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Abstract We present a new variational principle 
for linking models of beams and deformable solids, 
providing also its mathematical analysis. Despite the 
apparent differences between the two types of govern-
ing equations, it will be shown that the equilibrium of 
systems combining beams and solids can be obtained 
from a joint constrained variational principle and that 
the resulting boundary-value problem is well posed.

Keywords Variational principles · Beams · 
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1 Introduction

The problems of beams and deformable solids refer 
both to the mechanical response of bodies when sub-
jected to external actions, including forces, torques, 
and imposed displacements. However, from the math-
ematical viewpoint, these two problems are intrinsi-
cally very different. Even when restricted to small 
strains, the kinematics of these two types of bodies 

are disparate: whereas the former is described by 
a displacement field on an open set of two or three-
dimensional Euclidean space, the latter depends on 
the displacement and the rotation on an interval of the 
real line. The equilibrium equations of a deformable 
solid, moreover, are partial differential equations, in 
contrast with the ordinary differential equations that 
describe the equilibrium of forces and momenta in a 
beam.

Despite the apparent differences between the math-
ematical description of the mechanics of beams and 
deformable solids, there are deep relations between 
them. After all, beams are nothing but a special 
class of solids whose equations can be obtained 
from the equations of solid mechanics by exploit-
ing some asymptotic behavior or by constraining the 
class of admissible kinematics (see, for example, [6, 
7] for a description of these two avenues for model 
reduction).

One specific aspect that is of both theoretical and 
practical interest is the combination of the equations 
of beams and solids within a single mechanical sys-
tem or structure. From the theoretical point of view, 
the interest lies in the formulation of links between 
these two types of equations and the well-posedness 
of the resulting boundary-value problems. From the 
practical side, joint beam/solid equations lead to 
numerical methods that can efficiently represent the 
behavior of (beam) structures with subsets studied as 
three-dimensional solids.
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In a related article, we have presented novel for-
mulations of coupled beam/solid mechanics that lead 
to numerical methods, both in the linear and nonlin-
ear regimes [11]. These formulations, based on new 
variational principles, can be easily discretized using, 
for example, finite elements, and replace commonly 
employed ad hoc links between beams and solids 
(e.g., [5, 12, 13]). The latter, often based on con-
straints on the discrete solution, lack a variational 
basis and thus neither their well-posedness nor their 
stability can be ascertained.

In this article, we study boundary-value problems 
of linked, deformable, beams and solids in the context 
of linearized elasticity, as defined by a constrained 
variational principle. The main goal is to prove the 
well-posedness of problems with beams and solids 
involving the minimum set of boundary conditions, 
effectively proving that the linking terms provide the 
right stability to the equations, precluding rigid body 
motions of the system. The boundary-value problems 
that will be studied have the structure of saddle-point 
optimization problems in Hilbert spaces (e.g., [2]) 
and standard analysis techniques can be used to study 
their stability and well-posedness. The problem in 
consideration is actually a paradigmatic example of 
a larger class of problems of linearized elasticity in 
which the Dirichlet boundary conditions are weakly 
imposed.

In Sect. 2 we summarize the equations that govern 
deformable solids and beams in the context of small 
strain kinematics, highlighting the variational state-
ment of these two problems and their essential math-
ematical properties. Section  3 formulates the sim-
plest problem consisting of a beam and a solid that 
share an interface with the minimum set of Dirichlet 
boundary conditions. A joint variational principle, 
where the kinematic compatibility is introduced with 
Lagrange multipliers, is presented as well. The well-
posedness of the resulting boundary-value problem is 
analyzed in Sect. 4. Section 5 provides an illustration 
of the variational principle proposed in Sect. 3, using 
it to find the optimal distribution of the tractions on a 
surface of a body when only its resultant and moment 
are known. The article concludes with a summary of 
the main results in Sect. 6.

2  Problem statement

This article analyses boundary value problems of 
joint continuum solids and beams whose solutions 
correspond to the mechanical equilibrium of both 
types of bodies, as well as certain compatibility 
relations in their shared interfaces. Before formulat-
ing the global problem, the governing equations of 
elasticity and beams are briefly reviewed, and their 
main mathematical properties are identified.

