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Abstract The linear and nonlinear instability of a 
thin liquid film flowing down above or below (Ray-
leigh-Taylor instability) an inclined thick wall with 
finite thermal conductivity are investigated in the 
presence of slip at the wall-liquid interface. A nonlin-
ear evolution equation for the free surface deforma-
tion is obtained under the lubrication approximation. 
The curves of linear growth rate, maximum growth 
rate and critical Marangoni number are calculated. 
When the film flows below the wall it will be sub-
jected to destabilizing and stabilizing Marangoni 
numbers. It is found that from the point of view of the 
linear growth rate the flow destabilizes with slip in a 
wavenumber range. However slip stabilizes for larger 
wavenumbers up to the critical (cutoff) wavenumber. 
From the point of view of the maximum growth rate 
flow slip may stabilize or destabilize increasing the 
slip parameter depending on the magnitude of the 
Marangoni and Galilei numbers. Explicit formulas 
were derived for the intersections (the wavenumber 
for the growth rate and the Marangoni number for the 
maximum growth rate) where slip changes its stabi-
lizing and destabilizing properties. From the numeri-
cal solution of the nonlinear evolution equation of the 
free surface profiles, it is found that slip may suppress 

or stimulate the appearance of subharmonics depend-
ing on the magnitudes of the selected parameters. In 
the same way, it is found that slip may increase or 
decrease the nonlinear amplitude of the free surface 
deformation. The effect of the thickness and finite 
thermal conductivity of the wall is also investigated.

Keywords Falling liquid film · Thermocapillarity · 
Marangoni convection · Thick wall · Slip · Small 
wavenumber approximation · Rayleigh-Taylor

List of Symbols b  Slip length
Bi  Biot number
cp  Heat capacity at constant 

pressure
cpW  Wall heat capacity at constant 

pressure
d  Wall relative thickness
df   Fluid thickness
dw  Wall thickness
�  Denominator, �(x, y, t)
�L  Linearized denominator, 

constant
g  Acceleration of gravity
G  Galilei number
G+  Galilei number for intersection 

of kc
h = 1 + H  Free surface height
H  Free surface deformation
k  Wavenumber x-component
kc  Critical wavenumber

L. A. Dávalos-Orozco (*) 
Departamento de Polímeros, Instituto de Investigaciones 
en Materiales, Universidad Nacional Autónoma de 
México, Ciudad Universitaria, Circuito Exterior S/N, 
Delegación Coyoacán, 04510 Mexico City, Mexico
e-mail: ldavalos@unam.mx

http://orcid.org/0000-0001-9363-7040
http://crossmark.crossref.org/dialog/?doi=10.1007/s11012-023-01704-y&domain=pdf


1910 Meccanica (2023) 58:1909–1928

1 3
Vol:. (1234567890)

Kf   Fluid heat conductivity
kmax  Maximum growth rate 

wavenumber
KW  Wall heat conductivity
k+  Wavenumber where � stability 

role changes
Ma = Ma∗∕Pr  Here called Marangoni number
Ma∗  Usual Marangoni number
Mac  Critical Marangoni number
Ma++  Marangoni number where the 

role of � changes
Ma−−  Marangoni number where the 

role of � changes
MaΓmax=0

  Marangoni number at the 
parabola vertex

p  Fluid pressure
PA  Atmospheric pressure
pf   Parabola focal distance of Γmax

Pr  Prandtl number
Qh  Free surface heat transfer 

coefficient
S  Surface tension number
t  Time
T  Fluid temperature
T0  Basic temperature of the fluid
TA0  Lower atmosphere temperature
TA1  Upper atmosphere temperature
TW0  Wall basic temperature
u  X-velocity component
v  Y-velocity component
w  Z-velocity component
x  X-coordinate
y  Y-coordinate
z  Z-coordinate

Greek Letters �  Dimensionless slip length
�  Surface tension
Γ  Growth rate
Γmax  Maximum growth rate
ΔT   TA0 − TA1
�  Smallness parameter
�  Wavenumber
�  Kinematic viscosity
�  Fluid density
�W  Wall density
�  Wall over fluid heat conduc-

tivities ratio
�  Frequency of oscillation
Ω  Γ + i�

1 Introduction

Coating of surfaces is a very important activity with 
many industrial applications. The cooling of surfaces 
has also relevant applications in systems with heat 
generation. When the thin liquid films are falling 
down walls applications are found when coating or 
cooling surfaces where a temperature gradient exists 
across the film. The research on wall cooling has 
relevance in microchips located inside modern com-
puters. Along with the advances of technology the 
microchips generate more and more heat that should 
be dissipated efficiently. Due to the usefulness of this 
subject extensive reviews were written some years 
ago by Oron et al. [1] and Dávalos-Orozco [2]. More 
recently, new advances in the problem of non-isother-
mal thin film flows were reviewed in Dávalos-Orozco 
[3].

Thin liquid films falling down walls have been 
investigated since many years ago under different 
boundary conditions. The stability of these flows is of 
interest because, when the film is not able to wet the 
wall, rivulets [4] may form and for some applications 
the film becomes useless. Usually it is difficult to con-
trol atmospheric temperature variations. Therefore, it 
is of interest to impose thermal boundary conditions 
to the wall-film system to solve the thermocapillary 
problem. The Marangoni instability has been investi-
gated since many years ago. Pearson [5] studied the 
case of a flat free surface. Free surface deformation 
was first taken into account by Scriven and Sternling 
[6]. The effect of gravity was included by Takashima 
[7, 8]. This instability was considered by Dávalos-
Orozco and You [9] and Moctezuma-Sánchez and 
Dávalos-Orozco [10] in a cylindrical wall. In [11] it is 
of interest to apply a horizontal temperature gradient. 
This is also relevant in annular pools [12–14].

The finite thickness and thermal conductivity of 
the wall were taken into account in thermocapillary 
phenomena by Takashima [15], Yang [16], Kabova 
et  al. [17], Hernández-Hernández and Dávalos-
Orozco [18] and Dávalos-Orozco [19]. The effect of a 
thick wall was also considered for liquid films falling 
down walls [20–23]. Also, in the case of cylinders, 
the sideband nonlinear instability was investigated in 
[24–27]. The influence of evaporation was taken into 
account in [28–30].
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The no-slip condition at the wall surface is com-
monly used. However, it is possible to find surfaces 
where this condition is not satisfied [31, 32]. In some 
cases, the characteristics of the surface can be modi-
fied by changing its chemical composition [33]. When 
the wall has very small topography, the liquid trapped 
inside plays the role of lubricant when the liquid is in 
motion reducing the effective friction and presenting 
an apparent slip at the wall [34].

