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Abstract  In this work, a linear Kirchhoff–Love 
shell formulation in the framework of scaled bound-
ary isogeometric analysis is presented that aims to 
provide a simple approach to trimming for NURBS-
based shell analysis. To obtain a global C1-regular test 
function space for the shell discretization, an inter-
patch coupling is applied with adjusted basis func-
tions in the vicinity of the scaling center to ensure the 
approximation ability. Doing so, the scaled boundary 
geometries are related to the concept of analysis-suit-
able G1 parametrizations. This yields a coupling of 
patch boundaries in a strong sense that is restricted 
to G1-smooth surfaces. The proposed approach is 
advantageous to trimmed geometries due to the incor-
poration of the trimming curve in the boundary rep-
resentation that provides an exact representation in 
the planar domain. Since the coupling of star-shaped 
blocks is feasible, a mesh generation also for com-
plex domains is implementable. The potential of the 
approach is demonstrated by several problems of 
untrimmed and trimmed geometries of Kirchhoff–
Love shell analysis evaluated against error norms and 
displacements. Lastly, the applicability is highlighted 

in the analysis of a violin structure including arbitrar-
ily shaped patches.

Keywords  Isogeometric analysis · Analysis-
suitable G1 · Scaled boundary method · Kirchhoff–
Love shell analysis

1  Introduction

In modern engineering applications such as automo-
tive engineering and aerospace engineering, com-
puter-aided design (CAD) is a key method to design 
structural components. The mathematical underly-
ing of these drawings usually consists of B-splines 
and non-uniform rational B-splines (NURBS) and 
provides that by using isogeometric analysis (IGA) 
[1] for the numerical analysis, the model for the 
design and the analysis are the same. A major issue 
of numerical analyses is the treatment of trimmed 
geometries whereas parts of the initial geometry are 
cut out [2]. This implies, that a numerical analysis 
in common frameworks is not conductible anymore 
in a straightforward manner. Several approaches are 
presented in the literature for treating trimming such 
as [3–5] mostly considering an approximation of the 
trimming curve and a limitation to quadrilateral sec-
tions but do not incorporate the exact trimming curve 
in the domain.

Isogeometric analysis is especially suitable for 
Kirchhoff–Love shells [6] since the formulation is 
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derived on the change of the normal vector which 
requires well-defined second order derivatives of 
the basis functions. This is naturally fulfilled within 
single patches of quadratic or higher order. How-
ever, across patch boundaries, IGA patches are not 
naturally Cp−1 continuous. This implies that the 
Kirchhoff–Love shell formulation is not applicable 
for multi-patch structures in IGA. As complex shell 
structures often consist of multi-patch geometries, C1 
continuity needs to be enforced at patch boundaries. 
Common approaches to ensure higher continuity on 
multiple patches are Nitsche methods [7, 8], mor-
tar methods [9, 10], and penalty methods [11–14], 
among others [15, 16]. However, all of these meth-
ods are coupling techniques in a weak sense that can 
only represent the isogeometric discretization space 
approximately C1 smooth. To ensure exact C1 smooth 
multi-patch geometries, a special class of G1 continu-
ous multi-patch surfaces, namely analysis-suitable G1 
surfaces [17] can be utilized in the two-dimensional 
domain. An approach of analysis-suitable G1 spaces 
that will be utilized in this work, is presented in [18] 
for Kirchhoff–Love shells with restriction to quadri-
lateral patches.

A promising approach to take the exact boundary 
of geometries more into account is the scaled bound-
ary isogeometric analysis (SB-IGA) [19, 20]. It com-
bines the advantages of the scaled boundary finite 
element method [21, 22] and the isogeometric anal-
ysis providing patches of arbitrarily shaped bounda-
ries. This yields that any domain can be discretized 
by segmentation into star-shaped blocks [23]. Since 
the discretization of an SB-IGA domain always con-
sists of multiple patches even for a single star-shaped 
block, a coupling approach is inherently necessary to 
obtain C1-continuity on the SB-IGA domain.

This contribution presents a Kirchhoff–Love shell in 
the framework of scaled boundary isogeometric analy-
sis with analysis-suitable G1 surfaces that are especially 
suitable for complex, trimmed geometries by incorpo-
rating the trimming curve into the boundary representa-
tion of the geometry in a simple way and thus provides 
an exact discretization of the trimmed domain. More-
over, to preserve the approximation ability of the SB-
IGA test functions, special scaling center test functions 
have to be introduced. A step that can also be observed 
if smooth polar splines are considered [24]. The pro-
posed approach is tested on its general performance 
by untrimmed shell structures and the potential is later 

outlined by trimmed shell structures in the linear case. 
The advantages are summarized as follows.

•	 A linear Kirchhoff–Love shell formulation is pre-
sented in isogeometric boundary representation.

•	 A patch coupling of smooth patches across bound-
ary edges is applied utilizing the analysis-suitable 
G1 concept including modifications in the vicinity of 
the scaling center.

•	 Advantages of the approach to discretized star-
shaped domains of an arbitrary number of bounda-
ries are outlined.

•	 Examples of discretizations for complex topologies 
including trimmed surfaces are presented and evalu-
ated.

The work is structured as follows. In Sect. 2, the linear 
formulation of the Kirchhoff–Love theory is provided. 
Section 3 presents the fundamental concept of SB-IGA 
and the notation herein. Further, Sect. 4 discusses the 
choice of basis functions for C1 continuity in the planar 
domain and the application to Kirchhoff–Love shells 
with the incorporation of trimming. The proposed 
approach is tested in numerical examples in Sect.  5. 
Finally, the contribution is concluded in Sect. 6 includ-
ing an outlook to further research.

2 � Kirchhoff–Love shell formulation

The Kirchhoff–Love shell formulation is recalled in 
this section, based on the derivations presented in [6, 
8, 25]. The formulation is derived considering a single 
patch but can be extended to scaled boundary multi-
patch structures as outlined in the following sections. 
Neglecting cross-sectional shear stresses, the Kirch-
hoff–Love shell formulation states the assumption that 
the initial director vectors to the shell center surface 
remain perpendicular during deformation. The descrip-
tion of the shell is reduced from the domain of the shell 
body to the mid-surface Ω ⊂ ℝ

3 utilizing a convective 
covariant space Ω̃ ⊂ ℝ

2 . Utilizing the unit normal vec-
tor on the mid-surface, the initial shell structure reduced 
on the mid-surface is described as

where a is the position vector in the initial configu-
ration, a3 is the unit normal vector on each point on 
the surface, and �3 the thickness coordinate ranging 

(1)S(�1, �2, �3) = a(�1, �2) + �3a3(�
1, �2)
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from −t∕2 to +t∕2 . Further, we use the Greek indices 
�, �, �,� ∈ {1, 2} and Latin indices i, j ∈ {1, 2, 3} and 
drop the dependence of �� . To obtain the normal vec-
tor on the surface, the partial derivatives on the mid-
surface are utilized to construct the unit normal vec-
tors with

In the following, we will indicate differentiation w.r.t. 
the corresponding coordinate (⋅),� =

�

���
 . Further, we 

define the L2-norm of the normal vector a3 as J̄ . Uti-
lizing the partial derivatives, we introduce the covari-
ant metric coefficients constructed by

Due to the orthogonality condition, we construct the 
contravariant basis system a� ⋅ a� = ��

�
 , that yields a 

relation of the covariant and the contravariant metric 
system by the inverse operator {a��} = {a��}

−1, 
where {⋅} denotes the matrix components.

