. We provide below a brief com-
parison of their mathematical functions, parameters, 
features fields of use accuracy, features and complex-
ity and applicability: 

A. Static friction models discussed in Sect. 2.1: 

1. Coulomb friction model:

– Mathematical function: friction force is 
proportional to the normal force.

– Parameters: coefficient of friction.
– Features: simple, widely applicable, stick–

slip behavior, limited accuracy.

2. Coulomb-viscous friction model:

– Mathematical function: combination of 
Coulomb and viscous friction.

– Parameters: coefficient of friction, viscous 
damping.

– Features: adds damping, useful for specific 
cases, moderate accuracy.

3. Stribeck friction model:

– Mathematical function: captures transitions 
between friction regimes.

– Parameters: Stribeck curve parameters.
– Features: models sliding speeds, better 

accuracy in some cases.

B. Dynamic friction models discussed in Sect. 2.1: 

1. Dahl friction model:

– Mathematical function: linear springs and 
dampers.

– Parameters: spring constants, damping 
coefficients.

– Features: varying velocity, rate-dependent 
effects, calibration.

2. LuGre friction model:

– Mathematical function: nonlinear differen-
tial equations with observer.

– Parameters: static friction, viscous friction, 
stiffness, etc.

– Features: captures static and dynamic fric-
tion, pre-sliding.

3. Generalized Maxwell-slip friction model:

– Mathematical function: Maxwell element 
with slip threshold.

– Parameters: Maxwell element parameters, 
slip threshold.

– Features: viscoelasticity, slip behavior, 
material compliance.

C. Field of use accuracy:

– Static models: simple and applicable, limited 
accuracy.

– Dynamic models: accurate for varying veloci-
ties, complex dynamics.

D. Features and complexity:

– Static models: easy to use, lack dynamic fea-
tures.

– Dynamic models: include rate-dependent 
effects, pre-sliding, material compliance.

E. Applicability:

– Static models: basic analyses, negligible veloc-
ity effects.

– Dynamic models: real-world systems, varying 
velocities, complex behavior.

2.3  Numerical validation of selected friction models

In this numerical simulation study, we consider a 
reduced model of a double torsion pendulum system 
shown in Fig. 5 with the aim to simulate the dynamic 
response of the system based on four friction models 
[35].

2.3.1  Model

The mathematical formulation of the simulated dou-
ble torsion pendulum model was established in [35] 
using the Lagrange method. In the modified and 
reduced mathematical model, we introduce the time 
series �1,m(t) as an input in [rad], representing the 
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real angular displacement of the lower contact sur-
face (illustrated in red in Fig.  5). Additionally, we 
calculate its approximate second time derivative. This 
leads us to the subsequent second-order semi-empiri-
cal dynamic system governing the rotational motion 
of the disk with respect to the �2 coordinate:

In this equation, k2  [N  m/rad] stands for the stiff-
ness coefficient of two symmetric beam springs 
connected to the upper disk, fixed atop the inertia 
column J1  [kg  m2], and anchored at the disk of iner-
tia J2  [kg   m2]. The parameter c2 [N  s/m] represents 
damping between the beam springs and the rotating 
disk (as depicted in the upper part of Fig.  5). The 
term Ff   [N  m] corresponds to the friction moment 
and is addressed by four friction models detailed 
in Sect.  2.1. These models encompass two static 
(LuGre, Coulomb) and two dynamic (Dahl and Cou-
lomb) formulations.

2.3.2  Numerical simulation

The four friction models that were simulated are the 
LuGre, Coulomb and viscous, Dahl and Coulomb, 
respectively.

The parameters of four experiments conducted in 
this experimental part are as follows: J2 = 2.17 ⋅ 10−4 , 
c2 = 0.19 , k2 = 0.7 , �v = 0.5 , �c = 0.12 , �s = 0.16 , 

(9)
d2�2

dt2
=

1

J2

(
−c2

d�2

dt
− k2�2 − Ff

)
−

d2�1,m

dt2
,

� = 2 , �0 = 2 ⋅ 104 , �1 = 102 , �2 = �v , vs = 10−3 , and 
the parameter of smooth approximation of sign func-
tion, � = 103 . The initial conditions superposed on 
the disk body are zero while forcing of the mass is 
initiated by the input d2�1,m∕dt

2 . More detail about 
the experimental part and its conditions can be found 
in [35].

Figure 6a and b demonstrate the effect of numeri-
cal simulation carried out with the use of the investi-
gated friction models.