Thermocapillary effects were taken into account 
along with slip at the wall in Kowal et al. [35]. In the 
case of thin films falling down walls slip effect was 
considered in a number of works [36–38]. Slip was 
also contemplated in the presence of topography by 
Usha and Anjalaiah [39] and Zakaria and Selim [40]. 
The stability of a viscoelastic film was examined in 
Pal and Samanta [41] and Chattopadhyay et al. [42].

The finite thickness and thermal conductivity of 
the wall were not taken into account in the papers 
with slip and thermocapillary effects [35, 36, 38]. 
Therefore, in this paper the linear and nonlinear ther-
mocapillary instability of a liquid layer falling down a 
thick wall with finite thermal conductivity is investi-
gated. The liquid layer may be located above or below 
(Rayleigh-Taylor instability [43, 44]) the thick wall. It 
important to point out here that Karapetsas and Mit-
soulis [45] have shown that the slip condition is nec-
essary to have good agreement with experiments in 
newtonian and non-newtonian non-isothermal creep-
ing flows.

In a previous paper [46], the Marangoni stability 
of a thin liquid layer coating a horizontal thick wall in 
the presence of gravity was investigated when slip is 
present at the interface between the wall and the liq-
uid. There, it was found the possibility of a stabiliz-
ing effect of slip under different conditions. In some 
of the papers mentioned above stabilizing effects of 
slip have been mentioned. However, no definite ana-
lytical results have been given to determine the lim-
its between stabilizing and destabilizing behavior of 
slip. Therefore, in this paper it is of interest to find out 
analytically and numerically the limits of the param-
eters in which slip may stabilize or destabilized when 
a main flow is present in a thin film flowing down 
above or below a hot or cold thick wall.

The structure of the paper is as follows. In the next 
section, the basic equations are presented along with 

the steps followed to obtain the nonlinear evolution 
equation of the free surface deformation under the 
lubrication approximation. Then, the linear results are 
presented in section three. The solutions of the non-
linear evolution equation are given in section four and 
section five are the conclusions.

2  Equations of motion and evolution equation

The sketch of the system under investigation is shown 
in Fig. 1. Notice that gravity is in the x-direction and 
that the figure sketches the particular case of a ver-
tical wall. However, in this paper also the case of a 
wall inclined at 45◦ degrees with respect to the hori-
zontal is considered. Only when the wall is inclined 
45◦ degrees gravity may have positive or negative 
(Rayleigh-Taylor) direction. The mean liquid layer 
thickness is df  and the wall thickness is dW . The free 
surface height h(x, y, t), the unknown of the problem, 
is represented by a solid line. The origin is located at 
the interface between the liquid and the slippery thick 
wall. The atmospheres below the wall and above the 
free surface have different temperatures TA0 > TA1 or 
else TA0 < TA1.

The equations of motion, energy and continuity of 
the liquid, the energy equation of the wall and their cor-
responding boundary conditions are made non dimen-
sional as follows. The distance in the z-direction is 

Fig. 1  Sketch of the system. The liquid may slip on the wall 
falling down in the x-direction. The dashed line located at 
z = df  shows the mean thickness of the liquid layer. The wall 
has thickness dw . In the sketch the wall is vertical and parallel 
to the gravity acceleration vector g . However, in the paper an 
inclination angle of 45◦ is also considered in two cases: g > 0 
and g < 0 (Rayleigh-Taylor instability). The last condition cor-
responds to a thin film falling down below a thick wall. Two 
situations are considered with respect to the temperatures: 
TA0 > TA1 and TA0 < TA1
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measured with d f  the thickness of the liquid layer. The 
distance in the x- and y-direction by �∕2� = df∕� , 
where the wavelength � is a representative longitude of 
the free surface deformation and the scaling parameter 
� = 2�df∕� , is assumed to be 𝜀 < 1 in the small wave-
number (long wavelength) approximation. The time is 
scaled with df (�∕2�)∕� = d2

f
∕�� , velocity with �∕df  

and pressure with ��2 / d2
f
 where � and � are the density 

and the kinematic viscosity of the liquid, respectively. 
The temperature is scaled with ΔT = TA0 - TA1 , where 
TA0 is the temperature of the atmosphere close to the 
wall and TA1 is the temperature of the atmosphere close 
to the liquid free surface. These scalings mean that the 
variation in the x and y-directions is different from that 
in the z-direction. This will have consequences in the 
scaling of the equations of motion and boundary 
conditions.

The nonlinear evolution equation of the unknown 
h(x, y, t) is derived by means of an asymptotic method 
using the following expansions of the dependent vari-
ables in terms of � . They are

The asymptotic method consists in substituting this 
expansions in the following equations and boundary 
conditions and solving recursively each resulting lin-
earized set of equations. The scaled non dimensional 
equations of motion, continuity and energy of the liq-
uid are:

(1)

u = u0 + �u1 + �2u2 +⋯ , v = v0
+ �v1 + �2v2 +⋯ , w = �(w1 + �w2 +⋯),
p = p0 + �p1
+⋯ , T = T0 + �T1 +⋯ , Tw = Tw0 + �Tw1 +⋯ .

(2)
�ut + �uux + �vuy + wuz = −�px + �2uxx

+ �2uyy + uzz + G sin(q).

(3)
�vt + �uvx + �vvy + wvz = −�py + �2vxx + �2vyy + vzz.

(4)
�wt + �uwx + �vwy + wwz = −pz + �2wxx

+ �2wyy + wzz − G cos(q).

(5)wz = −�ux − �vy.

The energy equation of the temperature Tw of the 
solid wall is:

where G = gd3
f
∕�2 is the Galilei number, q is the 

angle of inclination of the thick wall and Pr = �∕� is 
the Prandtl number. Here, � is the thermal diffusivity 
of the liquid, cp is the heat capacity of the liquid and 
�w and cpw are the density and heat capacity of the 
wall, respectively. � is the ratio of the heat conductiv-
ity of the wall over that of the liquid. It is important to 
point out that the series expansion Eq. 1 is convergent 
in the present approximation when the Galilei number 
is order one or smaller.

The boundary conditions for the velocity and tem-
perature of the liquid are the following. The slip bound-
ary conditions (see [31]) and the condition of impen-
etrability at the wall are

where � = b∕df  is the non dimensional slip length 
of the wall and b is the longitudinal slip length. The 
no-slip boundary condition is attained setting � = 0 
at the wall. The ideal slip (friction free surface) limit 
is reached when � → ∞ and uz = vz = 0 at the wall. 
Notice that the dimensional slip length b may have a 
range from 10−9 m up to 10−4m for a superhydropho-
bic substrate [47]. However, there is also a variety of 
thin liquid film thicknesses from 10−7m (see [48]) up 
to 10−4m (see [49]) or more. Thus, the non dimen-
sional parameter � also has a wide range of magni-
tudes. Here, the selection of the magnitude of � was 
made to show clearly the behavior of slip found in the 
analytical results.