In the discrete setting of the boundary condi-
tions of the boundary value problem, we denote the 
boundary of the body Γ = �Ω with Dirichlet and 
Neumann boundary conditions ΓD and ΓN with the 
assumption that Ω is a smooth surface with well-
defined derivatives of the curvature. The bound-
ary conditions of ΓD and ΓN are non-overlapping 
Γ = ΓD ∪ ΓN  . Further, we decompose the bound-
ary conditions into ΓD = Γu ∪ Γ� and ΓN = ΓQ ∪ ΓM 
with Γu ∩ ΓQ = ∅ and Γ� ∩ ΓM = ∅ since the pre-
scribed displacements ũ and traction forces Q̃ , 
as well as the prescribed rotations �̃ and traction 
moments M̃ at the boundary are of energetically 
conjugate nature. A similar consideration is done at 
the corners 𝜒 ⊂ Γ with a split into Neumann bound-
ary conditions �N ∩ ΓN and Dirichlet boundary con-
ditions �D ∩ ΓD.

Having defined the boundary, we choose some 
suitable discrete space Vh ∈ H2(Ω) in the sense 
of finite element methods and depending on the 
boundary conditions of the problem. Then, the dis-
crete weak form seeks for uh ∈ Vh such that 

where the bilinear form a and the linear form F are 
expanded as

(2)a� = a,� =
�a

���
a3 =

a1 × a2

|a1 × a2|
.

(3)a�� = a� ⋅ a� .

(4a)a(uh, vh) = F(vh), ∀ vh ∈ Vh.

 where g is an applied body force, S̃ a prescribed 
twisting moment at each corner of �N , and �n the 
normal rotation [8]. In this work, only body forces 
and traction forces are considered. Additionally, 
for a complete weak form, the kinematics and the 
constitutive relation are pending. The quantities � , 
� , n and m denote the membrane strains and bend-
ing strains depending on the test function vh and the 
energetically conjugate membrane forces and bend-
ing moments depending on the discretized solu-
tion field uh . According to the Kirchhoff kinemati-
cal assumptions, transverse shear strains vanish and 
membrane and bending strains remain. Consequently, 
the decomposition of the linearized Green-Lagrange 
strain tensor reads

For a rigorous derivation of the linearization, see [8]. 
According to [26] the linearized strain components 
are 

and

 Besides the kinematics, the stress resultants n and 
m are derived by applying a suitable constitutive 
relation. Thus, the Cauchy stress tensor is analyti-
cally integrated through the thickness and reads as a 
decomposition into the stress tensors’ components as 
[13] 

and

(4b)

a(uh, vh) =∫Ω

�(vh) ∶ n(uh)dΩ + ∫Ω

�(vh) ∶ m(uh)dΩ.

(4c)

F(vh) =∫Ω

g ⋅ vhdΩ + ∫ΓQ

Q̃ ⋅ vhdΓ

+ ∫ΓM

M̃𝛽n(vh)dΓ +
∑

e∈𝜒N

(
S̃v3,h

||e
)

(5)Elin(vh) = �(vh) + �3�(vh).

(6a)��� =
1

2

(
a� ⋅ vh,� + a� ⋅ vh,�

)

(6b)

��� = −a3 ⋅ vh,�� + a�,� ⋅ a3 ⋅
1
J̄
((

a2 × a3
)

⋅ vh,1 −
(

a1 × a3
)

⋅ vh,2
)

+ 1
J̄
((

a�,� × a2
)

⋅ vh,1 −
(

a�,� × a1
)

⋅ vh,2
)

.

(7a)n(uh) = t ⋅ D ∶ �(uh)
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with the materials fourth-order tensor D . We want to 
remark, that the analytical integration herein assumes 
a constant thickness of the shell. Applying Hooke’s 
law as a linear constitutive model, the tensor is given 
as [13]

and

 Herein the parameters � and E are the specific mate-
rial parameters of Poisson’s ratio and Young’s mod-
ulus, respectively. It is remarkable, that due to the 
occurrence of second order derivatives of the basis 
functions in the bending components, C1 continuity 
is required for the computation. This is fulfilled natu-
rally for SB-IGA patches across the elements within 
each patch, however, at the patch boundaries, only C0 
continuity is given. Thus, C1 continuity is enforced 
across patch boundaries in the manner of scaled 
boundary isogeometric analysis.

3 � B‑splines and SB‑IGA

In this section, we introduce the notation herein and 
explain briefly some basic notions in the context of 
the SB-IGA ansatz. For more details regarding isogeo-
metric analysis, we refer to [27, 28]. We start with the 
definition of B-spline functions and B-spline spaces, 
respectively.

An increasing sequence of real num-
bers Ξ∶={�1 ≤ �2 ≤ ⋯ ≤ �n+p+1} for some 
p ∈ ℕ is called knot vector, where we assume 
0 = �1 = ⋯ = �p+1, �n+1 = ⋯ = �n+p+1 = 1 , and call 
such knot vectors p-open. Further, the multiplicity of 
the j-th knot is denoted by m(�j) . Then the univariate 
B-spline functions B̂j,p(⋅) of degree p corresponding to 
a given knot vector Ξ is defined recursively by the Cox-
DeBoor formula:

and if p ∈ ℕ≥1 we set

(7b)m(uh) =
t3

12
⋅ D ∶ �(uh)

(7c)D = D𝛼𝛽𝜆𝜇a𝛼 ⊗ a𝛽 ⊗ a𝜆 ⊗ a𝜇

(7d)

D���� =
E

2(1 + �)

(
a��a�� + a��a�� +

2�

1 − �
a��a��

)
.

(8)B̂j,0(�)∶=

{
1, if � ∈ [�j, �j+1)

0, else,

Note one sets 0∕0 = 0 to obtain well-definedness. The 
knot vector Ξ without knot repetitions is denoted by 
{�1,… ,�N}.

The extension of the last spline definition to the 
multivariate case is achieved by a tensor product con-
struction. In other words, we set for a given tensor 
knot vector �∶=Ξ1 ×⋯ × Ξd, where the 
Ξl = {�l

1
,… , �l

nl+pl+1
}, l = 1,… , d are pl-open, and a 

given degree vector p∶=(p1,… , pd) for the multivari-
ate case

with d as the underlying dimension of the paramet-
ric domain Ω̂ = (0, 1)d and I the multi-index set 
I∶={(i1,… , id) | 1 ≤ il ≤ nl, l = 1,… , d}.

B-splines fulfill several properties and for our pur-
poses the most important ones are:

•	 If for all internal knots, the multiplicity satisfies 
1 ≤ m(�j) ≤ m ≤ p, then the B-spline basis func-
tions B̂i,p are global Cp−m-continuous. Therefore 
we define in this case the regularity integer 
r∶=p − m . Obviously, by the product structure, we 
get splines B̂i,p which are Crl-smooth w.r.t. the l-th 
coordinate direction if the internal multiplicities 
fulfill 1 ≤ m(�lj ) ≤ ml ≤ pl, rl:=pl − ml, ∀l ∈ 1,… , d in the 
multivariate case. To emphasize later the regular-
ity of the splines, we introduce an upper index r 
and write in the following B̂r

i,p
, B̂r

i,p
 respectively. 