The choice of boundary conditions in these prob-
lems is crucial. To show that the constraints that are 
later introduced effectively link beams and solids, 
we will present the pure traction problem of an elas-
tic solid and a mixed traction-displacement problem 
of a beam. Later, we will prove that these two bod-
ies, when appropriately connected, result in a stable 
structure.

2.1  The Neumann problem of small strain, elastic 
solids

We start by describing the continuum solid, and we 
restrict our presentation to an elastic one that occu-
pies a bounded open set B ⊂ ℝ

3 with volume |B| . 
The boundary of the solid is denoted �B and we 
identify a subset Σ ⊊ 𝜕B that will later be linked to 
a beam.

In classical elasticity, the unknown is the dis-
placement u ∈ U ∶=

[
H1(B)

]3 , where H1 is the Hil-
bert space of vector fields with (Lebesgue) square-
integrable components and square-integrable (weak) 
first derivatives. The stored energy of the deformable 
body is given by a scalar function W = Ŵ(�) , where 
� = ∇su ∶=

1

2
(∇u + ∇Tu) is the infinitesimal strain 

tensor and ∇ is the gradient operator. More spe-
cifically, for linear isotropic materials this function 
takes the form Ŵ(�) = 𝜇� ⋅ � + 𝜆

2
tr[�]2 where �,� 

are the two Lamé constants, the dot product refers to 
the complete index contraction, and tr[⋅] is the trace 
operator.

Considering that the body might be subject to 
body forces f ∈ [L2(B)]3 and surface tractions t on 
�B⧵Σ , the total potential energy of the body is

(1)ΠB(u) ∶=
1

2
aB(u, u) − fB(u),
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with 

 for all u, v ∈ U . We note, in passing, that the poten-
tial energy  (1) might not have any minimiser in U 
unless the forces are statically equilibrated, i.e., they 
must satisfy

where x denotes the position vector of points on 
the body or its boundary. In this case, a solution 
exists and is unique modulo infinitesimal rigid body 
motions [8].

To set up the analysis framework for the study of 
three-dimensional solids, we first recall the norm on the 
space U which has the standard form

where � is a characteristic length of the solid, for 
example its diameter. The bilinear form (2a) verifies 
the following continuity and stability bounds 

 for some positive constants CB, �B , and all u, v ∈ U . 
It bears emphasis that, due to the lack of Dirichlet 
boundary conditions on the boundary of the body, 
the bilinear form aB(⋅, ⋅) is not coercive in U . Rather, 
and based on Korn’s second inequality [9], only the 
weaker statement  (5b) can be made. Also, the linear 
form fB is assumed to be continuous, i.e.,

with cB > 0 for all u ∈ U . Under the previous condi-
tions, the Neumann problem is well-posed in the quo-
tient space U∕ker[∇s] (see, e.g. [4]).

(2a)

aB(u, v) ∶= ∫
B

(2�∇su ⋅ ∇sv + �(∇ ⋅ u) (∇ ⋅ v)) dV

(2b)fB(u) ∶= ∫
B

f ⋅ u dV + ∫�B⧵Σ

t ⋅ u dA,

(3)
∫

f dV + ∫�⧵Σ
t dS = 0,

∫
x × f dV + ∫�⧵Σ

x × t dS = 0,

(4)‖u‖U ∶=
�
‖u‖2

[L2(B)]3
+ �

2‖∇u‖2
[L2(B)]3

�1∕2

,

(5a)�aB(u, v)� ≤ CB ‖u‖U ‖v‖U,

(5b)aB(u, u) + ‖u‖2
[L2(B)]3

≥ �B ‖u‖2
U
,

(6)fB(u) ≤ cB ‖u‖U,

2.2  Beam mechanics

We describe next the equations that govern the so-
called Timoshenko beam elasto-statics. This is a 
classical problem of mechanics (see, e.g., [1, 14, 
14]) and we present it here in a succinct fashion that 
is enough for the goals of this article.

A cantilever beam of length L is now studied. Its 
curve of centroids is described by a known smooth 
curve r ∶ [0, L] → ℝ

3 , with a cross-section attached 
to each point of the curve and oriented according to 
a known smooth rotation field � ∶ [0, L] → SO(3) , 
the latter referring to the set of proper orthogonal 
tensors. The points on r and sections � are param-
eterized by the arclength s ∈ [0, L] and we choose 
s = 0 and s = L to correspond, respectively, to the 
clamped section and free tip.