The normal stress boundary condition at the free 
surface is

(6)
Pr

(
�Tt + �uTx + �vTy + wTz

)
= �2Txx + �2Tyy + Tzz.

(7)Pr�Twt =
�

�w

�

cpw

cp

(
�2Twxx + �2Twyy + Twzz

)
.

(8)u = �uz, v = �vz, and w = 0. at z = 0

(9)
− p + PA +

2

N2
[�3(uxh

2

x
+ vyh

2

y
) + �3(uy + vx)hxhy

− �(vz + �wy)hy − �(uz + �wx)hx + wz]
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where S = �df �
2∕3��2 is the surface tension number, 

� is the surface tension and N =
√

1 + �2h2
x
+ �2h2

y
 . 

Note that the non dimensional h(x, y, t) = 1 + H(x, y, t) 
and that H(x,  y,  t) is the free surface deformation. 
Besides, PA is the pressure of the atmosphere outside 
the liquid. The balance of shear stresses and surface 
tension temperature gradients on the free surface are 
the following. The first shear stress boundary condi-
tion is:

and the second shear stress boundary condition is:

where Ma = Ma∗∕Pr and Ma∗ = −(d�∕dT)ΔTdf∕��� 
is the usual Marangoni number and � is the surface 
tension. The kinematic boundary condition at the free 
surface is

The boundary conditions of the temperature in the 
liquid and the wall are as follows. At the free surface

where d = dW∕df  , Bi = Qhdf∕K is the Biot num-
ber and Qh is the heat transfer coefficient at the free 
surface.

As explained above, the expansions Eq. 1 are sub-
stituted into the equations and corresponding bound-
ary conditions and the solutions are calculated recur-
sively at the different orders of � . Thus, from the 

(10)
=

1

N3
S[(1 + �2h2

y
)hxx + (1 + �2h2

x
)hyy

− 2�2hxhyhxy]. at z = h(x, y, t)

(11)
2
N

[

�(wz − �ux)hx −
1
2
�2(uy + vx)hy +

1
2
(uz + �wx)(1 − �2h2x )

− 1
2
�2(�wy + vz)hxhy

]

= −Ma(�Tx + �hxTz). at z = h(x, y, t)

(12)

2

N

[
�hy

(
�3uxh

2

x
− �vy

(
1 + �2h2

x

)
+ wz

)
+

1

2
�2
(
uy + vx

)
hx

(
�2h2

y
− 1 − �2h2

x

)

−�2
(
�wx + uz

)
hxhy +

1

2

(
�wy + vz

)(
1 + �2h2

x
− �2h2

y

)]

= −Ma
[
−�3Txhxhy + �Ty

(
1 + �2h2

x

)
+ �Tzhy

]
. at z = h(x, y, t)

(13)�ht + �uhx + �vhy − w = 0. at z = h(x, y, t)

(14)

1

N

(
�2hxTx + �2hyTy − Tz

)
= BiT . at z = h(x, y, t)

(15)T = Tw and Tz = �Twz. at z = 0

(16)Tw = 1 at z = −d

equations of the temperatures, the basic temperature 
profiles which satisfy the boundary conditions are:

The denominator is defined as

which is in fact a function of x, y and t through the 
free surface deformation h(x, y,  t). It is very impor-
tant because it includes the ratio d∕� , which is able 
to control the stability of the flow, as will be shown 
presently. Notice that in the lubrication approxima-
tion, instead of evaluating the free surface at a spe-
cific magnitude of the z-coordinate, the evaluation is 
made at h(x, y,  t), the unknown location of the free 
surface deformation. As will be demonstrated below, 
h(x,  y,  t) will satisfy an evolution equation derived 
using the kinematic boundary condition.

The solution of the pressure is

where ∇
⟂
= (�∕�x, �∕�y) is the horizontal gradi-

ent. It is important to point out that under the present 
approximation, it is enough to have the main tempera-
tures and pressure profiles given in Eqs.  18, 19 and 
20.

The solution of the x and y-components of the 
velocity at the lowest order, that is, the main veloc-
ity profiles, are:

The continuity equation is used to obtain the vertical 
component of velocity at the lowest order. That is:

(17)T0 =
1

�
[1 + Bi(h − z)]

(18)TW0 =
1

�

[
1 + Bi

(
h −

z

�

)]

(19)�(x, y, t) = 1 + Bi

(
h(x, y, t) +

d

�

)

(20)p0 = PA − G cos(q)(z − h) − 3S∇2
⟂
h

(21)u0 = −
1

2
G sin(q)

[
z2 − 2h(z + �)

]

(22)v0 =0

(23)w1 = −
1

2
G sin(q)

[
z2 + 2�z

]
hx
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Substitution of these results of Eqs. 21, 22 and 23 into 
the kinematic boundary condition leads, at this order, 
to the equation:

This approximation is used to substitute ht in the 
places where it appears in the following steps of the 
asymptotic procedure. The expressions of the solu-
tions of the velocity components in the next order 
are very large and will be presented in the Appendix. 
However, it is important to mention the form of the 
following factors which appear in the thermocapillary 
terms:

After substitution of these results into the kinematic 
boundary condition Eq.  13, it is possible to obtain 
the nonlinear evolution equation satisfied by the free 
surface perturbations in the presence of slip ( � ) at the 
wall. That is:

Notice that when q = 0 , this evolution equation 
reduces to that of Dávalos-Orozco and Sánchez-
Barrera [46]. In the same way, but with no-slip at the 
wall, this evolution equation reduces to that of Oron 
et al. [50] (in the absence of evaporation), to that of 
Oron [51] and to that of Podolny et al. [52] (when the 

(24)ht + G sin(q)
[
h2 + 2�h

]
hx = 0

T0x + hxT0z =
�

�x

(
1

�

)
at z = h

T0y + hyT0z =
�

�y

(
1

�

)
at z = h

(25)

ht + G sin(q)
[

h2 + 2�h
]

hx

+ �
{

G2 sin(q)2 �
�x

[

h3
15

(h + �)
(

2h2 + 10h� + 15�2
)

hx

]

− ∇⟂ ⋅
[( 1

3
h3 + �h2

)

∇⟂
(

G cos(q)h − 3S∇2
⟂h

)

]

−Ma∇⟂ ⋅
[( 1

2
h2 + �h

)

∇⟂

( 1
�

)]}

= 0

liquid is not binary). When q > 0 and Ma = 0 , Eq. 25 
reduces to Eq. 3.7 of Samanta et al. [53].

In the next section, the linear stability is analyzed 
using this evolution equation. Then, in the following 
section, the nonlinear stability is investigated.