Here r∶=(r1,… , rd).
•	 For univariate splines B̂r

i,p
, p ≥ 1, r ≥ 0 we have 

 with B̂r−1
1,p−1

(�)∶=B̂r−1
n+1,p−1

(�)∶=0.

(9)

B̂j,p(�)∶=
� − �j

�j+p − �j
B̂j,p−1(�)

+
�j+p+1 − �

�j+p+1 − �j+1
B̂j+1,p−1(�).

(10)

B̂i,p(�)∶=

d∏

l=1

B̂il,pl
(�l), ∀ i ∈ I, �∶=(�1,… , �d),

(11)

�� B̂
r
i,p
(�) =

p

�i+p − �i
B̂r−1
i,p−1

(�)

+
p

�i+p+1 − �i
B̂r−1
i+1,p−1

(�),
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•	 The support of the spline B̂r
i,p

 is part of the interval 
[�i, �i+p+1].

The space spanned by all univariate splines B̂r
i,p

 corre-
sponding to given knot vector and degree p and global 
regularity r is denoted by

Later, to have more flexibility it could be useful to 
introduce a strictly positive weight function 
W =

∑
i wiB̂

r
i,p

∈ Sr
p
 and use NURBS functions 

N̂r
i,p
∶=

wi B̂
r
i,p

W
 , the NURBS spaces Nr

p
∶=

1

W
Sr
p
, respec-

tively. Such weighted spline functions are needed for 
conic section parametrizations. For the multivariate 
case we just define the needed spaces as product 
spaces, e.g.

provided proper univariate spaces.
To define discrete spaces in the computational 

domain Ω̃ we require a parametrization mapping 
F ∶ �Ω∶=(0, 1)d → Ω̃ ⊂ ℝ

d . The knots stored in the 
knot vector � , corresponding to the underlying 
splines, determine a mesh in the parametric domain 
Ω̂ , namely M̂:={Kj:=(�1

j1
,�1

j1+1
) ×⋯ × (�d

jd
,�d

jd+1
) | j

= (j1,… , jd), with 1 ≤ ji < Ni}, and with � = {�1
1 ,… ,

�1
N1
} ×⋯ × {�d

1 ,… ,�d
Nd
} as the knot vector � with-

out knot repetitions. The image of this mesh under the 
mapping F , i.e. M∶={F(K) | K ∈ M̂} , gives us a 
mesh structure in the physical domain. Obviously, by 
inserting knots without changing the parametrization 
we can refine the mesh, which is known as h-refine-
ment; see [1, 27]. For a mesh M we can define the 
global mesh size through h∶=max{hK | K ∈ M̂}, 

Sr
p
∶=span{B̂r

i,p
| i = 1,… , n}.

Sr1,…,rd
p1,…,pd

∶=Sr1
p1
⊗⋯⊗ Srd

pd
= span{�Br

i,p
| i ∈ I},

where for K ∈ M̂ we denote with hK∶=diam(K) the 
element size and M̂ is the underlying parametric 
mesh.

The underlying concept of SB-IGA fits the fact 
that in CAD applications the computational domain 
is often described by means of its boundary. Further-
more, as discussed later the boundary representation 
is particularly suitable if trimming is considered.

As long as the region of interest is star-convex we 
can choose a scaling center z0 ∈ ℝ

d and the domain is 
then defined by a scaling of the boundary w.r.t. to z0 . 
In this article, we restrict ourselves to planar SB 
domains, and in view of isogeometric analysis we 
have some boundary NURBS curve 
�(�) =

∑
i=1 Ci N̂

r
i,p
(�), Ci ∈ ℝ

2 and define the SB-
parametrization of some Ω̃ through

(compare Fig. 1).

Remark 1  In the considerations below it is allowed 
to replace the prefactor � by a general degree 1 poly-
nomial c1𝜉 + c2, c1 > 0, c2 ≥ 0 , i.e. no difficulties 
arise. This might be useful in some situations.

By the linearity w.r.t. the second parameter � we 
can assume for Ω̃ ⊂ ℝ

2 that F ∈
[
Nr
p
⊗ Sr

p

]2 . In par-
ticular, the weight function depends only on �.

We suppose that there are control points Ci,j ∈ ℝ
2 

associated to the NURBS 
(𝜁 , 𝜉) ↦ �Nr

i,p
(𝜁)�Br

j,p
(𝜉) ∈ Nr

p
⊗ Sr

p
 which define F , 

namely

F ∶ �Ω∶=(0, 1)2 → Ω̃ (𝜁 , 𝜉) ↦ 𝜉
(
𝛾(𝜁) − z0

)
+ z0

F(� , �) =

n1∑

i=1

n2∑

j=1

Ci,j N̂
r
i,p
(�)B̂r

j,p
(�).

Fig. 1   Within SB-IGA a 
boundary description is 
used, where a well-chosen 
scaling center is required
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For simplification, we assume equal degree and regu-
larity w.r.t. each coordinate direction. Due to the SB 
ansatz, we obtain in the physical domain Ω̃ layers of 
control points and it is C1,1 = C2,1 = ⋯ = Cn1,1

 ; cf. 
Figure 2. The isogeometric spaces utilized for discre-
tization methods are defined as the push-forwards of 
the NURBS, namely

In particular, we suppose the existence of an inverse 
mapping on the interior of Ω̃ . If the domain boundary 
�Ω is composed of different curves � (k) , one defines 
parametrizations for each curve as written above and 
we get a multi-patch geometry; see Fig. 3. To be more 
precise, for a n-patch geometry we have

Vh = Vh(r, p)∶={𝜙̂◦F
−1 | 𝜙̂ ∈ Nr

p
⊗ Sr

p
}.

and Fm are SB parametrizations. IGA spaces in the 
multi-patch framework are straight-forwardly defined 
as

where V(m)

h
 denotes the IGA space corresponding to 

the m-th patch, to Fm , respectively. If the boundary 
curves do not meet G1 but high global regularity is 
necessary, then the coupling is an issue. For all the 
patch coupling considerations we suppose the next 
assumption.

(12)

⋃

m=1,…,n

Ω̃m = Ω̃, Ω̃k ∩ Ω̃l = � if k ≠ l,

Fm ∶ �Ω → Ω̃m, Fm ∈
[
Nr
p
⊗ Sr

p

]2

V
M
h
∶={𝜙 ∶ Ω̃ → ℝ |𝜙|Ω̃m

∈ V
(m)

h
, ∀m},

Fig. 2   The mesh and cor-
responding control net for a 
simple SB parametrization. 
Here we have p = 3, r = 1 
for the underlying NURBS 
definition

Fig. 3   The boundary 
can be determined by the 
concatenation of several 
curves. In this situation the 
patch-wise defined discrete 
function spaces have to be 
coupled in order to obtain 
the desired global smooth-
ness
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Assumption 1  (Regular patch coupling)

•	 In each patch we use the NURBS and B-splines 
with the same degree p and regularity r > 0 . Fur-
thermore, the Fm are C1 in the interior of each 
patch with C1-regular inverse.

•	 The control points at interfaces match, i.e. the con-
trol points of the meeting patches coincide along 
the interface.

Thus, it is justified to write for the set of paramet-
ric basis functions in the m-patch

for proper n(m)
1

, n2 ∈ ℕ>1.