Let {e1, e2, e3} be a Cartesian basis. Then �(s) 
maps e3 to the unit tangent vector to the curve of 
centroids at the point r(s) , and {e1, e2} to the direc-
tions of the principal axis of the cross-section at the 
same point. The displacement of the centroids will 
be given by the vector field w ∈ W ∶= [H1

0
(0, L)]3 

and the incremental rotation vector of the cross sec-
tions as � ∈ R ∶= [H1

0
(0, L)]3 . Following our previ-

ous notation, [H1
0
(0, L)]3 refers to the Hilbert space 

of vectors fields on (0,  L) with vanishing trace at 
s = 0.

Shear deformable, three-dimensional beams 
employ two deformation measures, namely,

where the prime symbol denotes the derivative with 
respect to the arc-length. The strain �  holds the 
shear and axial deformations, whereas the vector � 
contains the two bending curvatures and the torsion 
deformation.

The simplest section constitutive law for a beam 
of a linear elastic and isotropic material with Young’s 
and shear moduli  E,  G, respectively, is based on a 
quadratic stored energy function per unit length. It 
has the form

with section stiffness C� = diag[GA1,GA2,EA] and 
C� = diag[EI1,EI2,GIt] , where A is the cross section 

(7)
� = �̂ (w,�) ∶= �T (w� − � × r�),

� = ��(�) ∶= �T��,

(8)U(� ,�) ∶=
1

2
� ⋅ C�� +

1

2
� ⋅ C��
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area, A1,A2 are the (shear) reduced sections areas in 
the two principal directions, I1, I2 are the two prin-
cipal moments of inertia, and It is the torsional iner-
tia. When the beam is under distributed loads and 
moments, denoted respectively as n̄ and m̄ , and sub-
ject to a concentrated load P̄ and torque Q̄ at the tip, 
its total potential energy can be expressed as

with (w,�) ∈ W ×R and

for all (t, �) ∈ W ×R.
To set up the functional setting for the beam prob-

lem, we recall the norms on the space of displacements 
and rotations which are

Also, the product space W ×R , the natural setting for 
the beam problem, has the product norm

The bilinear form (10) verifies the continuity and sta-
bility bounds 

 for some constants Cb, 𝛼b > 0 and all 
(w,�), (t, �) ∈ W ×R . In contrast with the bilinear 
form of the solid, and precisely due to the boundary 
conditions on the beam, the bilinear form ab(⋅, ⋅) is 
coercive in W ×R (see A). The linear form fb will be 
assumed to be continuous as well, i.e., there exists a 
constant cb > 0 such that for all (t, �) ∈ W ×R

(9)Πb(w,�) ∶=
1

2
ab(w,�;w,�) − fb(w,�),

(10)

ab(w,�;t, �): = ∫

L

0

(

�̂ (w,�) ⋅ C� �̂ (t, �) + �̂(�) ⋅ C��̂(�)
)

dS,

fb(t, �): = ∫

L

0
(n̄ ⋅ t + m̄ ⋅ �) dS + P̄ ⋅ u(L) + Q̄ ⋅ �(L),

(11)
‖w‖W ∶=

�
‖w‖2

[L2(0,L)]3
+ L2‖w�‖2

[L2(0,L)]3

�1∕2

,

‖�‖R ∶=
�
‖�‖2

[L2(0,L)]3
+ L2‖��‖2

[L2(0,L)]3

�1∕2

.

(12)‖(w,�)‖W×R =
�
‖w‖2

W
+ L2‖�‖2

R

�1∕2
.

(13a)�ab(w,�;t, �)� ≤ Cb ‖(w,�)‖W×R ‖(t, �)‖W×R ,

(13b)ab(w,�;w,�) ≥ �b ‖(w,�)‖2W×R
,

(14)fb(t, �) ≤ cb ‖(t, �)‖W×R.

3  Joint formulation of solids and beams

We consider now the formulation of a problem in 
which a beam and a three-dimensional solid, con-
nected at some plane interface, deform to reach 
equilibrium under the action of external forces. Two 
issues need to be discussed. First, the minimal com-
patibility conditions that can be used to link the kin-
ematics of the beam and the solid on their shared 
interface. Second, the stability and well-posedness of 
the global problem under the smallest set of Dirichlet 
boundary conditions.