3  Linear stability

The linear instability is investigated linearizing the 
evolution Eq. 25 and assuming normal modes for the 
free surface deformation H(x, y, t) = Ah exp(ikx + Ωt) 
found in h(x, y, t) = 1 + H(x, y, t) . Here k is the 
x-component of the wavenumber vector. Besides, 
Ω = Γ + i� where Γ is the growth rate and � is the 
frequency of oscillation. Ah is a constant amplitude of 
the free surface perturbation. Substitution leads to the 
dispersion relation for Ω . The result is separated into 
real and imaginary parts. The frequency of oscillation 
is: � = −G sin(q)(1 + 2�)k . Clearly, the frequency, 
and therefore the phase velocity, increases with �.

The growth rate is obtained from the real part. 
That is:

where �L = 1 + Bi(1 + d∕�) , is the linearized denom-
inator �(x, y, t) . As can be seen, �L includes the ratio of 
thicknesses ratio d over the heat conductivities ratio � 
in one parameter d∕� , which will play an important 
role on the stability through thermocapillary effects. 
The critical wavenumber is obtained from the con-
dition that the growth rate Γ = 0. Two solutions are 
found. One corresponds to kc = 0 and the other one to

(26)

Γ = k2
[
G2 sin(q)2

1

15
(1 + �)

(
2 + 10� + 15�2

)

−
(
1

3
+ �

)(
G cos(q) + 3Sk2

)
+

MaBi

�2
L

(
1

2
+ �

)]

(27)kc =
1√
3S

�����MaBi

�2
L

�
1

2
+ �

1

3
+ �

�
+ G2 sin(q)2

�
1

15
(1 + �)

�
2 + 10� + 15�2

�
1

3
+ �

�
− G cos(q)
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The wavenumber corresponding to the maximum 
growth rate is obtained making zero the k derivative 
of the growth rate.

Notice the relation with respect to the critical wave-
number kc . The maximum growth rate is obtained 
after substitution of kmax into Eq. 26. That is

As can be seen, Γmax in Eq. 29 represents a parabola 
in a plot Γmax vs Ma. That is:

The focal distance pf  is

and the vertex is located at:

(28)

kmax =
1√
2
kc

=
1√
6S

�����MaBi

�2
L

� 1

2
+ �

1

3
+ �

�
+ G2 sin(q)2

� 1

15
(1 + �)

�
2 + 10� + 15�2

�
1

3
+ �

�
− G cos(q)

(29)

Γmax =
1

12S
(

1
3
+ �

)

[

G2 sin(q)2 1
15

(1 + �)
(

2 + 10� + 15�2
)

+MaBi
�2L

( 1
2
+ �

)

− G cos(q)
( 1
3
+ �

)

]2

(30)

4

⎛
⎜⎜⎜⎝

3S�4
L

�
1

3
+ �

�

Bi2
�

1

2
+ �

�2

⎞
⎟⎟⎟⎠
Γmax

=

�
Ma + G2

sin(q)2
1

15

�2
L

Bi

(1 + �)
�
2 + 10� + 15�2

�
1

2
+ �

−G cos(q)
�2
L

Bi

�
1

3
+ �

1

2
+ �

��2

(31)pf =

⎛⎜⎜⎜⎝

3S�4
L

�
1

3
+ �

�

Bi2
�

1

2
+ �

�2

⎞⎟⎟⎟⎠

(32)

(
MaΓmax=0

,Γmax

)

=

(
G cos(q)

�2
L

Bi

(
1

3
+ �

1

2
+ �

)

−G2
sin(q)2

1

15

�2
L

Bi

(1 + �)
(
2 + 10� + 15�2

)
1

2
+ �

, 0

)

This means that at MaΓmax=0
 the instability is neu-

tral against any perturbations. Notice here that both 
the width of the parabola (see pf  in Eq. 31) and the 

location of the vertex through MaΓmax=0
 are controlled 

by the ratio d∕� and � . This has important conse-
quences on the results presented below. It is of inter-
est to mention that when q = 0 , MaΓmax=0

 reduces 
to that found in [46]. In that case MaΓmax=0

 could be 
negative but here it could be positive. This may have 
major consequences, mainly in the behavior of the 
stability with respect to the slip factor � and the inter-
section of the curves of Γmax.

Next, the instability will be discussed based on 
the analytical results found above. First the case 
G > 0 will be discussed for the two conditions 
q = 90◦ and 45◦ . Then, the case G < 0 (Rayleigh-
Taylor instability) will be discussed for the condi-
tion q = 45◦ . The flow will also be subjected to a 
destabilizing Ma > 0 and a stabilizing Ma < 0 . Here 
it is assumed that the change in sign of Ma is due 
to a change in direction of the temperature gradient 
across the whole system. The number of parameters 
is large and therefore it is important to say that two 
parameters will be fixed through all the numerical 
calculations. They are Bi = 0.1 and S = 1.

3.1  Flow down above a thick wall: G > 0

In Fig.  2 results of two magnitudes of G = 0.1 and 
0.3, two magnitudes of d∕� , and two inclination 
angles q = 90◦ and 45◦ are presented. The magnitude 
G = 0.1 was selected with the goal to find intersec-
tions of the curves of Γ when � increases (see Fig. 2a 
and c). As can be seen, for q = 90◦ and an increase to 
G = 0.3 intersections are not possible (see Fig. 2b and 
d). The figure also shows the important role played 
by the ratio d∕� . Figure  2c and d demonstrate how 
this ratio decreases the instability when increasing 
from 0.5 to 1.8. In all cases, Ma destabilizes the flow 
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Fig. 2  Growth rate Γ vs k. 
G = 0.1 : Fig. 2a, c and e. 
G = 0.3 : Fig. 2b, d and f 
(notice the different scales). 
d∕� = 0.5 : Fig. 2a and b. 
d∕� = 1.8 : Fig. 2c and d. 
From Fig. 2a–d: q = 90◦ 
and Ma = 1.3 (1), 1.5 (2), 
1.7 (3). From Fig. 2e–f: 
q = 45◦ and d∕� = 0.5 . 
Figure 2e: Ma = 0.8 (1), 
1.2 (2), 1.6 (3). Figure 2f: 
Ma = 1.9 (1), 2.2 (2), 2.5 
(3). � = 0.0 (solid line), 0.1 
(dashed line), 0.3 (dotted 
line)

(a) (b)

(c) (d)

(e) (f)
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increasing the magnitude of Γ . Observe here that the 
solid curves correspond to the no-slip boundary con-
dition and were plotted for the sake of comparison.