Below we look at the C1 coupling of such SB-IGA 
patches, i.e. face spaces of the form

where the singularity of the Fm at z0 requires a special 
attention.

4 � From planar SB‑IGA to KL shells

The appearance of second derivatives in the vari-
ational formulation (4b) for the Kirchhoff–Love shell 
model requires a proper choice of the test and ansatz 
spaces for the computation of the shell displace-
ments. An important aspect is the representation of 
the shell via a middle surface which reduces the shell 
formulation to a 2D problem w.r.t. the parametric 

{N̂r
i,p
⋅ B̂r

j,p
| 1 ≤ i ≤ n

(m)

1
, 1 ≤ j ≤ n2},

(13)V
M,1

h
⊂ V

M
h
∩ C1(Ω̃),

coordinates. We exploit this fact by using C1-regular 
mappings in the parametric domain to express the 
shell configuration.

To be more precise, the basic idea for the KL-shell 
within SB-IGA framework is as follows. We express 
the initial shell configuration as well as the deforma-
tion of the shell utilizing the coupled test functions 
defined on the parametric domain Ω̃, where we sup-
pose Ω̃ = ∪mΩ̃m to be given as a multi-patch SB-IGA 
geometry. On the patches Ω̃m in turn we can intro-
duce basis functions by means of the standard push-
forwards. This means our shell middle-surface can be 
described by

with

for suitable control points P(m)

i,j
∈ ℝ

3 ; see Fig. 4. The 
advantage of such an approach is clear, namely cou-
pling in the planar domain Ω̃ is easier than a strong C1 
coupling of NURBS surface patches in 3D. And the 
restriction to the special class of SB domains Ω̃ gets 
useful if trimmed shells are considered.

Assumption 2  The initial shell configuration is C1 
smooth in a strong sense. Further, we assume that the 
shell deformations can be expressed with C1 map-
pings. In particular, we do not consider shells with 
kinks or deformations that lead to non-smooth shell 
configurations.

R ∶ Ω̃ → Ω,

(14)Rm =
∑

i,j

P
(m)

i,j

[
�Nr
i,p
⋅ �Br

j,p

]
◦F−1

m
, Rm = R|Ω̃m

Fig. 4   Our shell middle surface is parametrized by some mapping R . We assume in next sections that the domain Ω̃ of this R is 
given as a SB multi-patch domain



1700	 Meccanica (2023) 58:1693–1716

1 3
Vol:. (1234567890)

Summarising, it is enough to introduce globally C1 
basis functions on Ω̃ to obtain test and ansatz func-
tions for the Kirchhoff–Love shell model.

The coupling of scalar SB-IGA spaces in planar 
domains is part of the next section. A component-
wise generalization to compute shell displacements is 
clear and will not be addressed separately.

4.1 � Planar SB‑IGA with C1 coupling

We explain the procedure of how to get C1 basis func-
tions in the two-patch situation as shown in Fig.   5 
since a generalization to more patches is straight-
forward. According to the notation from the previ-
ous section and in view of isogeometric analysis we 
define the uncoupled basis functions on Ω̃ = Ω̃1 ∪ Ω̃2

Above we extend the basis functions to the whole Ω̃ 
by setting them to zero on the remaining patches. To 
obtain the necessary global C1 smoothness we change 
the basis B according to the subsequent steps.

4.1.1 � Remove basis functions near the scaling center

First, we remove in each patch all parametric and thus 
physical basis functions which are associated to 
N̂r
i,p
⋅ B̂r

j,p
 with j < 3 . This means we consider the 

modified basis

B∶=
⋃

m

{�
(m)

ij
| i = 1,… , n

(m)

1
, j = 1,… , n2}, with

�
(m)

ij
◦Fm = N̂r

i,p
⋅ B̂r

j,p
.

As a consequence, we see directly that the pull-
backs of the remaining basis functions are elements 
of C0(Ω̂) , i.e. we have a well-defined value 0 in the 
singular point z0 . Further, it can be easily verified 
that the pullbacks onto the parametric domain define 
mappings C1(Ω̂) . Indeed, an application of the chain 
rule implies vanishing derivatives of the physical 
basis functions in the scaling center. For this purpose 
assume w.l.o.g. z0 = 0, F(� , �) = � �(�), � = (�1, �2)

T 
and let

i.e. we have a C1 function with 𝜙̂ = 𝜕𝜉𝜙̂ = 𝜕𝜁 𝜙̂ = 0 
for � = 0.

Set 𝜙(𝜃1, 𝜃2)∶=𝜙̂◦F−1(𝜃1, 𝜃2) then, with 
(�1, �2) = F(� , �) it is

Below we use the abbreviation

and we have d(�) ≠ 0 due to the assumed invertibility 
of F . Hence, it is

By linearity and the definition of the B-spline basis 
functions and the assumption

𝜙̂ = 𝜕𝜉𝜙̂ = 𝜕𝜁 𝜙̂ = 0, for 𝜉 = 0 , we can w.l.o.g. 
suppose 𝜙̂(𝜁 , 𝜉) = �N(𝜁) 𝜉2, for a suitable N̂ . Note 
B̂r
j,p
(�) ∈ O(�2) for � → 0 if j ≥ 3 . For this case we 

study the derivatives when � → 0 . With (16) one 
sees

B
�

∶=
⋃

m

{�
(m)

ij
| i = 1,… , n

(m)

1
, j = 3,… , n2}.

𝜙̂ ∈ span{�Nr
i,p
⋅ �Br

j,p
| j ≥ 3, r ≥ 1},

(15)

[
𝜕𝜁 𝜙̂(𝜁 , 𝜉)

𝜕𝜉𝜙̂(𝜁 , 𝜉)

]
=

[
𝜉𝜕𝜁𝛾1(𝜁) 𝜉𝜕𝜁𝛾2(𝜁)

𝛾1(𝜁) 𝛾2(𝜁)

] [
𝜕𝜃1𝜙(𝜃

1, 𝜃2)

𝜕𝜃2𝜙(𝜃
1, 𝜃2)

]
.

d(�)∶=
(
���1(�) �2(�) − ���2(�)�1(�)

)
,

(16)
[
𝜕𝜃1𝜙(𝜃

1
, 𝜃2)

𝜕𝜃2𝜙(𝜃
1
, 𝜃2)

]
=

1

𝜉 d(𝜁 )

[
𝛾
2
(𝜁 ) − 𝜉𝜕𝜁 𝛾2(𝜁 )

−𝛾
1
(𝜁 ) 𝜉𝜕𝜁 𝛾1(𝜁 )

][
𝜕𝜁 𝜙̂(𝜁 , 𝜉)

𝜕𝜉𝜙̂(𝜁 , 𝜉)

]
.

(17)
��1�(�

1, �2) =
�� N̂(�) �

2

� d(�)
�2(�)

− 2
� N̂(�) �

� d(�)
���2(�)

�→0
⟶ 0.

Fig. 5   A simple two-patch SB geometry
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But this implies directly that �(�1, �2) has a well-
defined �1-derivative in the scaling center, namely 
��1� = 0 in z0 . Analogously one gets the well-defined 
derivative ��2�(z0) = 0.

With this first basis modification step we avoid 
the problematic part near the scaling center.