We observe that in Fig. 7a and b, the friction mod-
els exhibit different temporal responses. In the case of 
the investigated dynamic system, the static Coulomb-
viscous friction model closely follows the dynamic 
LuGre friction model. However, in this scenario, the 
use of both models does not yield favorable results, as 
the blue and purple trajectories deviate significantly 
from the expected temporal behavior. On the other 

tipi

contact

stopo pin
brackekk t

beam
springs

spiral
spring

bearing

planar

axaa isii ofoo rorr tation
didd si k

column

Fig. 5  Physical model of a double torsion pendulum [35]

(a) friction forces versus velocity

(b) friction forces and input versus time

Fig. 6  Profile of different friction models (a) with respect to 
velocity (b) with their corresponding time response to the test 
input function �̇�

2
(t) = 0.02 sin(0.2𝜋t) (b)
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hand, the second pair of temporal responses, i.e., 
the static Coulomb and dynamic Dahl models, also 
nearly coincide, but depict a behavior closer to real-
ity. The simulated behavior captures abrupt changes 
at the moments of the disc rebounding from soft bar-
riers and changing direction. It is noteworthy that all 
models lead to similar lengths of the disc’s adherence 
zones as it rotates on the upper surface of the column.

3  Data‑driven friction models

This section is focused on the measurement tech-
niques for friction and the discussion of benefi-
cial data-driven modeling concepts. Furthermore, 
this section will present an in-depth explanation 
of the grey-box and black-box friction modeling 
methodologies.

3.1  Friction measurement

It is challenging to accurately predict the frictional 
behavior of a system without measurements and esti-
mation of certain parameters. Friction can be directly 
measured using a tribometer or indirectly estimated 
based on its impact on other measurable quantities 
of the system. As reported by Kossack  et  al.  [36], 
there are two primary methods for measuring fric-
tion: force-based and velocity-based friction 
measurements.

In the force-based approach, the friction force 
between two contact surfaces is measured along 
with the relative velocity and/or displacement 
between them as a function of time. For example, 
Radons et al. [37] considered a test set-up where fric-
tion force and relative displacement were measured. 
On the other hand, the velocity-based approach is 
employed when it is difficult to place a force sensor 
in a suitable position on the system. In [36], veloc-
ity measurement coupled with an estimation method 
based on energy analysis was proposed to param-
eterize a simple friction model. The velocity data 
obtained from a friction measuring machine and its 
identified structural dynamics, such as mass, damp-
ing, and stiffness coefficients, were used to estimate 
the friction force of the machine.

Moreover, in the friction identification case study 
for robotic manipulators presented in [38], it was not 
practical to directly measure the friction force at vari-
ous joints. Instead, a method was employed to meas-
ure friction by applying a low torque signal to one 
joint while locking the other joints and measuring the 
corresponding velocity. In [39], an electrical motor 
was utilized as a test stand operating in torque mode. 
The motor was subjected to an increasing torque in 
the form of an analog voltage, and the angular posi-
tion was measured using an encoder. Additionally, 
the angular velocity of the motor was determined by 
numerically integrating the angular position signal.

When dealing with translational mechanical or 
mechatronic systems, such as mass-spring systems 
pulled on a friction surface, the friction force and 
sliding velocity are measured to enable the estimation 
of the selected friction model. Conversely, in rota-
tional mechanical or mechatronic systems, friction 
torque, and angular velocity are measured. At a con-
stant velocity, the force or torque input to the system 
equals the friction force or torque ( Ff  or �f ):

(a) angular position

(b) angular velocity

Fig. 7  Time characteristics of the disk dynamics at various 
models of friction
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When ẋ is constant, ẍ = 0 and Fap = Ff  . Similarly,

At constant angular velocity, q̈ = 0 and �ap = �f , 
where Fap and �ap are the applied friction and torque, 
respectively.

The velocity at which an experiment is conducted 
is a crucial factor to consider. For instance, experi-
mental data collected at low velocities are essential 
for identifying the dynamic parameters of a dynamic 
friction model, such as the LuGre model. Another 
intriguing and unexplored aspect of friction identifi-
cation is obtaining input–output data, which is indi-
rectly related to the friction force/torque of a system. 
By understanding the governing equations of this 
data, a robust friction model can be estimated. This 
approach will be demonstrated in one of the case 
studies presented in Sect. 4.

3.2  Useful data-driven modelling concepts

There are several important concepts to consider 
when developing a data-driven model, which will be 
discussed in the following sections.

3.2.1  System excitation

The selection of the input excitation signal is a cru-
cial factor in determining the quality and accuracy of 
the estimated friction model as well as the richness of 
the acquired data. A well-designed excitation signal 
is capable of capturing the fundamental features of 
the system dynamics. Various excitation signals have 
been documented in the literature, including pseudor-
andom binary sequence (PRBS), chirp or swept sine, 
multi-sine, and step signal [40].

In [41, 42], a bang–bang signal with a delay was 
employed to stimulate a two-link flexible manipu-
lator. The design of the excitation signal took into 
account the maximum allowable input current to the 
manipulator. The time-series response of the system 
was acquired in batches as the amplitude of the signal 
varied. Additionally, [43] utilized a swept-frequency 
cosine signal to excite a servo drive system.

(10)Mẍ = Fap − Ff .

(11)Jq̈ = 𝜏 − 𝜏f .