The intersections found in Fig. 2a and c are very 
important because they show that an increase of � 
stabilizes the flow after a particular wavenumber. As 
found for q = 45◦ , in Fig. 2e and f, it is still possible 
to find intersections even for G = 0.3 . The wavenum-
ber for intersection between two curves with different 
� , lets say �1 and �2 , can be derived making equal the 
two corresponding expressions of Γ . The result, for 
any angle of inclination, is:

This means that for a wavenumber k > k+ , � has a sta-
bilizing effect. Notice that k+ reduces to that found in 
[46] when q = 0 which is independent from � . Fur-
thermore, in order to have an intersection the radicand 
has to be positive. Beware that it is possible to have 
intersection for stable Γ < 0 . That is what is going on 
in Fig. 2b and d, as can be understood following the 
tendency and slope of the curves. Therefore, Eq. 33 
should be used with care. This intersection was inde-
pendent of � in the previous paper [46].

For example, the intersection of the curves 
� = 0 and 0.1 in Fig.  2a for q = 90◦ , Ma = 1.3 and 
d∕� = 0.5 occurs at k+ = 0.1897 . That between 
the curves � = 0 and 0.3 occurs at k+ = 0.1933 and 
that between the curves � = 0.1 and 0.3 occurs at 
k+ = 0.1951 . In the case of Fig.  2e for q = 45◦ the 
intersections when Ma = 1.2 and the other param-
eters are the same are as follows: the intersection 
of the curves � = 0 and 0.1 occurs at k+ = 0.0911 , 
that between the curves � = 0 and 0.3 occurs at 
k+ = 0.0948 and that between the curves � = 0.1 and 
0.3 occurs at k+ = 0.0966 . They are very close but 
different.

From Eq. 33 notice that � always stabilizes when

This may be verified in the left column of Fig. 2. This 
is more easy to verify in Fig.  2e and f for q = 45◦ , 

(33)

k+

=

√

G2 sin(q)2
3S

[ 4
5
+ 5

3
(�1 + �2) + �21 + �1�2 + �22

]

−
G cos(q)

3S
+ MaBi

3S�2L

(34)

MaBi

�2
L

= G cos(q) − G2
sin(q)2

[
4

5
+

5

3
(�

1
+ �

2
) + �2

1
+ �

1
�
2
+ �2

2

]

where clearly there is a tendency to move the k+ of 
intersection to the left, very close to the origin, by 
decreasing Ma. In contrast, � always destabilizes 
when k+ = kc . In this case, kc should be evaluated 
with either of the �’s, �1 or �2.

The critical wavenumber number is plotted against 
G in the left column of Fig. 3. The Maximum growth 
rate is plotted against Ma in the right column of 
Fig.  3. Two angles of inclination q = 90◦ and 45◦ 
were used. Figure  3a corresponds to d∕� = 0.5 and 
Fig.  3b corresponds to d∕� = 0.5 and G = 0.1 . Fig-
ure 3c is for d∕� = 1.8 and Fig. 3d is for d∕� = 0.5 
and G = 0.3 . Clearly, in the first column of Fig. 3, for 
q = 90◦ intersections of the curves of kc occur for cer-
tain G. However, this is not the case when q = 45◦ , 
where, in addition, kc decreases with G, for both mag-
nitudes of d∕� . The intersections between curves of 
kc occur at the following G:

Notice that the intersections for q = 45◦ occur for 
G+ < 0 , using the minus sign in Eq. 35. This case of 
Rayleigh-Taylor instability is discussed below. It is 
important to point out that the role of the ratio d∕� is 
to stabilize the flow when its magnitude increases. It 
also contributes to modify the point of intersection of 
the curves of kc through �L in G+ . The angle of incli-
nation q also has important influence on G+ . How-
ever, the whole role of q on the stability is still more 
complex and it is discussed in different places below.

The Maximum growth rate in the right column of 
Fig. 3 shows that for q = 90◦ the maximum growth 
rate Γmax increases monotonically with an increase 
of � to the right of the vertex ( MaΓmax=0

 ) of the 
parabola. However, the contrary occurs to the left 
of the vertex. It is of interest that this behavior is 
reversed with respect to the vertex for q = 45◦ . 
Therefore, from the point of view of the maximum 
growth rate � also has a stabilizing effect at q = 45◦ . 
This may be corroborated at the right column of 
Fig.  3 where the maximum growth rate is plotted 
against Ma for two angles of inclination q = 90◦ and 
45◦ . Figure 3b corresponds to G = 0.1 and Fig. 3d 
to G = 0.3 . Notice how the vertex of the parabola 
Eq. 30 is displaced with the variation of the param-
eters (see Eq.  32). Moreover, the width of the 

(35)
G+

= ±

√

√

√

√

15MaBi∕(2�2L sin
2 q)

45(�2�21 + �1�22 ) + 15(�21 + �22 ) + 90�1�2 + 25(�1 + �2) + 6
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parabola (latus rectum) also changes as four times 
Eq. 31. The curves are plotted, to the left and to the 
right of the figure, up to the place where intersec-
tions are found. For q = 90◦ , it is easy to observe 
two intersections. One is located just to the left of 
the vertex of the parabolas, for Ma < 0 . The second 
is located farther to the left. Apparently between 
these two intersections � stabilizes. On the contrary, 
the intersections when q = 45◦ are located just to 
the right of the vertex and farther away. Between 
these two intersections � stabilizes.

It is important to be careful because the intersec-
tions of the parabolas made by Γmax for q = 90◦ are 
misleading. The reason is that the intersections occur 
for Ma < MaΓmax=0

 where Ma < 0 is stabilizing. Then, 
some of the curves are stable ( Γ < 0 ) and therefore 

no intersections (that is Γmax(�1) = Γmax(�2) ) are pos-
sible. This invalidates the meaning of the intersec-
tions found for q = 90◦ to the left of the vertex due to 
the natural stabilizing ( Γ < 0 ) effect of large enough 
Ma < 0 , not observed in Fig. 3b and d.

The case of q = 45◦ is interesting because the 
stabilizing behavior of � in fact occurs between 
the two intersections. Again, to the left of the ver-
tex it is found that the curves of Γ are stable, in 
the same way as for q = 90◦ , even in the region 0 
< Ma < MaΓmax=0

.
It is possible to show analytically that Γ < 0 

(stable) at MaΓmax=0
 of the vertex. To this goal, it 

is enough to substitute MaΓmax=0
 of Eq. 32 into Γ in 

Eq. 26. It is found that at MaΓmax=0
 the growth rate 

Γ = −Sk4(3� + 1) is always negative for k > 0 and 

Fig. 3  First column: Criti-
cal wavenumber number 
kc vs G for q = 90◦ and 45◦ 
and Ma = 1.3 (1), 1.5 (2), 
1.7 (3). Second column: 
Maximum growth rate 
Γmax vs Ma for d∕� = 0.5 . 
Figure 3a: d∕� = 0.5 . Fig-
ure 3b: G = 0.1 . Figure 3c: 
d∕� = 1.8 . Figure 3d: 
G = 0.3 . � = 0.0 (solid 
line), 0.1 (dashed line), 0.3 
(dotted line)

(a) (b)

(c) (d)
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any � , G and inclination angle q. As a consequence, 
Γ < 0 for any magnitude of Ma ≤ MaΓmax=0

 . In par-
ticular, the result is valid for q = 0 [46].