4.1.2 � Add scaling center basis functions

To preserve the approximation ability of SB-IGA test 
functions, we certainly have to introduce new test 
functions in the physical domain that determine the 
function value and derivatives at the scaling center. In 
the planar case, three additional test functions are suf-
ficient, where we exploit the iso-parametric paradigm 
to define preliminary test functions �i,sc ∈ C0(Ω) with

Latter requirements can be easily satisfied if we use 
the entries of the geometry control points as coeffi-
cients for the parametric pendants 𝜙̂i,sc . To be more 

precise, if we have Fm =
∑n2

j=1

∑n
(m)

1

i=1
C

(m)

i,j
N̂r
i,p
⋅ B̂r

j,p
, 

then we set

And then the �i,sc are determined on Ω̃ via

By the properties of B-splines we see directly 
�
(m)

1,sc
= 1,�

(m)

2,sc
= �1, �

(m)

3,sc
= �2 in a neighborhood 

of z0 . In other words, we can choose the latter three 

�1,sc(z0) = 1, ��1�1,sc(z0) = ��2�1,sc(z0) = 0,

�2,sc(z0) = 0, ��1�2,sc(z0) = 1, ��2�2,sc(z0) = 0,

�3,sc(z0) = 0, ��1�3,sc(z0) = 0, ��2�3,sc(z0) = 1.

(18)𝜙̂
(m)

1,sc
∶=

p+1∑

j=1

n
(m)

1∑

i=1

�Nr
i,p
⋅ �Br

j,p
,

(19)𝜙̂
(m)

2,sc
∶=

p+1∑

j=1

n
(m)

1∑

i=1

(C
(m)

i,j
)1 �Nr

i,p
⋅ �Br

j,p
,

(20)𝜙̂
(m)

3,sc
∶=

p+1∑

j=1

n
(m)

1∑

i=1

(C
(m)

i,j
)2 �Nr

i,p
⋅ �Br

j,p
.

(𝜙i,sc)|Ω̃m
◦Fm = 𝜙̂

(m)

i,sc
.

functions for the determination of values and deriva-
tives at z0 , i.e. we add them to the set of basis func-
tions used for the coupling step. Hence now we have 
the new set of basis functions

The three new test functions are continuous since we 
assume that the patches match continuously. And we 
note that the �i,sc are only defined once for a scaling 
center. For example, in Fig. 6, the scaling center test 
functions for a three-patch case are shown.

4.1.3 � The coupling step

For the functions in B
′′

 , we now apply the needed 
coupling step to obtain the global C1 regularity. This 
coupling is in turn composed of two simple substeps 
which correspond to the procedure used in [17].

Namely, we first couple the basis functions from 
B

′′

 in a C0 manner and observe that this is easily 
achieved due to the regular patch coupling Assump-
tion 1. So 0ing at the interface Γ between two patches, 
e.g. like in Fig. 5, we have for � ∈ B

���

 a well-defined 
directional derivative in the direction of the interface. 
Thus it is enough to find linear combinations � of 
basis functions in B

′′′

 that have continuous directional 
derivatives ∇� ⋅ nΓ, where nΓ is a fixed normal vector 
to the interface. Consequently, we get the C1 coupled 
basis functions by the null space of the derivative 
jump matrix MΓ, where

with [[g]] standing for the jump value of the 
g across the interface and above we assume 
B

���

∶={�1, �2,…} . Straightforwardly this null space 
computation is adapted if several interfaces are 
involved.

Finally, we have with the basis of the null space 
of MΓ our C1 smooth basis functions, i.e. our desired 
coupled basis B1∶=B

���

∩ C1(Ω̃) . We denote the space 
spanned by the coupled basis functions as

B
��

∶=B
�

∪ {�1,sc, �2,sc, �3,sc}.

(MΓ)kl∶=∫Γ

[[∇�k ⋅ nΓ]] [[∇�l ⋅ nΓ]] ds, �k,�l ∈ B
���
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Remark 2  The steps to get smooth basis functions 
above can be implemented directly. Even if the com-
putation of the jump matrix for the different matrices 
seems problematic, we get well-defined integral val-
ues since the evaluations are only done in quadra-
ture points away from the singular point. Besides, we 
note that all the steps from above reduce to a suitable 
transformation matrix T ∈ ℝ

N×N1 expressing the cou-
pled basis functions w.r.t. the original basis. In par-
ticular N1 = #B1, N = #B.

After we showed the possibility to obtain C1 map-
pings in the planar SB context, an obvious question 
arises. Do the coupled functions yield a reasonable 
approximation behavior if we utilize them in numeri-
cal applications? It is well-known that a strong C1 
coupling might lead to C1 locking, i.e. the loss or 
worsening of approximation abilities. Admittedly, 

V
M,1

h
= span{� |� ∈ B

1}. we do not give here a strict proof, of whether the C1 
coupling for planar SB domains ensures optimal con-
vergence orders. However, we want to outline why we 
expect the latter. Numerical tests confirm this conjec-
ture. Following the results from [17], we get optimal 
convergence orders in the planar multi-patch case, if 
we restrict ourselves to so-called analysis-suitable G1 
(AS-G1)parametrizations and B-spline basis functions 
with p > r + 1 > 1 . The mentioned parametriza-
tions class is defined for the standard two-patch case, 
cf.  Fig. 7, as follows.

Definition 1  In view of Fig.  7 we set 
F(R) = F2, F

(L) = F1(⋅ + 1, ⋅) . The global para-
metrization F̃, i.e. F̃|�Ω(S) = F(S), S ∈ {L,R} , is anal-
ysis-suitable G1 if there are polynomial functions 
�(S), �(S) ∶ [0, 1] → ℝ of degree at most 1 s.t.

(21)
�(R)(�) ��F

(L)(0, �) − �(L)(�)��F
(R)(0, �)

+ �(�) ��F
(L)(0, �) = 0,

Fig. 6   An illustration of the scaling center basis functions for a planar 3-patch example. Underlying (patch-wise) degree and regular-
ity are p = 3, r = 1
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with � = �(L) �(R) − �(R) �(L) . Further we require 
F̃ ∈ C0(�Ω(L) ∪ �Ω(R);ℝ2), and that F̃(S)

∈ C1(�Ω(S);ℝ2) 
is invertible.

We call then the complete multi-patch parametri-
zation analysis-suitable G1 , if the latter condition is 
fulfilled for each interface.

With the next lemma we relate the introduced 
AS-G1 geometries to the planar SB ansatz.

Lemma 1  (SB-IGA patch coupling as quasi AS-G1 ) 
The planar SB parametrizations fulfill the condition 
in (21) for proper polynomials �(S), �(S) of degree ≤ 1.

Proof  This can be shown by simple calcula-
tions. But it is also clear by the observation that 
the SB-parametrizations can be approximated in 
a neighbourhood of an interface by bilinear para-
metrizations. This can can be exemplified if w.l.o.g. 
F(� , �) = ��(�), where the interface corresponds to 
the points with � = 0 . Then it is

But since bilinear parametrizations are AS-G1 as 
shown in [17], the assumption is clear. 	�  ◻

Hence, if we are away from the singular point we 
get with the SB ansatz AS-G1 parametrizations. And 
for the approximation near the scaling center we 
added the scaling center basis functions �i,sc . This 
and Theorem 1 in [17] suggest the feasibility of SB-
IGA for C1 coupling.