3.2.2  Time‑domain and frequency‑domain data

Data can be available in two modes: time domain and 
frequency domain. Time-domain data consists of one 
or more input and output signals measured as a func-
tion of time. On the other hand, frequency-domain 
data shows input and output signals as a function of 
frequencies. Through transformation methods such as 
the Fourier transform, it is possible to convert a signal 
from time-domain to its frequency-domain equiva-
lent. Data are analyzed in the frequency-domain when 
the observed signal is periodic [44]. However, the 
frequency-domain approach is not commonly used 
due to the susceptibility of frequency response meas-
urements to noise [45]. Hence, time-domain data is 
popularly used for the prediction of friction models.

In [46], a random noise signal was employed to 
excite a rotating arm system, and the resulting fre-
quency response function was determined. The fre-
quency-domain data obtained from the measurement 
was then utilized to identify the stiffness and damping 
parameters of a linearized second-order LuGre fric-
tion model at the pre-sliding regime. The accuracy of 
the estimated friction model parameters was validated 
through another experiment that involved measuring 
time-domain data. The results indicate that the esti-
mated friction model is locally valid when the applied 
force and pre-sliding displacement are approximately 
zero. In addition, the dynamic friction of a servomo-
tor system was analysed in both the time and fre-
quency domains using the GMS friction model pre-
sented in [47].

3.2.3  Closed‑loop and open‑loop system 
identification

The friction model of a system can be identified by 
utilizing the data acquired from either an open-loop 
or closed-loop system. Among these two methods, the 
open-loop system identification approach is predomi-
nantly used. However, closed-loop system identifica-
tion is also employed, particularly when the identified 
system is unstable when operated in open-loop mode.

In [11], closed-loop steady-state experiments were 
conducted with a PI velocity controller to estimate 
the coefficients of Coulomb and viscous friction of 
a brushless DC motor. The reference velocity range 
for each conducted experiment was between 0.05 and 
15.7  rad/s in both positive and negative directions, 
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and the control effort (representing the friction force) 
was measured accordingly. The friction behavior 
in a 1-D astronomical mount system joint was con-
sidered in [48], where the LuGre friction model was 
employed. The static parameters of the model were 
identified using data obtained through a closed-loop 
control experiment with a PD controller, while the 
dynamic parameters were identified through an open-
loop experiment. A neural network can be used to 
determine the dependence between the open-loop 
controller’s output and some selected states of a dis-
continuous system [49].

3.2.4  Online and offline identification

The friction model can be identified either on-line 
or off-line. In the on-line identification approach, 
the parameters of the friction model are continu-
ously updated as new data becomes available dur-
ing the operation of the system. Conversely, in the 
off-line estimation method, the first step is to acquire 
input–output data, after which the friction model 
parameters are subsequently estimated.

In [50], a recursive least-squares method-based 
online identification algorithm was utilized to deter-
mine the drive mass and sliding friction (Coulomb, 
viscous, and Stribeck) of a ball screw-driven feed 
drive test stand. This identification approach was 
employed to decrease the computation time and com-
plexity associated with offline methods. The meas-
ured data was used directly without any preprocess-
ing, and a two-stage identification technique was 
proposed. In the initial stage, the equivalent mass of 
the feed drive, viscous friction coefficient, and Cou-
lomb friction were identified while the system oper-
ated at high velocities. The Stribeck friction model 
parameters, breakaway force, and Stribeck velocity, 
were identified in the second stage when the system 
was operating in the low-velocity region.

3.2.5  Data pre‑processing

This kind of pre-processing pertains to operations 
conducted subsequent to data acquisition from a 
physical system, aimed at improving the quality of 
the acquired data. The range of operations comprises 
but is not restricted to noise reduction or elimination, 

the removal of outliers, and data scaling. As an exam-
ple, a low-pass Butterworth filter can be utilized to 
diminish the noise present in the measured pendulum 
angle data of an inverted pendulum system undergo-
ing free vibration motion. The resulting smooth sig-
nal of the angular position was then utilized to com-
pute the angular position and angular acceleration of 
the pendulum, respectively.

The exclusive objective of data processing is to 
enhance the quality of data. Nevertheless, this must 
be executed with care to prevent the loss of some 
information.

3.3  Grey-box friction modelling

Experimental data is utilized in the development of 
grey-box friction models, which involve the selec-
tion of an existing (or new) static or dynamic model 
and estimation of the associated parameters based on 
the experimental data and the chosen identification 
algorithm for parameter optimization, as illustrated 
in Fig.  8 [20]. Various identification algorithms, 
including least-squares, recursive least-squares, 
Nelder–Mead simplex algorithm, genetic algorithm, 
particle swarm optimization algorithm, and others, 
can be employed in this process.

It is worth noting that although there are several 
identification algorithms available, the commonly 
used ones in literature will be briefly discussed. 
They include least-squares, recursive least-squares, 
Nelder–Mead simplex algorithm, and genetic 
algorithm.