The first issue will be addressed in this section, 
and follows our previous work  [11]. The second 
issue is studied in Sect. 4. To analyse both of them, 
we consider the simplest case, an elastic solid as the 
one described in Sect. 2.1, devoid of Dirichlet bound-
ary conditions, attached through a surface Σ to the tip 
of a cantilever beam, of the type defined in Sect. 2.2. 
The number of Dirichlet boundary conditions for 
the global problem is thus six, and it remains to be 
proven that, when the right links are employed, the 
former suffice to ensure the stability of the problem. 
Other, apparently more complex situations (with 
more beams or solids), are essentially equivalent to 
this one.

3.1  Link formulation

We define next two constraints relating the displace-
ment and rotation vector of the beam at the free end, 
denoted respectively as w∗ and �∗ , with the displace-
ment field u of the body on the connected surface Σ . 
To describe these constraints let us define xG to be the 
barycenter of the surface Σ and � = x − xG denote the 
relative vector of an arbitrary point on the surface Σ 
from the barycenter.

Using this notation, we introduce a first constraint 
imposing that the tip displacement on the beam is 
equal to the average displacement of the body on Σ , 
or equivalently, that the zero moment of the solid and 
beam displacements on the interface surface be the 
same, that is
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The second constraint we will employ imposes that 
the first moment of the displacement of the beam and 
solid on the interface surface should be the same, i.e.,

where the tensor J is the tensor of average (surface) 
inertia

and ⊗ denotes the dyadic product between vectors in 
ℝ

3.

3.2  Global problem statement

In this joint problem, the equilibrium of the struc-
ture consisting of the clamped beam, the deformable 
body and the connecting link is obtained from the sta-
tionarity condition of a Lagrangian (see Fig.  1). To 
define the latter, consider first the space of Lagrange 
multipliers

with norm

(15)
0 = ∫Σ

(u − w∗ − �∗ × �) d

A = ∫Σ
(u − w∗) dA = ∫Σ

u dA − |Σ|w∗.

(16)

0 = ∫Σ
� × (u − w∗ − �∗ × �) d

A = ∫Σ
(� × u − � × (�∗ × �)) d

A = ∫Σ
� × u dA − |Σ| J�∗,

(17)J ∶=
1

|Σ| ∫Σ

(|�|2I − � ⊗ �) dA,

(18)Q ∶= ℝ
3 ×ℝ

3

(19)‖(�,�)‖Q ∶=
�
1

L2
‖�‖2

2
+ ‖�‖2

2

�1∕2

.

Since the global problem involves two types of bod-
ies, we start by defining one last product space 
V ∶= U ×W ×R with norm

for all (u,w,�) ∈ V . On this space, we can define the 
bilinear form a(⋅, ⋅) ∶ V × V → ℝ and the linear form 
f ∶ V → ℝ by

The joint equilibrium of the solid and beam will 
be obtained as the saddle point of the Lagrangian 
L ∶ V ×Q defined as

where the notation ⟨⋅, ⋅⟩Σ denotes the L2 product 
on the surface Σ . The optimality conditions of the 
Lagrangian give the mixed variational problem: find 
(u,w,�,�,�) ∈ V ×Q such that

for all (v, t, �, �, �) in V ×Q , with

The solvability of problem  (23) requires the careful 
consideration of the properties of both bilinear forms 
a(⋅, ⋅) and b(⋅, ⋅) , as well as the spaces on which they 
are defined.

(20)‖(u,w,�)‖V ∶=
�
‖u‖2

U
+ ‖w‖2

W
+ L2‖�‖2

R

�1∕2
,

(21)
a(u,w,�;v, t, �) ∶= aB(u, v) + ab(w,�;t, �),

f (v, t, �) ∶= fB(v) + fb(t, �).

(22)

L(u,w,�,�,�) ∶=
1

2
a(u,w,�;u,w,�) − f (u,w,�)

+ ⟨�, � × u − J�∗⟩Σ + ⟨�, u − w∗⟩Σ.