F(� , �) = ��(0) + �� ���(0) +O(�2).

4.2 � Generalization to non‑star shaped and trimmed 
geometries

In this section, we shortly explain why the coupling 
from above can be generalized to more complicated 
geometries.

Up to now, the computational domain is con-
sidered to be star-shaped. However, assuming we 
can partition our domain into several star-shaped 
blocks, we can do the coupling as explained previ-
ously block-wise. The coupling between the differ-
ent blocks can then be realized analogously and eas-
ily if the block interfaces are given by straight lines. 
Moreover, two patches from two blocks that meet at 
a straight interface meet w.l.o.g. as two bilinear par-
ametrizations, see Fig. 8. But as already mentioned, 
the bilinear parametrizations are AS-G1 meaning we 
should not see C1 locking if p > r + 1 > 1.

The mentioned natural approach to applying a pre-
liminary partition step to handle more complicated 
geometries is convenient when considering trimmed 
planar domains. The trimming operation, i.e. the cut 
away of domain parts is a standard operation within 
the IGA community and standing to reason for the 
description of different geometries. Especially, when 
dealing with perforated domains trimming curves 
are adequate to determine the computational domain. 
The concept of trimming can be formally incorpo-
rated within planar SB-IGA. Namely, let us suppose 
an untrimmed domain Ω̃ is defined as SB multi-
patch domain. If a trimming curve �T defines which 
parts are omitted, we first compute the intersections 
between the trimming curve and the boundary curves 
of the untrimmed domain. First, we think of a non-
interior curve, i.e. there are at least two intersections. 

Fig. 7   A standard planar 
two-patch geometry
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After possible knot insertions, it is possible to repre-
sent all relevant boundary segments by new NURBS 
curves exactly. If the trimmed domain is not-star 
shaped we first partition the new domain into star-
convex blocks and then choose suitable scaling cent-
ers. Otherwise, we choose directly a feasible scaling 
center.

If there is an interior trimming curve, we start 
with the partition step and then we detect the relevant 
boundary curves that are again inputs for the blocks-
wise SB-parametrizations. Since the situation with an 
interior trimming curve is more interesting for us and 

the only one appearing in the numerics section later, 
we illustrate the proceeding for the latter case in the 
subsequent Fig. 9.

Before we come to numerical examples for the SB-
IGA framework with C1 coupling, we briefly summa-
rize the ideas for trimming in Algorithm 1.

Fig. 8   A non-star-shaped domain which is divided into star-
shaped subdomains that have non-curved interfaces. Such 
multi-patch structures are still suitable for a C1 coupling. If the 
interface between SB-param. with two different scaling centers 

is a straight line, then w.l.o.g. the patches meet as two bilinear 
patches and the param. is quasi AS-G1 , i.e. AS-G1 except at the 
singular points

Fig. 9   Here we see a trimming curve that would lead to a non-star domain. We can divide the trimmed domain into two star-shaped 
parts using a straight cut line
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After we discussed how we can obtain C1 basis 
functions on planar SB multi-patch domains, we 
exploit them below to compute approximations to 
the Kirchhoff–Love shell model.

5 � Numerical examples

In the following, the presented formulation is checked 
on its consistency at first by a simple test as square 
flat shell. In the further, the example of the Scord-
elis–Lo roof, known from the so-called ’shell obstacle 
course’ is evaluated [29–31]. Moreover, the double 
curved hyperbolic paraboloid [32] is evaluated as it 
considers negative Gaussian curvature and is a highly 
challenging example. Besides, the example of the 
Scordelis–Lo roof and further examples are evaluated 
in terms of trimmed structures as they can be found in 
literature [3, 5, 33] and are especially suitable for the 
boundary representation. Conducting an h-refinement 
for all examples, the models are validated by error 
norms or the displacements at specific points on ref-
erence solutions obtained analytically or from the lit-
erature. We denote that we further use t as the thick-
ness, E as the Young’s modulus, � as the Poisson’s 
ratio, and h as mesh size for the underlying mesh with 
1/h equidistant subdivisions with respect to both para-
metric coordinate directions. The approach has been 
implemented using MATLAB 2022 [34] in combi-
nation with the open source package GeoPDEs [35]. 
It is specifically designed to solve partial differential 

equations in the context of isogeometric analysis. We 
use the model from above, namely basis function in 
the space VM,1

h
 for each component. But we note that 

due to the specific boundary conditions we have to 
reduce the number of test functions at specific places.

5.1 � Geometry approximation

The coupling of the basis functions for the Kirch-
hoff–Love shell is done in the parametric domain Ω̃ 
and R denotes the initial shell configuration para-
metrization. Sometimes the latter is not directly 
available in the form (14). Then, due to the special 
structure of SB-IGA, it is not clear how to choose in 
general the control points in order to represent the ini-
tial shell configuration in an exact manner, to obtain 
R in the sense of (14), respectively. Thus we exploit 
the coupled C1-smooth basis functions in the para-
metric domain to approximate the initial shell shape 
for the examples below. In this sense, we follow the 
isogeometric paradigm. To be more precise, if we 
state below the geometry mapping R , we use in the 
actual computations an approximated Rapprox ≈ R . 
Doing so, we use a L2-projection onto the test func-
tion space to get Rapprox . Although this is a naive 
geometry approximation, it gives us even for coarse 
meshes reasonable results. Furthermore, several 
geometries like the hyperbolic paraboloid shape can 
be still represented exactly, except of rounding errors; 
see Fig. 10 below.
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Furthermore, in principle, it is possible to use dif-
ferent NURBS for the initial geometry in order to 
have exact geometries. But, this requires more imple-
mentation effort due to the special form of the SB-
IGA basis functions in view of quadrature rules. And 
on the other hand, we would leave in some sense the 
idea of iso-geometric analysis.

5.2 � Smooth solution on a square shell

The first example considering the shell formula-
tion is a flat shell of the square domain Ω = [0, 2]2 
under a smoothly distributed load. It is dedicated to 
investigating the convergence rates of the approach. 
The parametric domain coincides with the physical 
domain in this example. The properties are E = 106 , 
� = 0.1 and correspondingly t =

(
12(1 − �2)∕E

)1∕3 . 
The boundary �Ω is fixed and a load g is applied as 
gz = 4�4 sin(�x) sin(�y) , such that the analytical solu-
tion of the deformation is uz,ref = sin(�x) sin(�y) . The 
scaling center is placed in the middle of the struc-
ture and the mesh is evaluated for basis functions of 
degree p = 3 , p = 4 , and p = 5 . An exemplary mesh 
for h = 1∕4 , p = 3, r = 1 for each patch and a corre-
sponding deformation plot is shown in Fig. 11.

The results of the computation are compared to the 
analytical solution in terms of the H2 seminorm and 
the L2 norm defined as

The convergence rates are shown in Fig. 12.
The convergence rates indicate for both error esti-

mations optimal convergence rate O(hp−1) for the H2 
seminorm and O(hp+1) for the L2 norm. The devia-
tions for p = 5 might be caused by large condition 
numbers together with rounding errors.