3.3.1  Least‑squares and recursive least‑squares 
identification

The least squares method is utilized to determine 
a collection of parameters that minimize the mean 
squared error (MSE) between the desired and pre-
dicted outputs of a given system with m number of 
inputs x and outputs y [51]. The inputs and outputs 
have n data samples and � is the unknown linear 
regression coefficient of x and y. A linear regression 
model follows:

(12)

yi = xi1�1 + xi2�2 +⋯ + xin�n

=
[
x1 x2 ⋯ xn

]
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

�k

[
�1 �2 ⋯ �n

]
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

�T

.
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The matrix form of Eq. 12 given the size of x and y to 
be m is:

The MSE of the actual and predicted outputs is:

and the optimal �̂� that minimizes the MSE is

The least-squares algorithm is a widely used iden-
tification technique owing to its simplicity and ease 
of implementation [52]. The recursive least-squares 
(RLS) estimation is a modified version of the 
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(13)V =
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[Y(i) − X(i)�]2,

(14)�̂� = (XTX)
−1
XTY .

least-squares method that ensures the model param-
eters are updated with new data observed from a sys-
tem. RLS is computationally more efficient, offers a 
faster convergence and is suitable for online identifi-
cation [53]. In [54], the RLS method was employed 
to identify the mass and sliding friction of a machine 
tool feed drive system in an online setting.

3.3.2  Nelder–Mead simplex and genetic algorithm

The Nelder–Mead simplex algorithm is a well-
known optimization algorithm used to identify opti-
mal parameters in a multidimensional search space, 
by minimizing or maximizing an objective function. 
This derivative-free/direct search method is par-
ticularly effective in solving nonlinear optimization 
problems. The algorithm operates by employing a 
simplex, which is an n-dimensional geometric object, 
to search the domain. A simplex in n dimensions is 
comprised of n + 1 vertices. For instance, the simplex 

Physical 
system

Experiment

Fric�on 
measurement

(friction force and sliding
velocity)

Model structure:
Fric�on model

Identification algorithm: least- squares, RLS GA, PSO

Model validation

Model structure:
Dynamic model +

fric�on model

+-

Input and output 
data

(e.g. torque and
angular speed)

Physical 
system

Open-loop Closed-loop

Controller

Experimental data

Friction force models 
(static ordynamic), :
Coulomb, Coulomb+

viscous, LuGre, 
Maxwell-Slip

Unknowns:
can be represented 
by any static or 
dynamic friction 
model depending 

on the system

and

Fig. 8  Grey-box friction modelling
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of a 2-dimensional function is a triangle, while for a 
3-dimensional function, the simplex is a tetrahedron.

The steps performed during each iteration of the 
Nelder–Mead simplex algorithm involve the genera-
tion of a new simplex consisting of n + 1 points, the 
evaluation of the objective function at all of these 
points, and the transformation of the simplex via one 
of the following operations: reflection, expansion, 
contraction, or shrink contraction. The algorithm ter-
minates when any of the following criteria are met: 
the maximum number of iterations is reached, the 
simplex size reaches a minimum limit, or the current 
best solution reaches a desired limit. Figure 9a illus-
trates the Nelder–Mead simplex algorithm.

The Nelder–Mead simplex algorithm was utilized 
in [55] to determine the parameters of a double tor-
sion pendulum system.

The genetic algorithm is a local search algorithm 
that is commonly utilized to address optimization and 
search issues. This algorithm is inspired by Darwin’s 
theory of evolution. The algorithm begins by gener-
ating a population of individuals randomly, which is 
known as a generation. In each generation, the fitness 
of individuals is assessed regarding the problem’s 
objective function. Individuals with good fitness are 
selected for crossover and mutation, which leads to 
the formation of a new generation of candidate solu-
tions. The algorithm concludes when the maximum 
number of generations is achieved or when a solu-
tion that corresponds to a predetermined objective 
function value is achieved (i.e., successive solutions’ 
convergence). The genetic algorithm’s workflow is 
depicted in Fig. 9b. In [56], GA was used to identify 
the parameters of a LuGre friction model for a non-
linear mechanical servo system.

3.4  Black-box friction modelling

The black-box friction model is formulated using 
generalized models such as neural networks, which 
are subsequently trained with experimental data [20, 
57]. Figure  10 illustrates the black-box modelling 
structure that incorporates NN and PINN.

Fig. 9  The flowcharts of two search algorithms for parameter 
identification

▸
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3.4.1  Neural networks

Neural networks are a type of nonlinear identification 
tool that efficiently maps input and output measure-
ments of a system in a black-box manner. The archi-
tecture of a neural network is inspired by the human 
brain, and it uses interconnected neurons to capture 
complex abstractions in data [58, 59].

Each neuron in a neural network consists of a sum-
mation unit and an activation function, as illustrated 
in Fig.  11. The summation unit multiplies inputs by 
their associated weights, adds a bias term, and passes 
the result of the linear algebra through an activation 
function, such as sigmoid, hyperbolic tangent, recti-
fied linear unit, or pure linear [60]. 

(15a)oj = f (rj)

(15b)rj =

n∑
i=1

wij ∙ xi + bj

 where rj is the output of the neuron summation unit, 
oj is the output of the jth neuron, f (·) is the activa-
tion function, wij is the weight associated with the ith 
input, bj is the bias of the neuron and n is the size or 
number of the input (x).