(23)
a(u,w,�;v, t, �) + b(�,�;v, t, �) = f (v, t, �),

b(�, �;u,w,�) = 0,

(24)
b(�, �;u,w,�) = ⟨�, � × u − J�∗⟩Σ + ⟨�, u − w∗⟩Σ.

Fig. 1  Schematic of the 
linked problem. A body 
B that is not supported is 
connected through Σ , a 
subset of its boundary, with 
a cantilever beam
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4  Analysis

Mixed variational problems such as the one described 
in Eq.  (23) have been extensively studied in the lit-
erature [3, 10]. Their well-posedness pivots on two 
conditions: the ellipticity of the bilinear form a(⋅, ⋅) 
on a certain set K ⊂ V defined below, and the inf-sup 
condition of the bilinear form b(⋅, ⋅).

Before stating the main result we note that, based 
on Eqs.  (5) and (13), the global bilinear form a(⋅, ⋅) 
verifies the following bounds

for some C, 𝛼 > 0 and all (u,w,�), (v, t, �) ∈ V . Like-
wise, and due to Eqs.  (6) and  (14) the global linear 
form f (⋅) is continuous, that is,

for some c > 0 and all (v, t, �) ∈ V . We note, again, 
that the bilinear form a(⋅;⋅) is not coercive in V as a 
result of the lack of coercivity of the bilinear form in 
the problem of the deformable solid.

As a preliminary property, let us verify that the 
bilinear form b(⋅, ⋅) is continuous in the test space.

Lemma 1 The bilinear form b(⋅, ⋅) ∶ V ×Q → ℝ is 
continuous, i.e, there exists a constant C > 0 such that

Proof We first show a preliminary result that we 
will need to prove the continuity of b(⋅, ⋅) . Since 
�,w ∈ H1

0
(0, L) , and H1

0
(0, L) ↪ C0[0, L] , we have 

that

and, similarly,

Next, by the trace theorem, we have that

(25)
�a(u,w,�;v, t, �)� ≤ C ‖(u,w,�)‖V ‖(v, t, �)‖V,
a(u,w,�;u,w,�) + ‖u‖2

[L2(B)]3
≥ � ‖(u,w,�)‖2

V
,

(26)f (v, t, �) ≤ c ‖(v, t, �)‖V,

(27)�b(�, �;u,w,�)� ≤ C‖(�, �)‖Q ‖(u,w,�)‖V.

(28)

��∗� ≤ �
L

0

���(s)� ds ≤ L1∕2 ���[H1
0
(0,L)]3 ≤ ‖�‖[H1

0
(0,L)]3 = ‖�‖R,

(29)
|w∗| ≤ ∫

L

0
|w′(s)| ds ≤ L1∕2 |w|[H1

0 (0,L)]3

≤ ‖w‖[H1
0 (0,L)]3

= ‖w‖ .

The continuity of b(⋅, ⋅) then follows from the previ-
ous result, the application of the Cauchy-Schwartz 
inequality and the bounds for �∗ and w∗:

  ◻

The set K ⊂ V consists of all the functions where 
the bilinear form b(⋅, ⋅) vanishes, i.e.,

From the definition of the bilinear form b(⋅;⋅) it fol-
lows that the elements in K are ones that satisfy the 
constraints (15) and (16).

The well-posedness of the saddle point problem 
is the result of two theorems that we state and prove 
next.

Theorem 2 The bilinear form a(⋅;⋅) is V-elliptic on 
K.

Proof Let the function �‖ ⋅ ‖� ∶ V → ℝ be defined as

for all (u,w,�) ∈ V . We prove first that this func-
tion is positive definite on  K . For (u,w,�) ∈ K , 
�‖(u,w,�)‖� = 0 if and only if

The bilinear forms aB(⋅, ⋅) and ab(⋅, ⋅) are posi-
tive semidefinite and positive definite, respectively. 
Hence, (w,�) must be equal to (0, 0) and u must be an 
infinitesimal rigid body motion. The only rigid body 
deformation in K is

(30)∫Σ
� ⋅ � × u dA ≤ C ‖�‖2

(

∫Σ
|u|2 dA

)1∕2

≤ C ‖�‖2 ‖u‖[H1()]3 = C ‖�‖2 ‖u‖ .