The Ma for an intersection is found assuming 
that Γmax and Ma are the same for two different � , 
lets say �1 and �2 . Two solutions are found and they 
are:

where

These two formulas Eqs.  36 and 37 reduce to those 
derived in [46] when q = 0◦ . They give the two limits 
of the regions of Ma where the behavior of � changes 
from destabilizing to stabilizing from the view point 
of the maximum growth rate. As mentioned above, 
this intersections are valid and have physical meaning 
only for Ma > MaΓmax=0

.
Therefore, it is of interest to understand in a deeper 

way the behavior of the vertex of the parabola that 
is responsible of the intersections among the curves 
of different � . To attain this goal first assume that 
MaΓmax=0

 is a function of � and that it can be written 
as MaΓmax=0

(�) . Then assume that 𝛽2 > 𝛽1 . Subtract 
MaΓmax=0

(�2) - MaΓmax=0
(�1) . The result has a number 

of positive factors, but the product of some other fac-
tors of the numerator determines if the difference is 
positive or negative. That part of the numerator is:

where

is always positive. Notice that by assumption (
𝛽1 − 𝛽2

)
< 0 and therefore the term inside brackets 

determines the sign of the difference between the 

(36)
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two Ma’s of the vertexes. To understand the behav-
ior of the vertexes it is possible to calculate two criti-
cal values useful to determine the change of sign of 
MaΓmax=0

(�2) - MaΓmax=0
(�1) . One critical value is:

which makes zero the numerator. It is also pos-
sible to derive a critical cos(q) by substitution of 
sin(q)2 = 1 − cos(q)2 and look at the change in sign 
from the point of view of the angle of inclination. The 
result is

When G < G∗ , or else for q < q∗ , from the difference 
it is concluded that MaΓmax=0

(�2) > MaΓmax=0
(�1) , that 

is, the vertex MaΓmax=0
(�2) is located to the right of 

the vertex MaΓmax=0
(�1) . In case G > G∗ , or else, for q 

> q∗ the contrary occurs and MaΓmax=0
(�2) is located 

to the left of MaΓmax=0
(�1) . This is also the reason 

for the displacement of the intersections among the 
curves of different �’s. They change from left to right 
of the vertex depending on the magnitude of G (or q) 
with respect to the critical G∗ (or q∗ ). In fact, the criti-
cal G (or q) of the subtraction of the Marangoni num-
ber of the intersections of the curves of maximum 
growth rate, that is Ma++ - Ma−− , is exactly the same 
G∗ Eq. 38 (or q∗ Eq. 39). For G < G ∗ , it is found that 
Ma++ > Ma−− , that is, Ma++ is located to the right of 
Ma−− . The contrary is valid when G > G ∗ . Notice 
that in the following useful subtractions the critical is 
also G∗ . For the subtraction of MaΓmax=0

(�2) - Ma++ , 
when G < G∗ it is found that MaΓmax=0

(�2) < Ma++ . 
For the subtraction of MaΓmax=0

(�2) - Ma−− , when G 
< G∗ it is found that MaΓmax=0

(�2) > Ma−− . For the 
subtraction of MaΓmax=0

(�1) - Ma++ , when G < G∗ it is 
found that MaΓmax=0

(�1) < Ma++ . For the subtraction 
of MaΓmax=0

(�1) - Ma−− , when G < G∗ it is foundthat 
MaΓmax=0

(�1) < Ma−− . All these inequalities are 
reversed when G > G∗ . From all these inequalities, 
derived algebraically, it is concluded that:

(38)G∗ =
5 cos(q)

sin(q)2f�1�2

(39)cos(q∗) =

−5 +
√

4G2f 2
�1�2

+ 25

2Gf�1�2

(40)
MaΓmax=0

(𝛽1) < Ma−− < MaΓmax=0
(𝛽2)

< Ma++ if G < G∗
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These inequalities are very informative, but to give 
them a more precise meaning it will be helpful to 
employ the two extremal cases q = 0◦ (which cor-
responds to Eq.  40) [46] and q = 90◦ (which cor-
responds to Eq.  41). If �2 > �1 , it can be shown 
analytically that for q = 0◦ the vertex always has 
MaΓmax=0

> 0 , and the intersections of the maximum 
growth rate are located at Ma++ > 0 and Ma−− > 0 . 
On the other extreme, for q = 90◦ the vertex always 
has MaΓmax=0

 < 0, Ma++ < 0 and Ma−− < 0. The 
change of these particular inequalities start to occur 
when G (or q) approaches and crosses the critical G∗ 
Eq. 38 (or q∗ Eq. 39). That is, in the process some of 
the terms of the inequalities in Eqs. 40 and 41, not all, 
might be negative.

Notice that in the case of G < 0 (Rayleigh-Taylor 
instability) the sign of the numerator is exclusively 
determined by �1 - �2 < 0. Thus the numerator is 
negative. Therefore, as will be shown presently, 
MaΓmax=0

(�2) is located to the left of MaΓmax=0
(�1) . 

In this particular case, Ma++ < Ma−− , that is, Ma−− 
is always located to the right of Ma++ . Then, for 
q = 0◦ the vertex always has MaΓmax=0

 < 0, and the 
intersections Ma++ < 0 and Ma−− < 0 [46]. For 
q = 90◦ , that is, for a vertical wall, the results when 
G < 0 are of no interest because the phenomena are 
exactly the same as for G > 0.

3.2  Flow down below a thick wall at q = 45◦ 
(Rayleigh-Taylor instability) G < 0: destabilizing 
Ma > 0 and stabilizing Ma < 0

From now on the angle of inclination is fixed at 
q = 45◦ and the ratio is d∕� = 0.5 . The numeri-
cal results for the destabilizing and stabilizing Ma 
are plotted in Fig.  4. The Fig.  4a and b correspond 
to a destabilizing Ma > 0 and Fig. 4c and d to stabi-
lizing Ma < 0. Besides, Fig. 4a and c correspond to 
G = −0.1 and Fig. 4b and d correspond to G = −0.3 . 
It is important to note the different scales of the 
growth rate of each sub-figure. Observe that for the 
magnitudes of the parameters used, the intersections 
of the curves, where � changes its behavior from 
destabilizing to stabilizing, appear in Fig. 4a and b for 
Γ > 0 . The wavenumber k+ for these intersections is 

(41)
Ma++ < MaΓmax=0

(𝛽2) < Ma−−

< MaΓmax=0
(𝛽1) if G > G∗

also predicted by the formula Eq. 33. No intersections 
were found for Γ > 0 in Fig. 4c and d.