A single-layer neural network can estimate a lin-
ear function, while a multi-layer neural network is 
required for nonlinear functions. In a multi-layer 
NN, there exist three layers: input, hidden, and out-
put layers. The number of inputs and outputs in the 
network are dependent on the training set. However, 

Fig. 10  Black-box friction modelling

Fig. 11  A single neuron network
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the selection of the number of hidden layers and 
neurons in each layer is determined through either 
trial and error or a domain search aided by algo-
rithms like Bayesian networks [61].

An artificial NN is typically trained using super-
vised learning, wherein the network’s weights and 
biases are randomly initialized at the start of train-
ing. During each iteration of training, the network is 
fed with an input, and its output is compared with the 
expected output (or target) using a loss function. The 
loss function measures the discrepancy between the 
predicted output and the target output [62].

where E is the mean squared error or loss between the 
actual output and the network prediction, y represents 
the actual target, ŷ represents the predicted output and 
m is the number of datapoints.

After computing the loss, the gradient of the loss 
with respect to the model parameters is calculated 
through a backward pass using the back-propagation 
algorithm. This algorithm propagates the error back 
through the network to determine how much each 
neuron contributes to the final output error. Once the 
gradient of the loss has been computed, an optimizer 
such as gradient descent, stochastic gradient descent, 
or ADAM is subsequently used to update each param-
eter so as to minimize the loss of the network over 
a defined training time (epochs) [63]. The optimiza-
tion process involves iteratively adjusting the param-
eters in the direction of the negative gradient of the 
loss function until convergence is reached. Math-
ematically, the weight and bias are updated iteratively 
through the gradient descent method as follows:

where � is the learning rate.
A neural network model is considered a good fit if 

it can accurately predict outcomes with new datasets, 
which is known as network generalization. An under-
fit model exhibits high bias and low variance, while 
an overfit model is characterized by low bias and high 
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1

m
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,
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variance [59]. Figure  12 depicts the training/learn-
ing plot, which illustrates the underfitting, optimal, 
and overfitting regions of a network in relation to its 
prediction error. Overfitting is a commonly encoun-
tered problem in machine learning [64]. One way to 
address overfitting is to design the model’s loss func-
tion in a manner that promotes small trained weight 
values, which results in a model with low variance 
that is better equipped to handle new datasets. This 
technique is known as regularization. Another way to 
prevent overfitting is to use large training datasets that 
cover the operating domain of interest in a dynamical 
system [64, 65].

Neural network techniques can be leveraged to 
approximate the friction force or torque of a system 
as a function of multiple input variables, including 
normal force, sliding velocity, and surface rough-
ness. This can be achieved by training the network 
using either experimental or simulation data. Once 
the training is complete, the network can be utilized 
to predict the friction force or torque for new input 
values.

The most prevalent types of neural networks are 
feed-forward, recurrent, and convolutional neural 
networks. However, a recent addition to the family of 
neural networks is the physics informed neural net-
work, which imposes constraints or regularization on 
the network by incorporating physical laws.

3.4.2  Physics‑informed neural networks

A major issue associated with white-box modeling 
is high bias, while the problem of black-box mode-
ling is model variance. Model variance arises when 

Fig. 12  Prediction error versus complexity of the model
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the dataset available for modeling is limited or does 
not encompass the operating range of the system. 
Bias arises due to assumptions and/or non-mod-
eled dynamics in the mathematical model of a sys-
tem. These two issues can be addressed by utilizing 
PINNs. Physics-informed neural networks enable the 
incorporation of physical laws governing a dynamic 
system into the formulation of the loss function, 
which results in regularization of the network param-
eters to conform to the prior physical knowledge and 
laws of the system. This regularization leads to better 
approximation of the system’s behavior [66–69].

PINN can be used to solve ordinary and partial dif-
ferential equations [69, 70]. For example, given a first 
order differential equation below:

where yis the dependent variable to be approximated 
by a neural network, t is time and � denote the system 
parameter.

The solution of the equation (i.e., y) can be approx-
imated by a neural network: Ñ(t) ≈ y(t) . The deriva-
tive of the network output is computed with respect to 
its inputs through automatic differentiation. By virtue 
of the network differentiation, the original equation 
can be encoded into the loss function that is used in 
updating the weights and biases of the network.

As a result, the new loss function that is used to opti-
mize the neural network is [71]: 

 where Ls is the loss of the solution, Leq is the loss 
computed based on the system equation and LT is the 
total loss.

(19)
dy

dt
= f (y, t, �), t ∈ [0, T]

(20)Leq =
dÑ(t)

dt
− f (Ñ(t), t, 𝛾)
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The objective or cost function of the network is to 
minimize LT by tuning the parameters of the network 
(i.e., the weights and biases of Ñ) [72].