(31)

b(�, �;u,w,�) = ⟨�, � × u − J�∗⟩Σ + ⟨�, u − w∗⟩Σ

≤ �⟨�, � × u⟩Σ� + �⟨�, J�∗⟩Σ� + �⟨�, u⟩Σ� + �⟨�,w∗⟩Σ�

≤ C
�
‖�‖2 ‖u‖U + ‖�‖2 ‖�‖R + ‖�‖2 ‖u‖U + ‖�‖2 ‖w‖W

�

≤ C‖(�, �)‖Q
�
‖u‖U + ‖�‖R + ‖w‖W

�

≤ C ‖(�, �)‖Q ‖(u,w,�)‖V ,

(32)
K = {(u,w,�) ∈ V, b(�, �;u,w,�) = 0 for all (�, �) ∈ Q}.

(33)�‖(u,w,�)‖� = a(u,w,�;u,w,�),

(34)0 = aB(u, u) + ab(w,�;w,�).

(35)u = w∗ + �∗ × �,
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with � = x − xG , as before, and xG being the position 
of the barycenter of Σ . But, since w ≡ 0 and � ≡ 0 , 
the function u must also be identically zero.

To prove next that �‖(u,w,�)‖� ≥ � ‖(u,w,�)‖V 
for some constant 𝛼 > 0 , and any (u,w,�) ∈ K , 
suppose that it is not true. Then there is a sequence 
{(ui,wi,�i)} ∈ K with

Since 1 = ‖(ui,wi,�i)‖V ≥ ‖ui‖[H1(B)]3 , the sequence 
{ui} is bounded in [H1(B)]3 and, by Rellich’s theorem, 
there is a subsequence {uij} that converges in [L2(B)]3 
to a function ū . But, noting that 
limj→∞ �‖(uij ,wij

,�ij
)‖� = 0 , this must be a Cauchy 

sequence in the norm

But this norm is equivalent to ‖ ⋅ ‖V due to Korn’s sec-
ond inequality and the ellipticity of ab(⋅, ⋅) . Hence, the 
sequence is Cauchy with respect to ‖ ⋅ ‖V and since V 
is a Hilbert space, it converges to (ū, w̄, �̄) ∈ K . The 
two norms being equivalent proves that

Above we showed that �‖ ⋅ ‖� is positive definite in K , 
hence (ū, w̄, �̄) = (0, 0, 0) but

Since this is impossible, we conclude that there exists 
𝛼 > 0 such that �‖(u,w,�)‖� ≥ � ‖(u,w,�)‖V .  
 ◻

The second condition required to guarantee the 
well-posedness of the mixed problem is the inf-sup 
condition on the bilinear form b(⋅, ⋅).

Theorem 3 There exists a constant 𝛽 > 0 such that 
for all (�, �) ∈ Q,

Proof To prove this bound, first, we need the fol-
lowing. Let �, � ∈ ℝ

3 ×ℝ
3 and, as before, let 

(36)
‖(ui,wi,�i)‖V = 1, and lim

i→∞
�‖(ui,wi,�i)‖� = 0.

(37)(u,w,�) ↦
�
‖u‖2

[L2(B)]3
+ �‖(u,w,�)‖�2

�1∕2

.

(38)0 = lim
j→∞

�‖(uij ,wij
,�ij

)‖� = �‖(ū, w̄, �̄)‖�.

(39)0 = ‖(ū, w̄, �̄)‖ = lim
j→∞

�‖(uij ,wij
,�ij

)‖� = 1.

(40)sup
(u,w,�)∈V

b(�, �;u,w,�)

‖(u,w,�)‖V
≥ � ‖(�, �)‖Q.

� = x − xG and xG denote the position vector of the 
barycenter of Σ . Then,

Next, we find an upper bound for the inf-sup quotient 
by selecting the triplet (u,w,�) to be (� + � × �, 0, 0) , 
i.e.,

where we have employed  (41) and the boundedness 
of B , Σ , and the norm of J .   ◻

Theorems 2 and 3 are necessary and sufficient con-
ditions for the well-posedness of problem (23).