5.3 � Scordelis–Lo roof

The Scordelis–Lo roof is a well-known model 
described by [36]. It is a cylinder cutout of 80◦ with 
dimensions of radius R = 25 and length L = 50 . The 
thickness is t = 0.25 and the material parameters are 
E = 4.32 ⋅ 108 and � = 0.0 . The structure is supported 
by rigid diaphragms at the curved edges and free at 
the straight edges. The Scordelis–Lo roof is investi-
gated in three setups as they are the untrimmed struc-
ture, trimmed with an elliptic hole under gravity load, 

(22)|u − uh|H2(Ω) for theH2-error

(23)||u − uh||L2(Ω) for theL2-error.

Fig. 10   Here we see the difference between the exact para-
metrization of the Scordelis–Lo roof with holes and the 
approximated parametrization mapping utilizing the coupled 
basis functions. To be more precise, the Euclidean norm dif-

ference |Rapprox(�
1
, �2) − R(�1, �2)| is plotted, where the under-

lying meshes are displayed in Fig.  25 and Fig.  19. Even for 
relatively coarse meshes we see only small differences and the 
geometry errors can be assumed to be small
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and trimmed with four holes under a single load. The 
untrimmed example is investigated to compare the 
boundary parametrization to standard IGA parametri-
zations. Further, the trimmed roofs are compared to 
numerical results obtained from the literature. The 
exact parametrization function is chosen to

with LΩ̃,𝜃1 and LΩ̃,𝜃2 being the corresponding side 
length of Ω̃ in each parametric direction.

(24)

�
(

�1, �2
)

=
[

25 sin
(

��1 4
9LΩ̃,�1

)

�2 50
LΩ̃,�2

25 cos
(

��1 4
9LΩ̃,�1

)]T

5.3.1 � Untrimmed Scordelis–Lo roof

At first, the untrimmed roof under a gravity load of 
gz = 90 per unit area is investigated and the refer-
ence solution is given as the vertical displacement 
at the midpoint of the straight, free edge as 
uref = 0.3024 [29, 30]. Since the reference considers 
shear deformation which is not represented in 
Kirchhoff–Love shells, the reference solution herein 
refers to [6] with uref = 0.3006 in terms of the verti-
cal deflection at the same point of interest. The par-
ametric mesh, defined on the domain 
Ω̃ = [−0.5, 0.5], [−1, 1] , and the corresponding ini-
tial shell configuration are shown in Fig.  13. The 
parametric mesh considers an offset of the scaling 

Fig. 11   Example of the 
smooth solution on a square 
shell. On the left, the under-
lying mesh of h = 1∕4 is 
pictured. On the right side, 
the corresponding deformed 
structure is shown with 
a plot of the deformation 
magnitude of the problem 
for p = 3 and r = 1

Fig. 12   Convergence studies of the H2-errors (left) and the L2-errors (right) on the example of the smooth solution on a square shell 
and degrees of p = 3 , p = 4 and p = 5
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center with �1
off

= 0.2 and �2
off

= 0.1 to show the gen-
erality of the formulation.

The results of basis functions of degree p = 3 , 
p = 4 , and p = 5 are shown in Fig. 14 on the left side. 
Even though the scaling center is chosen in non-cen-
tered discretization, the results converge in a smooth 
way towards the reference solution. A comparison to 
a standard IGA computation of the Scordelis–Lo roof 
shows that the convergence of IGA-basis functions is 
at better results for fewer degrees of freedom. This is 
a natural consequence of the SB-IGA approach since 
four patches are coupled towards one scaling center 
in this example. This points out, that the SB-IGA 

formulation is not as computationally efficient as IGA 
for standard single-patch structures. However, the 
example shows a similar convergence rate for the IGA 
and the SB-IGA approach which validates the pro-
posed method.

5.3.2 � Scordelis–Lo roof with one hole under gravity 
load

For the incorporation of trimmed geometries, the 
previously defined Scordelis–Lo roof is subjected 
to trimming in the parametric domain of one hole 
of radius r = 1 . Same as in the untrimmed roof, the 

Fig. 13   Parametric mesh 
and initial shell configura-
tion of the Scordelis–Lo 
roof for h = 1∕2

Fig. 14   On the left side, the convergence studies of the displacement uz at the middle of the straight edge with degrees of p = 3 , 
p = 4 , and p = 5 are shown. On the right side, the convergence rate is compared to the standard IGA discretization
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structure is subjected to a gravity load of gz = 90 
per unit area. A comparative solution of the verti-
cal displacement at the midpoint of the straight, free 
edge as uref = −0.361078869965661 is obtained by 
overkill solution of the method for a Kirchhoff–Love 

shell proposed in [5] with degree p = 5 and 62.456 
active elements. The parametric mesh of domain 
Ω̃ = [−4, 4]2 and the initial shell configuration is 
shown in Fig. 15. The point of interest is marked in 
red in the figure.

Fig. 15   Parametric mesh of the Scordelis–Lo roof with hole and the initial shell configuration of h = 1∕2

Fig. 16   On the left side, the convergence study on of the Scordelis–Lo roof with one hole under gravity load is figured. On the right 
side a plot of the deformation component uz is shown for a mesh of h = 1∕6 and p = 5 , r = 1
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The results of the vertical deformation at the inves-
tigated point of the model with respect to the compar-
ative solution in Fig. 16 show good agreement. Accu-
rate solutions are obtained even from the initial mesh. 
A slight underestimation is visible for the converged 
results, however, the difference is less than 0.5% for 
n = 6 and p = 5 . As the comparative solution is not 
an analytically obtained solution, but a numerically 
converged solution, we assume the slight deviation 
between the observed deformation values might come 
from the different trimming strategies. However, it 
shows the proper incorporation of trimming curves 
for the analysis. This is underlined by the deformation 
plot of uz on the right side obtained with p = 5 and 
h = 1∕6.

5.3.3 � Scordelis–Lo roof with four holes under single 
load

Further, the Scordelis–Lo roof is subjected to trim-
ming in the parametric domain of four equally spaced 
holes of radius r = 0.5 . The loading is changed to a 
point load in the vertical direction in the center of 
the structure of Fz = 10−5 . The example is shown in 
Fig.  17 with the trimming curves shown in red and 
the point load applied in the center in green.

The results of the model can be compared to defor-
mation plots presented in [5, Fig. 11(a)], which pro-
poses an IGA shell with adaptive refinement.   Fig-
ure  18 shows the deformed structure with the 
displacement in z-direction for the SB-IGA approach 
of p = 3 , r = 1 and h = 0.125.

The results point out that the approach derived 
herein is capable of computing the deforma-
tion for trimmed domains of shells. The defor-
mation plot has its maximum and minimum at 
uz,min ≈ −3.3 ⋅ 10−1 and uz,max ≈ 3.7 ⋅ 10−1 , respec-
tively. These results are also obtained in [5]. Good 
agreement is visible on the whole domain including 
the area of the load application and the free edges.

5.4 � Hyperbolic paraboloid

The model of the hyperbolic paraboloid is a saddle 
structure described in [32]. Besides its complexity due 
to the double-curved structure and the negative curva-
ture, the problem is compared to the ASG1 approach for 
standard IGA multi-patches. The structure is clamped 
one-sided and loaded by a uniformly distributed load 
of gz = −8000 ⋅ t . The properties are length L = 1 , 
Young’s modulus E = 2 ⋅ 1011 , Poisson’s ratio � = 0.3 

Fig. 17   Mesh and para-
metric representation of the 
Scordelis–Lo roof with four 
holes ( h = 1∕2)

Fig. 18   Deformed Scordelis–Lo roof with four holes with col-
oring of the z-displacement obtained for p = 3 , h = 1∕6 , and 
r = 1
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and thickness of t = 1∕1000 and t = 1∕100 . The exact 
parametrization function of both hyperbolic paraboloid 
shells is chosen as The reference solution is obtained from [32] as the 

vertical deflection at the middle of the free, curved 
edge with uz,t=1∕1000 = −0.0063941 and 

(25)R(�1, �2) =
[
�1 �2

(
�1
)2

−
(
�2
)2]T

.