The block diagram depicted in Fig.  10 illustrates 
the comparison between a standard NN and a PINN 
for modeling dynamic systems. A standard neural net-
work can solely capture the input–output relationship 
of a system based on its experimental data. Typically, 
the model obtained through such a network is either 
a dynamic or frictional model. In contrast, a PINN 
has the capability to map not only the input–output 
behavior but also the frictional behavior of a system 
by utilizing the governing equations and physical 
parameters of the system. The subsequent section will 
provide a case study to elaborate on the PINN meth-
odology of generating a friction model.

4  The rotational contact surface: torque 
estimation

In this case study, we demonstrate how the PINN 
modelling approach can be employed to accurately 
identify the frictional torque acting at the contact 
surface of a double torsion pendulum experimental 
set-up.

The experimental input–output data from a double 
torsion pendulum system were obtained to construct 
a dynamic model and friction model for the system. 
Additionally, a physics-informed neural network 
model was trained to forecast the angular rotation 
of the disk pendulum and to recognize the frictional 
torque at the contact surface of the pendulums. The 
experimental block diagram and identification over-
view are illustrated in Fig. 13. In addition, the PINN 
model results are compared to that of N–M based 
approach.

4.1  The experimental test stand and data acquisition

An isometric view of the test stand, which is a dou-
ble torsion pendulum system, is depicted in Fig. 14. 
The frictional resistance of the overall system is intri-
cate due to the combination of the frictional sliding 
stick–slip resistance of the disk, occurring at the part 
labeled 2 in Fig. 14, and the rolling resistance of the 
column placed in a bearing at the part labeled 9 in 



1901Meccanica (2023) 58:1885–1908 

1 3
Vol.: (0123456789)

Fig.  14. Therefore, our focus is on estimating the pla-
nar friction only at the pendulum’s surface, where the 
sliding stick–slip resistance effect occurs.

A detailed description of the test stand and experi-
mental procedures can be found in [35, 55].

Figure 15a and b illustrate the time series plot of 
the angular rotation, in degrees, of the column and 
disk pendulums, respectively.

4.2  Model estimation using Nelder–Mead simplex 
direct search algorithm

The objective of this section is to identify the 
parameters of a double torsion pendulum subjected 
to planar friction and elastic barriers by means of 
the white-box approach. The experimental setup 
shown in Fig.  14 consisting of a disk-shaped body 
rotating freely on top of a forced column, with a sys-
tem of barriers restricting the torsional vibrations 
of the upper pendulum body, resulting in nonuni-
form planar rotational frictional contact is identified 
as it has been particularly described in [35]. The 
dynamic behavior of this two-degree-of-freedom 
asymmetric system with discontinuities is identi-
fied using a combination of the described strategy, 

Fig. 13  Model identification structure for the double torsion pendulum system

Fig. 14  The double torsion pendulum prototype, where (1) 
upper free disk (2) friction surface (3) support frame (4) bear-
ing springs (5) column pendulum (6) drive mechanism (7) base 
(8) microcontroller and (9) ball bearing
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numerical solutions of the derived mathematical 
model, and the Nelder–Mead (N–M) simplex algo-
rithm. It bases on a universal and well-developed 
model of frictional contact studied in [73]:

where Ts [N  m] is a constant parameter controlling 
the amplitude of the spike in the friction coefficient, 
assuming that the range of relative velocities ( �̇�2 ) is 
narrow enough, the parameter T0 [s/rad] is responsible 
for the decay of friction force as the modulus of rela-
tive velocity is increasing, � [s/rad] controls the curve 
sharpness near zero and, finally, � [N m] controls the 
magnitude of spikes near zero, in other words, the 
rate of the original drop of the friction coefficient just 
after the moving mass quits the sticking (or a creep-
ing) area. Due to the nonuniform properties of the 
contact surface determined by the machining of steel, 
the model became asymmetric. When the relative 
velocity between the column and the disk is positive 

(22)
𝜏f (�̇�2) =

Ts

1 + T0
||�̇�2

||

(
1 +

𝛽

cosh 𝛼�̇�2

)
tanh 𝛼�̇�2,

[Ts, T0] =

{
if �̇�2 ≥ 0,

[Tsr, T0r] if �̇�2 < 0,

then “l”— left letter subscript is added, while in the 
opposite direction “r”—right letter occurs.

In the experiment, the torque exerted on the disk 
in the form of a pendulum by the column, denoted as 
𝜏 = J1�̈�1 , was calculated by sequentially measuring 
the angular position of the column, taking the second 
derivative of the obtained data series, and multiplying 
it by the mass moment of inertia constant of the col-
umn estimated in the CAD program.

After application of the Nelder–Mead sim-
plex direct search algorithm, a prediction of the 
disk behavior shown in Fig.  17a (gray line) and 
also a set of parameters of the friction model  (22) 
is found: Tsl = 0.2328 , Tsr = 0.0928  [N  m], 
T0l = 0.2188 , T0r = 0.0917  [s/rad], � = 92.6465  [s/
rad], � = 0.0928 [N m], J2 = 2.17 ⋅ 10−4 [kg  m2]. The 
results of the real measurement series and numerical 
solutions demonstrate quite a good similarity between 
the mechanical system’s response and its virtual 
analogue.