The critical wavenumber for the Rayleigh-Tay-
lor instability is plotted against G in the first col-
umn of Fig.  5. Clearly, intersections of the curves 
are observed which are described by the formula in 
Eq. 35 of G+ . In this case the minus sign in front of 
G+ should be used. It is found that the wavenumber 
increases with the magnitude of G but the growth is 
different for each �.

As a consequence, only the right branches of the 
parabolas are physical and therefore � destabilizes 
from the point of view of the maximum growth rate. 
Notice that the curves are displaced to the left when 
d∕� increases from 0.5 to 1.8.

The maximum growth rate against Ma is plotted in 
the right column of Fig. 5. For the sake of visibility 
of the separation of the curves, only G = −0.1 and - 
0.2 were used in the figure. The ratio d∕� = 0.5 cor-
responds to Fig.  5b and d∕� = 1.8 corresponds to 
Fig. 5d. In each figure, the right hand intersection is 
found very close to the vertex of the parabolas. There-
fore it is of interest to know if there is a possibility 
to have a real change of the stability behavior of � at 
those particular intersections. To this goal, again use 
is made of the result which says that at MaΓmax=0

 the 
growth rate Γ = - Sk4(3� + 1) is always negative for 
any � , G and inclination angle q. With this, it is pos-
sible to compare if any intersection occurs to the right 
of MaΓmax=0

 to be of interest. It is found, using Eqs. 36 
and 37, that the right hand intersection is always to 
the left of MaΓmax=0

 and therefore the intersections 
between maxima of the growth rate are not real. In 
fact, the curves of the growth rate are stable.

A discussion on the physical effects of slip 
is in order. As can be seen in Eqs.  25, 26 and 29 
slip affects in a different way the Galilei number 
and the Marangoni number through their coeffi-
cients. Even more, the presence of gravity alone 
as a restoring force perpendicular to the wall and 
as promoting motion along the wall have different 
slip coefficients and therefore different slip effects 
which oppose each other from the stability point 
of view. Besides, when G and Ma oppose to each 
other a variation of � changes the relative magni-
tude between these two parameters. As a conse-
quence this has the stabilizing effect found in the 
growth rate Γ after certain wavenumber k+ smaller 
than kc . In the case of the maximum growth rate 
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Γmax this effect occurs between a lower and an upper 
limit Marangoni numbers (which have to be positive 
to be valid intersections). Between these two lim-
its the magnitude of � leads Γmax to decrease when 
Ma increases. Therefore, the usual behavior of grav-
ity and thermocapillary terms on stability is altered 
by slip through the modification of the coefficients 
of the different terms inside the equations. Notice 
that only the physical behavior of the phase velocity 

occurs as expected in the presence of slip. That is, 
the phase velocity just increases with �.

4  Nonlinear free surface profiles

In this section the free surface profiles are analyzed 
using a normal mode expansion of the height h up to 
5 modes. Seven modes were also investigated, but it 
was found that the free surface deformation profiles 
were almost the same.

The expansion is:

(42)
h(x, t) = 1 + A1(t) exp(ikx) + Ac1(t) exp(−ikx)+

A2(t) exp(2ikx) + Ac2(t) exp(−2ikx) + A3(t) exp(3ikx) + Ac3(t) exp(−3ikx)+

A4(t) exp(4ikx) + Ac4(t) exp(−4ikx) + A5(t) exp(5ikx) + Ac5(t) exp(−5ikx)

Fig. 4  Growth rate Γ vs k. 
Rayleigh-Taylor instability 
with q = 45◦ and d∕� = 0.5 
. G = 0.1: Fig. 4a, c. G = 
0.3: Fig. 4b, d (notice the 
different scales). Figure 4a, 
b: destabilizing Ma = 1.3 
(1), 1.5 (2) and 1.7 (3). 
Figures 4c: stabilizing  Ma 
= 0.1 (1), - 0.3 (2) and 0.5 
(3). Figures 4d: stabilizing 
Ma = 0.1 (1), 0.5 (2) and 
0.9 (3). � = 0.0 (solid line), 
0.1 (dashed line), 0.3 (dot-
ted line)

(a) (b)

(c) (d)
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However, a nine normal modes expansion was needed 
in the case where a relatively large Marangoni num-
ber was used. This h(x, t) is substituted into Eq. 25 to 
obtain a set of ten coupled nonlinear ordinary differ-
ential equations for Ai(t) and Aci(t) , i = 1,⋯ , 5. The 
initial value is assumed to be A1(0) = Ac1(0) = 0.01 , 
which corresponds to a cosine initial perturbation of 
the form 2cos(kx). Each solution of Ai(t) and Aci(t) 
is substituted back into Eq.  42 for h(x,  t), which is 
plotted in the figures below. The goal is to have the 
free surface profile of the film flowing down a wall 
at a particular time. The dependance of the profiles 
on the parameter d∕� is also investigated. In general, 
the sample data were selected from the linear prob-
lem. In particular, the wavenumber corresponding to 
the maximum growth rate was selected for each plot-
ted curve in the numerical analysis. The free surface 

perturbations are initially unstable and then, after a 
large enough time, they reach nonlinear saturation.

4.1  Nonlinear films flowing down above a thick wall

The nonlinear results of the free surface profiles of 
a thin film flowing down above a thick wall are pre-
sented in Fig. 6. These results are based on those of 
Fig. 2 for linear instability. For each curve, the wave-
number corresponding to the maximum growth rate 
was selected. Notice that the wall is not drawn for the 
sake of presentation of the free surface profiles which 
have a small amplitude in comparison with the non 
dimensional thickness of the liquid layer. It is impor-
tant to remember that the phase velocity of the pertur-
bations differs for each given G and �.

Fig. 5  Rayleigh-Taylor 
instability for G < 0 and 
q = 45◦ . Left column: Criti-
cal wavenumber number 
kc vs G. Right column: 
Maximum growth rate Γmax 
vs Ma for G = 0.1 and 0.2. 
Figure 5a and b: d∕� = 0.5 , 
Fig. 5c and d: d∕� = 1.8 . 
� = 0.0 (solid line), 0.1 
(dashed line), 0.3 (dotted 
line)

(a) (b)

(c) (d)
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In Fig.  6 the first figures, from Fig.  6a to d, the 
angle of inclination is q = 90◦ and for the last two 
figures, from Fig. 6e to f, q = 45◦ . In the first set of 
figures the Marangoni number is fixed to Ma = 1.3 . 
However, Fig.  6a: G = 0.1 and d∕� = 0.5 , Fig.  6b: 
G = 0.3 and d∕� = 0.5 , Fig.  6c: G = 0.1 and 
d∕� = 1.8 , Fig.  6d: G = 0.3 and d∕� = 1.8 . For the 
second set of figures different Marangoni numbers 
are used. For Fig. 6e Ma = 0.8 with G = 0.1 and for 
Fig.  6f Ma = 1.9 with G = 0.3 . In general, the free 
surface profiles are plotted using the same lines of 
� . That is, � = 0.0 (solid line), 0.1 (dashed line), 0.3 
(dotted line). The running time used for all the curves 
was 5000 units.