5  Application: bodies under concentrated forces 
and moments

In mechanics, it is natural to consider the response of 
structures under point loads and concentrated moments. 
This is in contrast with the mechanics of two- or three-
dimensional continuum bodies since the latter can 
only be subject to surface tractions and body forces. 
Remarkably, the constrained formulation introduced in 
Sect. 3 can be used as a convenient mechanism to effec-
tively impose concentrated loads on continua, one that 
naturally introduces the most natural surface tractions 
on the boundary of the body that are statically equiva-
lent to the imposed loads.

To illustrate this application consider an arbitrary 
body B ⊂ ℝ

3 and three disjoint sets 𝜕DB, 𝜕NB,Σ ⊂ 𝜕B . 
On the Dirichlet boundary �DB the displacement of 
the body is assumed to be zero; the Neumann bound-
ary �NB is free of tractions; finally, the boundary Σ , 
assumed to be plane for simplicity, is subject to an 
unknown vector field of tractions t that satisfy

(41)

‖� + � × �‖2
U
≤ �

B

�� + � × ��2 dV + 2�2 �
B

���2 dV

≤ C �B�
�
���2 + �

2���2
�

≤ C ‖(�, �)‖2
Q
.

(42)

sup
(u,w,�)∈V

b(�, �;u,w,�)

‖(u,w,�)‖V
≥ b(�, �;� + � × �, 0, 0)

‖(� + � × �, 0, 0)‖V

=
⟨�, � × (� + � × �)⟩Σ + ⟨�, � + � × �⟩Σ

‖� + � × �‖U

≥ C
� ⋅ J� �Σ� + ���2 �Σ�

‖(�, �)‖Q
≥ � ‖(�, �)‖Q,
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where � = x − xG and xG is the position vector of the 
barycenter of Σ.

The vectors F,MG ∈ ℝ
3 are the resultant force 

and moment on the surface Σ . When the body B is a 
prismatic bar or flat the theories of beams and shells 
posit stress distributions in the cross section follow-
ing from the theories proposed by Navier, Bernoulli, 
Timoshenko, Coulomb, Mindlin, among other. In con-
trast, here we will show that we can recover Eq. (43), 
as well as the equilibrium equations on the solid in B 
and the Neumann boundary from the stationarity of the 
constrained functional (22).

More specifically, let w∗,�∗ ∈ ℝ
3 and consider the 

problem of finding the displacement u in the space

and the Lagrange multipliers �,� ∈ ℝ
3 that make sta-

tionary the functional

with aB(⋅, ⋅), fB(⋅) being the bilinear and linear forms, 
respectively, of the elastic body under body forces f  
defined in Sect.  2.1. This problem falls in the cate-
gory studied in Sects. 3 and 4, but removes the beam 
which is unnecessary for the example.

The Euler–Lagrange equations of the Lagran-
gian (45) are 

 and the solution consists of the triplet 
(u,�,�) ∈ U ×ℝ

3 ×ℝ
3 that verifies  (46) for all 

(v, �, �) ∈ U ×ℝ
3 ×ℝ

3.
Defining the stress tensor

and the surface tractions t = �n , integrating by parts 
the bilinear form aB(⋅, ⋅) in Eq.  (46a) and using the 

(43)F = ∫Σ

t dA, MG = ∫Σ

� × t dA,

(44)U =
{
u ∈ [H1(B)]3, u = 0 on �uB

}

(45)

L(u,�,�) =1
2
a(u,u) − f(u) − ⟨�, � × u − J�∗⟩

Σ − ⟨�, u − w∗⟩Σ,

(46a)aB(u, v) − ⟨�, � × v⟩Σ − ⟨�, v⟩Σ = fB(v),

(46b)
⟨�, � × u⟩Σ + ⟨�, u⟩Σ = �Σ� � ⋅ J�∗ + �Σ� � ⋅ w∗,

(47)� =
�W

��
(�) = 2� � + � tr� I,

arbitrariness of the test function v ∈ U we get that, 
weakly, 

The first of these equations expresses the equilib-
rium of forces in the interior of the body; the second 
one reveals that the tractions on the Neumann boundary 
are zero; the third one shows that the tractions on the 
surface Σ depend on the Lagrange multipliers. Integrat-
ing this last equation over all the surface Σ , and using 
the property that xG is the barycenter of Σ , we can 
obtain

Also, taking the cross product of � of both sides of 
Eq.  (48c) and integrating again over the boundary Σ 
we get