The drawback of this method is that the com-
putations for a relatively short series took almost 
45  min, and the convergence to the actual rotation 
angle trajectory is low during slip periods. However, 
relatively good mapping of the moments of engage-
ment and approximate knowledge of the parameters 
of the applied friction model is an advantage of this 
approach. Difficulties in adjusting the appropriate 
friction model (components) described in the above 
review can be somewhat overcome by estimating the 
desired friction moment occurring at the contact sur-
face. In the next section, we will focus on the use of 
PINN to estimate this torque and compare the trajec-
tories of both methods.

4.3  Model estimation using PINN algorithm

For a comparison purposes, the second model esti-
mation was performed using a PINN algorithm, as 
demonstrated by the flowchart presented in Fig.  16. 
The length of the dataset obtained from the con-
ducted experiment was 2950, comprising of fea-
tures such as time, column, and disk angular posi-
tions. The dataset was referred to as exp_data during 
implementation in Python. To form the training 
dataset, we split exp_data in the following manner: 
exp_data_tr = exp_data[0:2950:5] . This resulted in 
every fifth data point being included in the training 
dataset, named exp_data_tr ”. On the other hand, all 

Fig. 15  Input–output data of a double torsion pendulum sys-
tem
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the data points in exp_data were considered for the 
test dataset, denoted as exp_data_ts = exp_data.

The algorithm comprises of two multi-layer neu-
ral networks, where each network is composed of 
two inputs and one output. The first and second net-
works, denoted by N1 and N2 respectively, have the 
column pendulum angular rotation and the time vari-
able of the signal as their inputs, with different out-
puts. Specifically, the output of N1 is the disk pendu-
lum angular rotation, whereas N2 predicts the friction 
torque between the pendulums. The hyperparameters, 
including the number of hidden layers and neurons 
for each network, are identical and can be found in 
Table 2.

The loss function used in training N1 is the mean 
squared error of the predicted disk pendulum angu-
lar rotation, while the loss function for N2 is the com-
putation of the residual of the system derived from 
Newton’s second law of rotation:

where 𝜏 = J1𝜑1 is the torque of the column pendu-
lum, �f  is the friction torque being sought, J1 and J2 

(23)J2𝜑2 = 𝜏 − 𝜏f ,

are the mass moments of inertia of the column and 
disk pendulum, respectively.

The equation imposed a physics-based constraint 
on the model, providing N2 with the capability to 
predict the friction torque of the system. In addition, 
physics parameters J1 and J2 were incorporated into 
N2 as trainable parameters, and their lower and upper 
bounds were set close to the values reported in [35].

The PINN model was trained using a backpropaga-
tion algorithm and an ADAM optimizer, with training 
epochs k = 104 . Following training, the model was 
validated to ensure that the predicted angular rotation 
of the column pendulum closely matches the actual 
response. Furthermore, the model weights and biases 
were saved after training was completed.

4.4  Results and discussion

After 10,000 epochs of training the PINN model, 
the computation time was 90.23 [s] while the total 
loss was 0.587. In addition, the estimated values of 
J1 and J2 after training the PINN model are 10−3 and 
2 × 10−4 [kg  m2], respectively. It should be noted that 
the pendulums have irregular shapes, and J1 and J2 
were estimated from a CAD design. Consequently, 
while the disk’s inertia is accurately determined, the 
inertia of the column pendulum is less precisely esti-
mated due to some missing parts in the design assem-
bly compared to the actual system.

The PINN model was validated and the prediction 
results are presented in Fig. 17a and 17b. The model 
computational effort is moderate and it exhibited 
high accuracy in predicting the angular rotation of 
the disk pendulum. In Fig. 17c, the error shown was 
calculated by comparing the predictions of two mod-
els: the PINN model and the NM-based model. We 

Fig. 16  PINN algorithm flowchart

Table 2  Neural network hyper parameters

a Tanh for hidden layers; pure linear for the output layer

Hyper parameter Value

Number of hidden neurons 30
Hidden layer 2
Weight (w) and biases (b) initialization Random
Activation function a

Learning rate 0.01
Optimizer ADAM
Number of epochs 10,000
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looked at the difference between the actual angular 
position of the disk pendulum and what each model 
predicted. The PINN model’s difference was smaller, 
which shows that the PINN model is more accurate. 
Moreover, the model demonstrated an intriguing 
dynamic response to the friction torque that acted 
on the planar surface between the pendulums. Such 
dynamic behavior would have been unidentifiable 
using existing black-box friction models, given the 
limited input–output dataset available. Additionally, 
no data on friction measurement was available for 
training the PINN model, and only one experiment 
was performed.