Fig. 19   Mesh and parametric representation of the hyperbolic 
paraboloid. On the left, the parametric mesh for h = 1∕4 is 
shown. On the right, the corresponding initial shell configura-

tion is plotted. The clamped boundary is marked with a blue 
line and the point of interest for the evaluation is marked with 
a red dot in both figures

Fig. 20   Example of the hyperbolic paraboloid. On both sides the convergence studies for degrees of p = 3 , p = 4 , and p = 5 with 
r = 1 are shown for the thin shell (left) and the thick shell (right)
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uz,t=1∕100 = −0.93137 ⋅ 10−4 . The partition of the par-
ametric mesh of domain Ω̃ = [−0.5, 0.5]2 and the ini-
tial shell configuration is shown in Fig.  19 with the 
clamped boundary highlighted in blue and the point 
of interest highlighted in red. The scaling center is 
placed with an offset in �2-direction as �2

off
= −0.1 . 

This yields the possibility to have a higher mesh den-
sity towards the Dirichlet boundary conditions natu-
rally enforced by moving the scaling center.

The results of the convergence study of both thick-
nesses are shown in Fig.  20. The computed results 
converge smoothly towards the reference solution for 
all polynomial orders of the basis functions. For the 
thin shell, the computation is converging less rapidly 
than for the thick shell.

Further, the proposed approach is compared to 
the analysis-suitable G1 approach for standard IGA 
patches. Figure 21 shows a comparison of the results 
for the degree of p = 3 and p = 4 . It is important to 
note, that the approach herein has a regularity of r = 1 
for various degrees, while the compared approach 
has a regularity of r = p − 2 . The comparison shows, 
that the Kirchhoff–Love shell in boundary represen-
tation seems to converge faster towards the reference 

solution than the approximate solutions from [18] uti-
lizing non-degenerate IGA multi-patches.

5.5 � Flat shell with multiple holes

To take the trimming more into account, a flat shell 
structure with an asymmetrical arrangement is 
evaluated following [33]. The model is presented 
in Fig. 22 with the parametric mesh and the corre-
sponding deformation. The quadratic shell of side 
length L = 5 and thickness t = 0.005 is trimmed by 
16 circular holes of radius r = 0.025 and clamped 
at all four sides. The material parameters are 
E = 8.736 ⋅ 107 and � = 0.3 . The structure is loaded 
by a vertical load of gz = sin (�x) ⋅ sin (�y).

To compare the results to reference solutions 
from the literature [33], a normalization of the ver-
tical deformation is done as

with uz as the computed deflection in z-direction, D 
the flexural stiffness and L the side length of the shell. 
Figure 23 shows the results of the proposed approach 
for the deformation uz and to compare the results to 

(26)u∗
z
=

uzD

L4
,

Fig. 21   Comparison of the results from the proposed approach 
with the standard analysis-suitable G1 for Kirchhoff–Love 
shells proposed in [18] for a thickness of t = 1∕100 (left) and 

an exemplary deformation plot of the overall deformation u for 
p = 3 and h = 1∕24 (right)
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the reference solution from the literature, the results 
are evaluated in terms of a normalization. We refer 
to the reference solution of an SB-FEM plate for-
mulation with scaling in the thickness direction and 
semi-analytic solution procedure presented in [33, 
Figure  29 (a)]. Good agreement is visible for the 
proposed approach considering maximal normalized 
deflection and the contour lines.

5.6 � Violin

In the last example, we utilize the boundary represen-
tation in the most sophisticated extent by evaluating a 
sketch of a violin following the idea of [3] with modi-
fications for the boundary conditions and the para-
metrization functions. The violin in this contribution 
is clamped at the whole outer boundary and trimmed 
by two so-called "F-holes". It is loaded by a constant 
vertical dead load of gz = 0.05 per unit area. The 

Fig. 22   Parametric representation of the flat shell with multiple holes and an exemplary deformation plot with p = 3 and h = 1∕3

Fig. 23   Left, the deformation uz is shown for the flat shall with multiple holes. Right, the normalized vertical displacements u∗
z
 of the 

proposed method look similar to results by an SBFEM formulation using normal scaling presented in [33]
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parameters are t = 0.25 , E = 105 and � = 0.1 . The 
underlying parametrization function of the violin is

The parametric mesh and the corresponding initial 
shell configuration are shown in Fig. 24. The advan-
tages of the scaled boundary approach are especially 
visible due to the various shapes of the SB-patches 
including triangles, quadrilaterals, and pentagons. 
Further, the outer boundary curve of the violin con-
tains vertices that are easily included in the compu-
tational domain. Note, that the trimming curves of 
the "F-holes" are considered as part of the bound-
ary. Even though there is no reference solution, the 
results in Fig. 25 seem reasonable as the deformation 

(27)
R(�1, �2) =

[

�1 �2 2 exp
(

−0.0025
(

�1
)2
)

⋅ 2 exp
(

−0.01
(

�2
)2
)]

.

is symmetric in the y-axis, and the boundary condi-
tions are fulfilled.

6 � Conclusions

In this contribution, a Kirchhoff–Love shell was 
derived in the framework of scaled boundary isoge-
ometric analysis. To ensure C1-continuity across 
patches, a coupling of the scaled boundary geom-
etries was applied that fits the concept of analysis-
suitable G1 parametrizations from [17] and a special 
treatment of the basis functions in the vicinity of the 
scaling center was implemented. The benefits of the 
boundary representation technique are pointed out 
by the incorporation of trimming curves as part of 

Fig. 24   Parametric representation and initial shell configura-
tion of the violin. On the left, the parametric mesh for h = 1∕2 
is shown. On the right, the corresponding initial shell configu-

ration is shown. The violin is clamped at the outer boundary in 
all directions including rotations

Fig. 25   Deformation plot of the proposed approach for a violin with p = 3 and h = 1∕2
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the geometry. The shell formulation is at first tested 
in general against optimal convergence rates of the 
H2 seminorm and the L2 norm. Further, a compari-
son to the Kirchhoff–Love shell proposed by [6] and 
in the terms of multi-patch structures [18] is done. 
The application of trimming is presented in several 
examples and good agreement with examples from 
the literature is obtained. The method is especially 
powerful when it comes to multi-patch geometries 
that cannot easily be described by a single IGA 
patch which is outlined by an example of a violin 
structure with trimmed F-holes.

In further work, an exact representation of the 
shells in the physical domain is pending. A pro-
cedure to adjust the planar domain and the corre-
sponding parametrization according to the physi-
cal domain will improve the applicability of the 
approach. Besides, the formulation of the Kirch-
hoff–Love shell may be extended to geometric and 
material nonlinearity to show the formulations’ 
power not only for the linear case but to make it 
applicable to more advanced shell problems includ-
ing buckling or plastic deformations.
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