Combining Eqs. (49) and (50) with (43) we find that 
the Lagrange multipliers have the value

Alternatively, we can use these last two expressions 
to identify in Eq. (48c) that the tractions on Σ can be 
split as

The first contribution, tM = (J−1MG) × � , are the 
tractions due to the concentrated moment. The sec-
ond part, tF = |Σ|−1F , are the (uniform) tractions due 
to the concentrated load. Remarkably, this example 
shows that the constrained formulation that corre-
sponds to the optimality points of the Lagrangian (45) 
yields the displacement of the body in equilibrium 
under the body forces f  and a traction field whose 
pointwise value is found in closed form. Naturally, 
these tractions verify Eq. (43).

As advanced in the introduction and illustrated 
with this example, the linked formulation of Sect.  3 
provides the right variational formulation for loading 

(48a)∇ ⋅ � = f in B,

(48b)t = 0 on �tB,

(48c)t = � × � + � on Σ.

(49)∫Σ

t dA = |Σ|�.

(50)∫Σ

� × t dA = |Σ| J�.

(51)� = |Σ|−1J−1MG, � = |Σ|−1F.

(52)t = tM + tF.
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devices that apply onto the three-dimensional elastic 
body concentrated forces and torques.

6  Summary

We have presented the small strain form of a vari-
ational principle that governs the collective equilib-
ria of linked beams and deformable solids. This is a 
remarkable principle in that it combines the mechani-
cal response of two types of bodies with very differ-
ent kinematic descriptions.

The variational principle rests on two compatibil-
ity conditions that link, in the weakest possible way, 
the kinematics of beams and solids on their common 
interface. These conditions express that the zero-th 
and first-order moments of the displacement fields of 
the beam and solid on the interface surface are equal, 
following previous work of one of the authors [11].

The optimality conditions of this variational prin-
ciple give rise to a saddle point problem whose well-
posedness is proven. In addition to the mathematical 
consequences of such a result, it evinces that it can 
be the basis of convergent numerical discretizations 
for structural models combining beams and deform-
able solids. This result has important practical impli-
cations for the analysis of large structures that are 
modeled with beams, shells, as well as continua and 
whose link is typically achieved with ad hoc connec-
tions lacking any mechanical foundation.

We close by noting that the well-posedness of the 
problem does not rely on the elastic response of either 
the solid or the beam. Rather, only some (weak) coer-
civity conditions of the bilinear forms of the solid and 
the beam are required for the proof. Hence, the result 
obtained can be, in principle, extended to inelastic 
structures in which the same stability estimates hold, 
even if just incrementally.
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Appendix

A Coercivity of the Timoshenko beam

For completeness, we present a proof of the coerciv-
ity relation (13b). If (w,�) ∈ W ×R , then

for some constant C1 depending on the section stiff-
ness C� ,C� and � , and any 𝜖 > 0 . Then, using Poin-
caré’s inequality, it follows that

where CP > 0 is Poincaré’s constant and 
Cr = |r�|2

[L∞(0,L)]3
 . Collecting all the terms on |�| we 

obtain

By selecting � that verifies

the constants multiplying ‖w‖W and the L2-norm of � 
are both positive and (13b) follows.
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(53)

a(w,�;w,�) = ∫

L

0

[

(w′ − � × r′) ⋅ C� (w′ − � × r′) + �′ ⋅ C��′
]

dS

≥ C1 ∫

L

0

[

|w′ − � × r′|2 + L2 |�′|2
]

dS

≥ C1 ∫

L

0

[(

1 − 1
�2

)

|w′
|

2 + (1 − �2) |� × r′|2 + L2 |�′|2
]

,

(54)
a(w,�;w,�) ≥ C1 CP

(

1 − 1
�2

) 1
L2

‖w‖2 + C1 Cr (1 − �2)

∫

L

0
|�|2 dS + C1 CP ∫

L

0

(

|�|2 + L2|�′|2
)

dS,

(55)

a(w,�;w,�) ≥ C1 CP

(

1 − 1
�2

) 1
L2

‖w‖2 + C1(Cr(1 − �2) + CP)

∫

L

0
|�|2 dS + C1 CP ∫

L

0
L2 |�′|2 dS.

(56)1 < 𝜖2 < 1 +
CP

Cr

,
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