By evaluating the obtained state estimation tra-
jectories of the studied torsion pendulum, it can be 
observed that PINN performs better while simul-
taneously compensating for the inaccuracy of the 

N–M based approach. Despite a slightly higher level 
of generality, we obtain better representation of the 
slip and stick phases and the breakaway friction 
torque, see Fig. 18. The error in estimating the fric-
tional torque is smaller compared to the N–M esti-
mation algorithm. Further research on this model 
could be conducted towards utilizing the friction 
torque characteristics in the contact zone to improve 
the friction model accuracy.

Finally, the estimated friction torque depend-
ency on the relative velocity of motion of the disk is 
achieved in Fig. 18.

By observing distinct positive ( �+
fs

 ) and negative 
( �−

fs
 ) breakaway torque values, located approxi-

mately in the relevant zones, as well as different 
slope angles ( �+

v
 and �−

v
 ) of the viscous friction 

branches, including one nonlinear branch, it can be 
demonstrated that the frictional contact is 

Fig. 17  Results of predic-
tion of the frictional torque 
characteristics with the use 
of two identification mod-
els: PINN and N–M
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non-homogeneous with regard to the direction of 
motion. This non-homogeneity is attributed to the 
varying surface roughness of the contact surface in 
opposing rotational directions.

5  Summary and conclusions

In this work, the various methods of modelling fric-
tion, including mathematical techniques such as 
static and dynamic methods, as well as data-driven 
methods have been presented. The performance of 
four friction models (Coulomb, Coulomb-viscous, 
Dahl and LuGre) was evaluated through a numerical 
simulation of a double torsion pendulum. The result 
showed that the static Coulomb and dynamic Dahl 
models nearly coincide, depicting a behavior closer 
to reality. Through our review, we have also provided 
detailed information on the appropriate experimental 
setup, system excitation, and identification methods, 
as well as pre-processing techniques for data-driven 
modelling. We found friction measurement to be a 
major challenge in the practical scenarios and pro-
posed using input–output data and neural network 
techniques like physics-informed neural network to 
estimate friction.

To demonstrate the effectiveness of the proposed 
approach, we have presented a case study in which 
a physics-informed neural network was used to pre-
dict the dynamic model and estimate planar friction 
of a double torsion pendulum system. The model 
was trained using time-series experimental data, and 
the results showed that the PINN model was able to 

accurately predict the angular rotation of the disk 
pendulum, while also estimating the planar friction 
between the pendulums. The PINN model was able 
to identify the frictional loss in the system without 
using any pre-existing friction models, and only 
relied on a simplified physics model with two esti-
mated parameters. The approach based on the PINN 
algorithm proved to be faster and more accurate 
than the older Nelder–Mead method, but requires 
further refinement due to the need for acquiring a 
broader knowledge of the friction model.

One of the challenges posed by dynamic friction 
models is their high computational cost, which can 
limit their applicability in large-scale simulations and 
real-time applications. As highlighted in Sect.  3.2, 
friction is a complex phenomenon that is challeng-
ing to measure experimentally. Consequently, reliable 
friction data may be unavailable, necessitating the use 
of indirect measurement methods to obtain accurate 
models. Additionally, the frictional behavior of a sys-
tem can vary widely depending on the materials and 
operating conditions, making it difficult to develop 
models that can predict friction accurately across a 
broad range of situations.

Furthermore, neural network-based friction mod-
els are black-box in nature and challenging to inter-
pret, which means it is difficult to understand how the 
model generates its predictions. Besides, data-driven 
friction models are not entirely accurate, and they 
have a high level of uncertainty when used to forecast 
friction under different conditions.

The effects of degradation and uneven wear on 
friction contact surfaces are currently only approxi-
mated by various static and dynamic tribological 
models (see Sect.  2). These models consider factors 
such as inelastic adhesion, elasticity of contact, and 
dynamic friction coefficients, but there is currently no 
general theory regarding this problem. The methodol-
ogy used to address this issue is described in Sect. 3, 
but it typically involves measuring dynamic variables, 
estimating their higher derivatives, and substituting 
them in real-time measurements to approximate the 
physical model. The resulting parameters are sub-
ject to high uncertainty due to the many factors that 
affect the process. The more parameters and friction 
effects that are considered, the greater this uncer-
tainty becomes. Therefore, using black-box models 
based on NN with known structures and coefficients 
is a promising and useful tool. The challenge lies 

Fig. 18  The estimated non-symmetric friction torque charac-
teristics (black dots)
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in matching the structure of the model to the given 
problem. The benefits of using such models include 
increased computational efficiency and the possibility 
of use in large-scale applications, as they depart from 
typical discontinuous dynamics models.

The prospects of friction modelling entail the 
development of accurate models capable of predict-
ing friction in a variety of systems and conditions, 
including varying loads and speeds. Additionally, it is 
imperative to create models that can forecast the evo-
lution of friction over time, incorporating the effects 
of degradation and wear. Furthermore, the integra-
tion of existing physics-based friction models with 
machine learning techniques like PINN can enhance 
model interpretability.

Looking ahead, we plan to continue exploring the 
use of PINN for modelling friction in other multibody 
mechanical and mechatronic systems, and to investi-
gate the use of the model for friction compensation.
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