A comparison of Fig.  6a and c shows that and 
increase of d∕� decreases the waves amplitudes. The 
same can be said about the curves in Fig. 6b and d. 
However, this increase stimulates the growth of the 
subharmonics (see Fig.  6c and d). On the contrary, 
it is observed that � works to decrease the amplitude 
of the subharmonics, as can be seen starting from the 
solid curve (no-slip) up to the dotted ( � = 0.3 ) one. 
This may be considered a nonlinear stabilizing effect 
of � when the film flows down a vertical wall. How-
ever, in the Fig. 6a–d the amplitudes increase with � , 
which is a destabilizing effect.

When the wall is inclined at q = 45◦ and 
d∕� = 0.5 , Fig.  6e shows no notable change when 
� increases. However, Fig. 6f presents an interesting 
picture. Here, 9 normal modes were used to describe 
the free surface profile. It is observed that an increase 
of � stimulates the increase of the amplitude of the 
subharmonics when going on from the solid curve 
(no-slip) up to the dotted ( � = 0.3 ) one. This may be 
considered a nonlinear destabilizing effect of � when 
the film flows down above an inclined wall. Observe 
that in Fig. 6e � decreases the amplitude of the free 
surface perturbation but in Fig.  6d increases the 
amplitude of the surface deformation.

4.2  Nonlinear films flowing down below a thick wall: 
Rayleigh-Taylor instability

Here the curves are plotted below the x-axis of each 
sub figure of Fig. 7. That is because in the Rayleigh-
Taylor instability h = 1 − H and the film is pulled 
in the direction parallel to gravity at the same time 
that it is flowing down and below the inclined thick 
wall. The angle of inclination is fixed to q = 45◦ and 

d∕� = 0.5 . The Galilei number of Fig. 7a is G = 0.1 
and that of Fig. 7b is G = 0.3 . However, both figures 
include a destabilizing effect of Ma = 1.3 . Besides, 
Fig. 7c is for G = 0.1 and Fig. 7d is for G = 0.3 , but 
both include a stabilizing effect of Ma = 0.3.

In Fig.  7a, for a destabilizing Ma, it is observed 
that the harmonics are suppressed by the increase 
of � . However, the amplitude increases with � . It is 
interesting that an increase of the magnitude of G in 
Fig.  7b changes the behavior of � . As can be seen, 
� = 0.1 first stabilizes and then destabilizes with a 
notably larger amplitude for � = 0.3 . Moreover, the 
appearence of sub harmonics is stimulated with �.

In Fig.  7c, the Marangoni number Ma stabilizes 
and it is seen that � stimulates the presence of sub 
harmonics but works to decrease the amplitude of 
the free surface deformations. With the increase of 
the magnitude of G in Fig.  7d, � promotes the sup-
pression of subharmonics but � increases the ampli-
tude of the free surface perturbation. It is important 
to note the different amplitudes among the curves 
in Fig.  7a–d. For the sake of comparison the verti-
cal axes present the same scale length in all the sub 
figures.

5  Conclusions

In this paper the linear and nonlinear thermocapil-
lary instability of a thin film flowing down above or 
below on a thick wall with slip was investigated. It 
is important to point out that the results about the 
stabilizing and destabilizing effects of slip are new. 
The finite thickness and thermal conductivity of the 
wall showed to have a relevant role on the stabil-
ity. Depending on the magnitude of the parameters, 
the growth rate is able to stabilize after a certain 
wavenumber k+ in the presence of slip. The curves 
of criticality may intersect among them at G+ when 
� increases. This intersections are a consequence 
of the stabilizing effect of slip on the growth rate. 
From the point of view of the maximum growth 
rate plotted against the Marangoni number, prom-
ising intersections among the curves brought about 
the possibility of a change in behavior of slip from 
destabilizing to stabilizing. A very detailed analysis 
was done from which it was concluded that a change 
of the stability behavior of slip is only possible to 
the right of the vertex of the parabola formed in a 
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plot Γmax vs Ma. The reason is that, starting from 
MaΓmax=0

 , the growth rate Γ is already negative. For 
Ma < MaΓmax=0

 the growth rate is still more negative 

and there is no possibility of intersections of the 
maximum growth rate. The general result is that 
only intersections found to the right of the vertex 

Fig. 6  Nonlinear free sur-
face deformation. Figure 6a: 
G = 0.1 and d∕� = 0.5 , 
Fig. 6b: G = 0.3 and 
d∕� = 0.5 , Fig. 6c: G = 0.1 
and d∕� = 1.8 , Fig. 6d: 
G = 0.3 and d∕� = 1.8 . 
From Fig. 6a–d: q = 90◦ 
and Ma = 1.3 . From 
Fig. 6e–f: q = 45◦ and d∕� 
= 0.5. Figure 6e: Ma = 0.8 
with G = 0.1 . Figure 6f: 
Ma = 1.9 with G = 0.3 . 
� = 0.0 (solid line), 0.1 
(dashed line), 0.3 (dotted 
line)

(a) (b)

(c) (d)

(e) (f)
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are physically realizable. It was found that only 
when the film flows down above an inclined thick 
wall and for angles of inclination of the wall smaller 
than those of the vertical (q < 90◦ ), it is possible to 
find intersections of the curves of maximum growth 
rate to the right of the vertex. There were found 
intersections among the curves of maximum growth 
rate where the stability behavior of slip may change.

From the nonlinear point of view, for certain 
magnitudes of the parameters it was found that slip 
may suppress the appearance of sub harmonics and 
for other magnitudes slip stimulates their appear-
ance. It was also observed that slip may increase or 
decrease the amplitude of the nonlinear free surface 
perturbations, depending of the magnitude of the 
parameters selected.
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Fig. 7  Nonlinear free sur-
face deformation: Rayleigh-
Taylor instability. q = 45◦ 
and d∕� = 0.5 . Figure 7a: 
G = 0.1 and destabilizing 
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Fig. 7c: G = 0.1 and stabi-
lizing Ma = 0.3 , Fig. 7d: 
G = 0.3 and stabilizing 
Ma = 0.3 . � = 0.0 (solid 
line), 0.1 (dashed line), 0.3 
(dotted line)
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Appendix A first‑order velocity components

In this Appendix the velocity components to first-
order are presented. First the x-component of the 
velocity:

The second component of the velocity is:

Finally, the third component of the velocity is:
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